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Recently we highlighted the remarkable nature of an explicitly invertible transformation, we reported
some generalizations of it and examples of its expediency in several mathematical contexts: alge-
braic and Diophantine equations, dynamical systems (with continuous and discrete time), nonlinear
PDEs, analytical geometry, functional equations. In this paper we report a significant generalization
of this approach and we again illustrate via some analogous examples its expediency to identify
problems which appear far from trivial but are in fact explicitly solvable.
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1. Introduction

This paper follows a previous article [1], in which we highlighted the remarkable nature
of a simple, explicitly invertible transformation, we reported some generalizations of it and
examples of its expediency in several mathematical contexts: algebraic and Diophantine
equations, dynamical systems (with continuous and discrete time), nonlinear PDEs, ana-
lytical geometry, functional equations. In this paper we report a significant generalization
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of this approach and we again illustrate via some analogous examples its expediency to
identify problems which appear far from trivial but are in fact explicitly solvable.

In the following Sec. 2 we tersely review the basic invertible transformation that is at
the core of our treatment and we describe the generalization of it which constitutes the
main contribution of this paper; some related developments are confined to the appendix.
In Sec. 3 we report some representative examples of applications of this approach: the topics
treated are identified by the titles of the subsections (note that, at the cost of some minor
repetitions, the presentation allows the reader only interested in one of those topics to jump
directly to the relevant subsection).

2. The Explicitly Invertible Transformation and Its Generalization

In this section we review tersely the original explicitly invertible transformation — without
repeating the considerations about this approach proffered in [1] — and we then report its
generalization.

The simplest avatar of the explicitly invertible transformation that provided the point
of departure of our treatment [1] consists of a change of variables, involving two arbitrary
functions F1(w), F2(w), from two quantities u1, u2 to two quantities x1, x2 and vice versa.
It reads as follows:

x1 = u1 + F1(u2), x2 = u2 + F2(x1) = u2 + F2(u1 + F1(u2)), (2.1a)

u2 = x2 − F2(x1), u1 = x1 − F1(u2) = x1 − F1(x2 − F2(x1)). (2.1b)

The most remarkable aspect of this transformation is its explicitly invertible character: note
that both the direct respectively the inverse changes of variables, (2.1a) respectively (2.1b),
involve only (albeit also in a nested manner) the two arbitrary functions F1(w), F2(w), and
not their inverses. This, for instance, implies that if the two functions F1(w), F2(w) are both
polynomials, then (the right-hand sides of) both the direct and the inverse transformations,
(2.1a) and (2.1b), are polynomials.

The extensions of these transformations to more than two variables are rather obvious
[1]; see also below.

Remark 2.1. The transformation (2.1a) can also be characterized as resulting from the
sequential application of the following two (“lower triangular” respectively “upper triangu-
lar”), obviously invertible, “seed” transformations:

y1 = u1 + F1(u2), y2 = u2, (2.2a)

x1 = y1, x2 = y2 + F2(y1). (2.2b)

Since 1942 it is known that all invertible transformations of two variables to two variables
that are polynomial in both directions are in fact obtainable by iterating such seed trans-
formations [3] (terminology: they are all “tame”). Three decades later it was conjectured
that this is not the case for three variables [4] (“Nagata conjecture”: for three variables
there exist automorphisms — polynomial in both direction — that are not tame, namely
that are “wild”). And it took three more decades to validate this famous conjecture, by
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showing [6–8] that the polynomial Nagata transformation

x1 = u1 + (u2
1 − u2u3)u3, (2.3a)

x2 = u2 + (u2
1 − u2u3)[(u2

1 − u2u3)u3 + 2u1], (2.3b)

x3 = u3, (2.3c)

whose inversion,

u1 = x1 − (x2
1 − x2x3)x3, (2.4a)

u2 = x2 + (x2
1 − x2x3)[(x2

1 − x2x3)x3 − 2x1], (2.4b)

u3 = x3, (2.4c)

is clearly also polynomial, cannot be obtained by iterating seed transformations of the type

y1 = u1 + F1(u1, u2), y2 = u2, y3 = u3, (2.5a)

z1 = y1, z2 = y2 + F2(y1, y3), z3 = y3, (2.5b)

x1 = z1, x2 = z2, x3 = z3 + F3(z1, z2). (2.5c)

These seed transformations entail

x1 = u1 + F1(u2, u3), x2 = u2 + F2(x1, u3), x3 = u3 + F3(x1, x2) (2.6)

(of course in the right-hand side of the second of these three equations x1 should be replaced
by its expression given by the preceding formula, and likewise for x1 and x2 in the third
equation). Note the coincidence of these equations with the Equations (3.5a) of [1].

To arrive at our generalization we take as point of departure two (or more) assumedly
known invertible transformations, which we write in operatorial form as follows:

z = Tn · y, y = T−1
n · z, n = 1, 2, . . . . (2.7a)

And let us assume that the direct and inverse versions, Tn and T−1
n , of each of these

transformations depend on an arbitrary number of parameters fk, which themselves may
be functions of another variable u (or possibly several variables uj):

Tn ≡ Tn(fnk), fnk ≡ fnk(uj). (2.7b)

Hereafter we assume for simplicity that these functions fnk(uj) are one-valued functions
of their arguments.

For instance a simple example of invertible transformation (“Möbius”), from y to z and
vice versa, reads as follows:

z =
yf1(u) + f2(u)
yf3(u) + f4(u)

, y = −zf4(u) − f2(u)
zf3(u) − f1(u)

, (2.8a)

where the four a priori arbitrary functions fk(u) of the single variable u are only restricted
by the condition that the combinationD(u) = f1(u)f4(u)−f2(u)f3(u) not vanish identically,

D(u) = f1(u)f4(u) − f2(u)f3(u) �= 0 (2.8b)
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(indeed if D(u) were to vanish identically, z = f2(u)/f4(u) = f1(u)/f3(u) and y =
−f2(u)/f1(u) = −f4(u)/f3(u) would both become functions of u only, related to each
other only via u, in a generally complicated manner).

Let us now consider the transformation — from two quantities u1, u2 to two quantities
x1, x2 — reading as follows:

x1 = T1(f1k(u2)) · u1, (2.9a)

x2 = T2(f2k(x1)) · u2 = T2(f2k(T1(f1k(u2)) · u1)) · u2, (2.9b)

which — under the above assumptions — can clearly be explicitly inverted, to read

u1 = T−1
1 (f1k(u2)) · x1 = T−1

1 (f1k(R−1
2 (f2k(x1)) · x2)) · x1, (2.10a)

u2 = T−1
2 (f2k(x1)) · x2. (2.10b)

Remark 2.2. Note that both the direct transformation (2.9) and the inverse transforma-
tion (2.10) involve the functions fnk(w) but not their inverses.

For instance if the two transformations Tn are both of Möbius type, see (2.8), then the
direct transformation (2.9) reads

x1 =
u1f11(u2) + f12(u2)
u1f13(u2) + f14(u2)

, (2.11a)

x2 =
u2f21(x1) + f22(x1)
u2f23(x1) + f24(x1)

,

=
[
u2f21

(
u1f11(u2) + f12(u2)
u1f13(u2) + f14(u2)

)
+ f22

(
u1f11(u2) + f12(u2)
u1f13(u2) + f14(u2)

)]

·
[
u2f23

(
u1f11(u2) + f12(u2)
u1f13(u2) + f14(u2)

)
+ f24

(
u1f11(u2) + f12(u2)
u1f13(u2) + f14(u2)

)]−1

, (2.11b)

and the inverse transformation (2.10) reads

u1 = −x1f14(u2) − f12(u2)
x1f13(u2) − f11(u2)

,

=
[
−x1f14

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)
+ f12

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)]

·
[
x1f13

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)
− f11

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)]−1

, (2.12a)

u2 =
−x2f24(x1) + f22(x1)
x2f23(x1) − f21(x1)

. (2.12b)

Note that these explicit transformations involve eight a priori arbitrary functions
fnk(w), n = 1, 2, k = 1, 2, 3, 4. Hereafter we assume for simplicity that all these functions
are well defined, yielding a unique outcome for all input values of their argument w.

In the Appendix, we list other examples of elementary invertible transformations that
can serve (in alternative to the Möbius transformation (2.8)) as starting point of this
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approach, and a few representative examples of invertible transformations obtained by com-
bining such transformations. The alert reader will enjoy inventing many more.

Remark 2.3. In the treatment above we assumed the functions fnk(w) to depend on a sin-
gle argument, and the generalized transformation to relate two quantities u1, u2 to two quan-
tities x1, x2 and vice versa, see (2.9) and (2.10). The extension of this treatment to explicitly
invertible transformations from N quantities un to N quantities xn, n = 1, 2, . . . , N, and
vice versa, with N an arbitrary integer larger than two is rather obvious; they may involve
arbitrary functions of N − 1 arguments. If in doubt about this development, see the analo-
gous treatment in [1, Sec. 3] and see also some examples in the appendix, in particular the
last one.

3. Applications

As in our previous paper [1], in this section we outline various applications of the invertible
transformation described above. Generally we illustrate typical possibilities via quite ele-
mentary examples. The reader will have no difficulty to imagine and explore a multitude
of additional examples. And let us reiterate that the reader interested in only one of the
topics treated below can jump directly to the relevant subsection.

3.1. Algebraic and Diophantine equations

In this subsection we indicate — via a simple example — how highly nonlinear yet explic-
itly solvable algebraic equations can be manufactured using the invertible transformation
introduced in the preceding section, see (2.9) and its inverse (2.10). We moreover show how
in this manner Diophantine equations can also be identified, namely nonlinear algebraic
equations featuring integer solutions; the assessment whether these Diophantine findings
are interesting or trivial is left to the cognoscenti.

Let us take as point of departure the single linear equation in the two unknowns u1, u2

reading

a1u1 + a2u2 = b, (3.1)

where the three numbers a1, a2, b are a priori arbitrarily assigned. The general solution of
this equation clearly reads

u1 = u, u2 =
b− a1u

a2
, (3.2a)

or equivalently

u1 =
b− a2u

a1
, u2 = u, (3.2b)

where u is an arbitrary number. But if one is interested in the Diophantine version of this
simple Eq. (3.1) — namely in the consideration of this equation and its solutions in the
context of integer numbers, requiring all the quantities appearing in them to be integers —
then it is necessary and sufficient for the existence of a solution that the largest common
divisor of the two integers a1, a2 be also a divisor of b. It is then easy to show (see, for
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instance, [5]) that there certainly exist a Diophantine solution — u1 = v1, u2 = v2, with v1
and v2 integers — of (3.1),

a1v1 + a2v2 = b (3.3a)

and the general Diophantine solution of (3.1) then clearly reads

u1 = v1 + a2z, u2 = v2 − a1z, (3.3b)

with z an arbitrary integer.
Let us now apply to the simple Eq. (3.1) our transformations.
The first case we consider obtains by employing the linear-linear transformation (see

the appendix) with all the functions fnk(w) also linear,

fnk(w) = αnkw + βnk, n = 1, 2, k = 1, 2. (3.4)

Via (the inverse version (A.7) of) this transformation Eq. (3.1) becomes (after a bit of
standard algebra, including the elimination of a common denominator)

c0 + c1x1 + c2x2 + c3x
2
1 + c4x1x2 + c5x

2
2 + c6x

3
1 = 0, (3.5)

where

c0 = (bβ21 + a2β22)(α11β22 − β11β21) + a1β21(α12β22 − β12β21), (3.6a)

c1 = (b+ a1)(α11α22β21 − 2α21β11β21 + α11α21β22) + a1β
2
21

− a2(α22β11β21 − 2α11α22β22 + α21β11β22), (3.6b)

c2 = −bα11β21 − a1α12β21 + a2(β11β21 − 2α11β22), (3.6c)

c3 = (bα21 + a2α22)(α11α22 − α21β11) + a1α21(α12α22 − α21β12 + 2β21), (3.6d)

c4 = −bα11α21 − a1α12α21 + a2(α21β11 − 2α11α22), (3.6e)

c5 = a2α11, c6 = a1α
2
21. (3.6f)

And, via (A.6) with (3.3b) (and of course (3.3a)), one can assert that the cubic equation (3.5)
has the explicit solution

x1 = (v2 − a1z) [α11(v1 + a2z) + α12] + (v1 + a2z)β11 + β12, (3.7a)

x2 = [(v2 − a1z)α21 + a22]{(v2 − a1z)[α11(v1 + a2z) + α12] + (v1 + a2z)β11 + β12}
+ (v2 − a1z)β21 + β22, (3.7b)

namely x1 (respectively, x2) is a polynomial function of z of second (respectively, third)
degree. To write this solution we employed, rather than (3.2) (solution of (3.1)), the equiv-
alent version (3.3b) (solution of (3.1) with (3.3a)), because it is more appropriate to discuss
the more interesting Diophantine case, see below. Note however that, in the general (non-
Diophantine) context of real (or, for that matter, of rational) numbers, the 12 numbers z, b
and an, αnm, βnm with n = 1, 2,m = 1, 2 appearing in (3.5) and (3.7) can all be arbitrarily
assigned, while v1 and v2 in (3.7) satisfy the condition (3.3a), thus only one of these two
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parameters can be arbitrarily assigned, say v1; moreover the solution, in this general con-
text of real (or, for that matter, rational) numbers, depends in fact on only one arbitrary
parameter, say on u = v1+a2z, not separately on v1 and z (see (3.2a) and (3.3b)). If instead
the parameters z, b, an, αnm and βnm are all restricted to be integers, and we impose v1
and v2 to be integers, then (3.3a) becomes a trivial linear Diophantine equation for v1 and
v2, whose solution requires that the greatest common divisor of a1 and a2 divides b, see
above. If such a condition is satisfied, then clearly the cubic equation (3.5) is Diophantine
as well, since the solutions (3.7) are then clearly integer numbers.

Equation (3.5) can be easily recast in the so-called Weierstrass form for an elliptic curve
over a general field [2]

x̃2
2 + c̃4x̃1x̃2 + c̃2x̃2 = x̃3

1 + c̃3x̃
2
1 + c̃1x̃1 + c̃0, (3.8)

via the rescaling

x1 = −c5c6x̃1, x2 = c5c
2
6x̃2, (3.9a)

c̃0 = − c0
c35c

4
6

, c̃1 =
c1
c25c

3
6

, c̃2 =
c2
c25c

2
6

, c̃3 = − c3
c5c26

, c̃4 = − c4
c5c6

. (3.9b)

It is then immediate to observe that, for any choice of the 12 parameters z, b, an, αnm and
βnm in a generic field (for instance Q), the elliptic discriminant ∆ of (3.8), associated to
(3.5) via (3.9), vanishes,

∆ = −27(4c̃0 + c̃22)
2 − 8(2c̃1 + c̃2c̃4)3 + 9(4c̃0 + c̃22)(2c̃1 + c̃2c̃4)(4c̃3 + c̃24)

+ (4c̃3 + c̃24)
2[(4c̃0 + c̃22)c̃3 + c̃0c̃

2
4 − c̃1(c̃1 + c̃2c̃4)] = 0. (3.10)

Hence the variety associated to the cubic curve (3.5) is singular and the cubic (3.5) is not
an elliptic curve.

Remark 3.1. This is actually a straightforward consequence of the fact that the cubic
(3.8) is obtained from a plane, as defined by (3.1). Since nonsingular elliptic curves are tori,
the impossibility to obtain such an elliptic curve by our approach is clear on topological
grounds.

Indeed the expressions of the seven parameters cj , j = 0, 1, . . . , 6, in terms of the
11 parameters b, an, αnm, βnm is such, see (3.6), that the freedom to assign arbitrarily
the latter does not entail the freedom to assign arbitrarily the former; as it happens, the
seven parameters cj are constrained by one (and only one) condition. This can be seen if
one tries and expresses the 11 parameters b, an, αnm, βnm in terms of the seven parameters
cj , by inverting the expressions (3.6). A convenient way to do so (out of many possible ones)
yields the following formulas:

a1 =
c6
α2

21

, a2 =
c5
α11

, (3.11a)

β11 =
α11[(α11v1 + α12)c6 + α21(α21v2 + 2α22)c5 + α21c4]

α2
21c5

, (3.11b)
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β12 = − γ12

α2
21c5c6

, β2,1 =
α21(4c3c5 − c24 +R)

12c5c6
, (3.11c)

β22 =
γ22

24c25c6
, (3.11d)

where

γ12 = (α11v1c6 + α21α22c5)2 + α21(α11v1c6 + α21α22c5)c4

+ 2α2
21(α11v1c6 + α21α22c5)v2c5 + α11α12v1c

2
6

+α4
21v

2
2c

2
5 + α3

21v2c4c5 + α2
21α12v2c5c6 + (1/6)(2c3c5 + c24 −R)α2

21, (3.11e)

γ22 = 2α22(4c3c5 − c24)c5 + (2α22c5 + c4)R+ 4c3c4c5 − c34 − 12c2c5c6 (3.11f)

and

R2 = (c24 − 4c3c5)2 − 24c5c6(2c1c5 − c2c4). (3.11g)

Note that all the parameters appearing in the right-hand sides of these expressions remain
free: this includes the two parameters v1, v2 and the four parameters αnm (except for the con-
ditions α11 �= 0, α21 �= 0), as well of course as the six parameters c1, c2, c3, c4, c5, c6. On the
other hand the parameter c0 is given in terms of the other six parameters c1, c2, c3, c4, c5, c6
by the following formula:

c0 =
−R3 + (c24 − 4c3c5)[R2 + 12c5c6(c2c4 − 2c1c5)] + 216c22c

2
5c

2
6

864c35c
2
6

, (3.12)

and by inserting these values in the solution formula (3.7) this solution takes the neat form

x1 = −c5c6ζ2 + c4ζ − c3
3c6

+
R− c24
6c5c6

, (3.13a)

x2 = c5c
2
6ζ

3 − c4c6ζ
2 − R− c24

4c5
ζ − c2

2c5
+ c4

(
c3
6c6

+
R− c24
24c25c6

)
, (3.13b)

where

ζ =
z

α21
− (α22 + α21v2)

c6
, (3.13c)

is an arbitrary parameter, and R is defined by (3.11g).
There are two interesting cases when the algebraic equation (3.5) with (3.6) is Dio-

phantine, namely all its coefficients are integers and it features a nontrivial class of integer
solutions.

The first case is characterized by the following assignments:

c1 = λc4, c2 = 2λc5, c3 = 0, (3.14a)



December 13, 2011 15:57 WSPC/1402-9251 259-JNMP S1402925111001751

Generalization of an Invertible Transformation 527

entailing

R = c24, c0 = c5λ
2. (3.14b)

Above and below λ is an arbitrary integer. Then, after conveniently setting

x1 = x, x2 = y − λ, (3.14c)

the algebraic equation (3.5) reads

c4xy + c5y
2 + c6x

3 = 0, (3.14d)

which is Diophantine for any choice of c4, c5, c6 as arbitrary integers and which features the
solution

x = −c5c6ζ2 + c4ζ, (3.14e)

y = c5c
2
6ζ

3 − c4c6ζ
2 = −c6ζx, (3.14f)

with ζ an arbitrary integer.
The second case is characterized by the following assignments:

c1 = λc4, c2 = 2λc5, c3 = 3µc5c26, c4 = 6ρc5c6. (3.15a)

entailing

R = ±12c25c
2
6(µ− 3ρ2). (3.15b)

Above and below µ and ρ (like λ) are two arbitrary integers (of course µ �= 0). We are then
left with two cases depending on the determination of the sign of R in (3.15b).

If the sign in front of the expression of R in (3.15b) is taken to be positive, then

c0 = c5[λ2 − 4c25c
4
6(µ− 3ρ2)3], (3.15c)

and, after conveniently making again the simple change of variables (3.14c), the algebraic
equation (3.5) reads

6c5c6ρxy + c5y
2 + c6x

3 + 3c5c26µx
2 − 4c35c

4
6(µ− 3ρ2)3 = 0. (3.15d)

Therefore, if ρ, c5, c6, µ are arbitrary integers, this equation becomes Diophantine and its
solutions x, y are clearly integer numbers:

x = c5c6(−ζ2 + 6ρζ + µ− 12ρ2), (3.15e)

y = c5c
2
6[ζ

3 − 6ρζ2 − 3(µ− 6ρ2)ζ + 6ρ(µ− 3ρ2)], (3.15f)

with ζ an arbitrary integer.
On the other hand, if the sign in front of the expression of R in (3.15b) is taken to be

negative, then

c0 = c5λ
2, (3.15g)
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and, after conveniently making again the simple change of variables (3.14c), the algebraic
equation (3.5) reads

6c5c6ρxy + c5y
2 + c6x

3 + 3c5c26µx
2 = 0. (3.15h)

As above, if ρ, c5, c6, µ are arbitrary integers, this equation is Diophantine and its solutions
x, y are clearly integer numbers:

x = c5c6(−ζ2 + 6ρζ − 3µ), (3.15i)

y = c5c
2
6(ζ

3 − 6ρζ2 + 3µζ), (3.15j)

with ζ an arbitrary integer.
This ends our treatment of the algebraic equation obtained from (3.1) or (3.3a) via the

linear–linear transformation (A.7) with (3.4).
A second possibility we tersely consider employs the transformation (2.12) (instead of

(A.7)). Thereby Eq. (3.1) becomes

a1

{[
−x1f14

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)
+ f12

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)]

·
[
x1f13

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)
− f11

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)]−1
}

+ a2

[−x2f24(x1) + f22(x1)
x2f23(x1) − f21(x1)

]
= b, (3.16)

and via (2.11) with (3.3b) with (3.3a) one can assert that the (explicit!) solution of this
equation reads

x1 =
(v1 + a2z)f11(v2 − a1z) + f12(v2 − a1z)
(v1 + a2z)f13(v2 − a1z) + f14(v2 − a1z)

, (3.17a)

x2 =
[
(v2 − a1z)f21

(
(v1 + a2z)f11(v2 − a1z) + f12(v2 − a1z)
(v1 + a2z)f13(v2 − a1z) + f14(v2 − a1z)

)

+ f22

(
(v1 + a2z)f11(v2 − a1z) + f12(v2 − a1z)
(v1 + a2z)f13(v2 − a1z) + f14(v2 − a1z)

)]

·
[
(v2 − a1z)f23

(
(v1 + a2z)f11(v2 − a1z) + f12(v2 − a1z)
(v1 + a2z)f13(v2 − a1z) + f14(v2 − a1z)

)

+ f24

(
(v1 + a2z)f11(v2 − a1z) + f12(v2 − a1z)
(v1 + a2z)f13(v2 − a1z) + f14(v2 − a1z)

)]−1

, (3.17b)

where z is again an arbitrary number. This conclusion is of course true for any arbitrary
assignment of the eight functions fnk(y).

It is moreover plain that, if the four numbers a1, a2, v1, v2 are rational (implying that b
is as well rational, see (3.3a)) and the eight functions fnk(y) are all rational functions with
rational coefficients, then Eq. (3.16) has an infinity of rational solutions, as given by (3.17)
with z an arbitrary rational number.
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3.2. A class of isochronous discrete-time dynamical systems

We display a class of discrete-time dynamical systems describing the nonlinear evolu-
tion of two dependent variables x1(�), x2(�), functions of the integer independent variable
� = 0, 1, 2, . . . (the “discrete-time”), which are explicitly solvable and have moreover the
remarkable property that — if and only if the arbitrary real constant λ (featured by this
class of systems, see below) is a rational number,

λ =
L

M
(3.18)

with L and M two arbitrary co-prime integers (hereafter M �= 0 and L > 0) — they are
isochronous: all their solutions are then periodic with the fixed period L,

xn(�+ L) = xn(�), n = 1, 2. (3.19)

As it shall be clear, see below, this class of systems is merely one out of a quite large
family of such systems that can be manufactured by extensions of the technique described
above: for instance, via sequential applications of the invertible transformations described
above. Such systems can involve just two variables, as that exhibited below, or a larger
number.

The system we now exhibit obtains by applying the transformation (2.12) and its inverse
(2.11) to the trivial discrete-time linear dynamical system

ũ1 = cu1 − su2, ũ2 = su1 + cu2. (3.20a)

Here and below ũn(�) ≡ un(�+ 1) (and likewise x̃n(�) ≡ xn(�+ 1), see below) and

c = cos
(

2π
λ

)
, s = sin

(
2π
λ

)
, (3.20b)

entailing that the solution of the initial-value problem of (3.20a) reads

u1(�) = cos
(

2π�
λ

)
u1(0) − sin

(
2π�
λ

)
u2(0), (3.21a)

u2(�) = sin
(

2π�
λ

)
u1(0) + cos

(
2π�
λ

)
u2(0). (3.21b)

Hence clearly this system is isochronous,

un(�+ L) = un(�), n = 1, 2, (3.22)

if and only if the parameter λ is rational, see (3.18).
It is then a matter of trivial algebra to obtain the corresponding system for the variables

x1(�), x2(�) related to u1(�), u2(�) via (2.12) and its inverse (2.11). It reads

x̃1 = [(cu1 − su2)f11(su1 + cu2) + f12(su1 + cu2)]

· [(cu1 − su2)f13(su1 + cu2) + f14(su1 + cu2)]−1, (3.23a)

x̃2 = [(cu1 − su2)f11(x̃1) + f12(x̃1)] · [(cu1 − su2)f13(x̃1) + f14(x̃1)]−1. (3.23b)
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In these two equations u1 ≡ u1(�), u2 ≡ u2(�) should be expressed in terms of x1 ≡
x1(�), x2(�) ≡ x2(�) by (2.12), and then, in the second of these two equations, x̃1 should
be replaced by its expression provided by the first. Thereby one obtains the equations of
(discrete) motion of the new dynamical system: two (quite explicit if complicated) equations
expressing x̃1 and x̃2 in terms of x1 and x2, via formulas involving (in a nested manner) the
eight arbitrary functions fnk(w), n = 1, 2, k = 1, 2, 3, 4, appearing in (2.12) and its inverse
(2.11). And the, also quite explicit, solution of the initial-value problem for this discrete-
time dynamical system is provided by the formulas (2.11) with u1 ≡ u1(�), u2 ≡ u2(�) given
by (3.21) where u1(0), u2(0) are given in terms of the arbitrary initial data x1(0), x2(0) by
(2.12). It is of course plain that this explicit solution entails the isochrony property (3.19)
whenever the real constant λ is rational, see (3.18).

It is also plain, see (3.21), that the original (discrete-time) dynamical system (3.20a)
yields, as solutions of its initial-value problem, points u1 ≡ u1(�), u2 ≡ u2(�) lying, in the
u1u2-plane, on the circle identified by the equation

u2
1(�) + u2

2(�) = u2
1(0) + u2

2(0). (3.24)

Hence, see (2.12), the points in the x1x2-plane corresponding to the solutions of the initial-
value problem of the new discrete-time dynamical system (3.23) lie on the curve character-
ized by the equation

K(�) = K(0) (3.25a)

with

K(�) =
[
x1f14

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)
− f12

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)]2

·
[
x1f13

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)
− f11

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)]−2

+
[
x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

]2

, (3.25b)

where of course x1 ≡ x1(�), x2 ≡ x2(�).
Let us finally emphasize that this class of discrete-time dynamical systems (3.23) is large

since it involves eight arbitrary functions; the explicit display of examples corresponding
to specific assignments of these eight functions are left to the whim of the alert reader.
A number of such examples for the special case with f13(w) = f23(w) = 0 and f11(w) =
f14(w) = f21(w) = f24(w) = 1 are provided in [1, Sec. 4.4].

3.3. Solvable systems of autonomous nonlinear partial

differential equations

This subsection is analogous to [1, Sec. 4.5]. The presentation is therefore quite terse,
although it reports an example somewhat more general than that presented there.
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Indeed, as in [1, Sec. 4.5], we take as point of departure the trivial system of two linear
PDEs

ϕ1,t = ϕ2,x, ϕ2,t = ϕ1,x, (3.26)

where the two functions ϕn ≡ ϕn(x, t) depend on the two variables x and t. Here and
below subscripted variables indicate partial differentiation with respect to them, ϕn,t(x, t) ≡
∂ϕn(x, t)/∂t, ϕn,x(x, t) ≡ ∂ϕn(x, t)/∂x. Clearly this system of two linear PDEs has the
following general solution:

ϕ1(x, t) = Φ+(x, t) ≡ Φ1(x+ t) + Φ2(x− t), (3.27a)

ϕ2(x, t) = Φ−(x, t) ≡ Φ1(x+ t) − Φ2(x− t), (3.27b)

where Φ1(z) and Φ2(z) are two arbitrary functions of the single variable z.
If we now apply the transformation (2.12) and its inverse (2.11) — with the two quan-

tities u1, u2 replaced by the two functions ϕ1(x, t), ϕ2(x, t) and, likewise, the two quantities
x1, x2 replaced by two functions ψ1(x, t), ψ2(x, t) — we find that the system of two linear
PDEs (3.26) becomes a, generally quite nonlinear, system of two first-order PDEs for the
two functions ψ1(x, t), ψ2(x, t). And it is plain that this system features, as general solution,
the explicit expressions (2.11) with the two quantities x1, x2 in the left-hand side replaced
by the two functions ψ1(x, t), ψ2(x, t) and the two quantities u1, u2 in the right-hand side
replaced by the two functions ϕ1(x, t), ϕ2(x, t) given, in terms of the two arbitrary functions
Φ1(z) and Φ2(z), by the simple formulas (3.27).

We leave the explicit display of this system as a task for the diligent reader: a trivial
exercise, but yielding quite cumbersome formulas featuring the eight arbitrary functions
fnk(w), n = 1, 2, k = 1, 2, 3, 4. We instead limit our presentation here to displaying the
specific example corresponding to the following assignment:

f11(w) = f14(w) =
c4 + c1c3 +w(c3 + c1c4)

c23 − c24
, (3.28a)

f12(w) = f13(w) = −c2(c3 + wc4)
c23 − c24

, (3.28b)

f21(w) = f24(w) = c3w, f22(w) = f23(w) = c4w, (3.28c)

with c1, c2, c3 and c4 arbitrary constants (of course with c23 �= c24). Then the two functions
ψ1(x, t) and ψ2(x, t) satisfy the following system of two coupled nonlinear PDEs:

ψ1,t =
1
β

[αψ1,x + (β2 − α2)ψ2,x], (3.29a)

ψ2,t =
1
β

(ψ1,x − αψ2,x), (3.29b)

where

α =
c2(1 − ψ2

1)
(c1 + c2 + ψ2)(c1 − c2 + ψ2)

, (3.29c)

β =
(c23 − c24)(c1 + c2ψ1 + ψ2)

(c1 + c2 + ψ2)(c1 − c2 + ψ2)(c3 − c4ψ2)2
. (3.29d)
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And we assert that the general solution ψ1 ≡ ψ1(x, t), ψ2 ≡ ψ2(x, t) of this system reads as
follows:

ψ1 =
c2c3 − (c1c3 + c4)Φ+ + c2c4Φ− − (c1c4 + c3)Φ+Φ−
−c1c3 − c4 + c2c3Φ+ − (c1c4 + c3)Φ− + c2c4Φ+Φ−

, (3.30a)

ψ2 =
c4 + c3Φ−
c3 + c4Φ−

, (3.30b)

where Φ± ≡ Φ±(x, t) are of course defined by (3.27) in terms of the two arbitrary functions
Φ1(z) and Φ2(z).

3.4. Solvable nonautonomous partial differential equations

Here we show via two representative examples how to manufacture solvable nonautonomous
nonlinear partial differential equations (PDEs).

We start from the trivial (linear) autonomous PDE

ϕu(u,w) = ϕw(u,w), (3.31a)

the general solution of which reads of course

ϕ(u,w) = F (u+ w), (3.31b)

where F is an arbitrary function. In (3.31a) and below subscripted variables denote of course
partial differentiations, for instance ϕu(u · w) ≡ ∂ϕ(u · w)/∂u.

We then set

ϕ(u,w) = ψ(x, y), (3.32)

with x, y related to u,w by the relations (2.11) and (2.12), with x1, x2 replaced (for nota-
tional simplicity) by x, y and likewise u1, u2 replaced by u,w.

It is then a matter of trivial if tedious algebra to ascertain that ψ(x, y) satisfies the
following (linear) nonautonomous PDE:

g(x, y)ψx(x, y) = h(x, y)ψy(x, y), (3.33a)

with g(x, y) and h(x, y) expressed as follows in terms of the eight arbitrary functions fnk(z),
n = 1, 2, k = 1, 2, 3, 4:

g(x, y) = [f23(x)w + f24(x)]2χ(u,w), (3.33b)

h(x, y) = {[f ′23(x)w + f ′24(x)][f21(x)w + f22(x)]

− [f ′21(x)w + f ′22(x)][f23(x)w + f24(x)]}χ(u,w)

+ [f13(w)u + f14(w)]2[f21(x)f24(x) − f22(x)f23(x)], (3.33c)

where

χ(u,w) = f11(w)f14(w) − f12(w)f13(w) + [f ′13(w)u + f ′14(w)][f11(w)u+ f12(w)]

− [f ′11(w)u+ f ′12(w)][f13(w)u + f14(w)], (3.33d)
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and u and w must be expressed in terms of x and y as follows:

u =
[
−xf14

(
−yf24(x) − f22(x)
yf23(x) − f21(x)

)
+ f12

(
−yf24(x) − f22(x)
yf23(x) − f21(x)

)]

·
[
xf13

(
−yf24(x) − f22(x)
yf23(x) − f21(x)

)
− f11

(
−yf24(x) − f22(x)
yf23(x) − f21(x)

)]−1

, (3.33e)

w =
−yf24(x) + f22(x)
yf23(x) − f21(x)

. (3.33f)

The general solution of this nonautonomous PDE then reads as follows:

ψ(x, y) = F (u+ w), (3.34)

where F (z) is an arbitrary function and u,w are expressed in terms of x, y by the two
preceding formulas (3.33e) and (3.33f).

As an example we set

f11(z) = z, f12(z) = f13(z) = 0, f14(z) = 1,

f21(z) = f24(z) = cos(z), f23(z) = −f22(z) = sin(z). (3.35a)

Then (3.33a) holds with

g(x, y) = (x− 1)(y2 + 1) − (x+ 1)[(y2 − 1) cos(2x) + 2y sin(2x)], (3.35b)

h(x, y) = y(y2 − 1) cos(4x) − (1 − 6y2 + y4)
sin(4x)

4

− [−1 + y + y3 + y4 + x(y4 − 1)] cos(2x)

− (1 + y2)[1 + 4(1 + x) − y2]
sin(2x)

2
+ (x− 1)(1 + y2)2. (3.35c)

And its general solution reads as follows:

ψ(x, y) = F

(
x [cos(x) − y sin(x)]
y cos(x) + sin(x)

+
y cos(x) + sin(x)
cos(x) − y sin(x)

)
, (3.35d)

with F (z) an arbitrary function.
On the face of it, the fact that the PDE (3.33a) with this assignment of g(x, y) and

h(x, y) is explicitly solvable might well appear quite nontrivial to anybody who does not
know how this finding had been arrived at; although verifying it is a relatively trivial task.

To manufacture our second example, we start from the same trivial PDE (3.31a), but
for notational convenience we now write it as follows:

ϕt(u, t) = ϕu(u, t), (3.36a)

the general solution of which reads of course

ϕ(u, t) = f(u+ t), (3.36b)

where we now denote as f(z) an arbitrary function.
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We then use the most elementary invertible transformation (2.1), in the following
guise:

ψ(x, t) = ϕ(u, t) + F1(u), x = u+ F2(ψ(x, t)), (3.37a)

ϕ(u, t) = ψ(x, t) − F1(u), u = x− F2(ψ(x, t)), (3.37b)

where of course F1(w) and F2(w) are two arbitrary functions.
It is then a matter of standard (if a bit tricky) algebra to obtain the PDE satisfied by

the new dependent variable ψ(x, t). It reads as follows:

ψt(x, t) = ψx(x, t) + [ψx(x, t)F ′
2(ψ(x, t)) − 1]F ′

1(x− F2(ψ(x, t))), (3.38)

where of course the primes denote differentiation with respect to the argument of the func-
tion they are appended to. And clearly the general solution of this (quasilinear, first-order)
PDE is the solution of the following nondifferential equation, which is a rather immediate
consequence of the transformation (3.37) and of the solution formula (3.36b):

ψ(x, t) = f(x+ t− F2(ψ(x, t))) + F1(x− F2(ψ(x, t))), (3.39)

where of course f(z) is an arbitrary function. Note however that in this case, in contrast to
the previous one, the solution is provided only in implicit form, i.e. as the solution of this
nondifferential equation (in contrast to the previous case, when the solution is given by the
explicit formula (3.34) with (3.33e) and (3.33f)).

3.5. Functional equations

In this section we report an, apparently nontrivial, functional equation involving two func-
tions, as an example of the kind of findings obtainable via the approach advertised in this
paper. It reads as follows:

x1(z1 + z2) =
u1(z1)u1(z2)f11(u2(z1) + u2(z2)) + f12(u2(z1) + u2(z2))
u1(z1)u1(z2)f13(u2(z1) + u2(z2)) + f14(u2(z1) + u2(z2))

, (3.40a)

x2(z1 + z2) =
[u2(z1) + u2(z2)]f21(x1(z1 + z2)) + f22(x1(z1 + z2))
[u2(z1) + u2(z2)]f23(x1(z1 + z2)) + f24(x1(z1 + z2))

, (3.40b)

where, in the two preceding formulas, firstly u1(z) should be replaced by the following
expression in terms of x1(z) and u2(z),

u1(z) = −x1(z)f14(u2(z)) − f12(u2(z))
x1(z)f13(u2(z)) − f11(u2(z))

, (3.40c)

and subsequently u2(z) should be replaced by the following expression in terms of x1(z)
and x2(z),

u2(z) = −x2(z)f24(x1(z)) − f22(x1(z))
x2(z)f23(x1(z)) − f21(x1(z))

, (3.40d)

so that the resulting formulas relate (explicitly, if in a convoluted manner) the values that
the two functions x1(z) and x2(z) take at the value z = z1 + z2 of their argument, to the
values they take at z1 and at z2 (where z1 and z2 are of course arbitrary).
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The (explicit) solution of this functional equation reads as follows:

x1(z) =
exp(bz)f11(az) + f12(az)
exp(bz)f13(az) + f14(az)

, (3.41a)

x2(z) =
[
azf21

(
exp(bz)f11(az) + f12(az)
exp(bz)f13(az) + f14(az)

)
+ f22

(
exp(bz)f11(az) + f12(az)
exp(bz)f13(az) + f14(az)

)]

·
[
azf23

(
exp(bz)f11(az) + f12(az)
exp(bz)f13(az) + f14(az)

)
+ f24

(
exp(bz)f11(az) + f12(az)
exp(bz)f13(az) + f14(az)

)]−1

,

(3.41b)

where a and b are two arbitrary parameters.
This finding clearly obtains via the transformations (2.11) and (2.12) from the two trivial

functional equations

u1(z1 + z2) = u1(z1)u1(z2), u2(z1 + z2) = u2(z1) + u2(z2), (3.42a)

whose solutions of course read

u1(z) = exp(bz), u2(z) = az. (3.42b)

Let us again emphasize that the eight functions fnk(w) appearing in the functional
equation (3.40) and in its solution (3.41) are arbitrary. And again the reader might get some
amusement by inserting in these formulas specific assignments of these eight functions.
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Appendix

In this appendix we list a few, quite elementary, invertible transformations that may be
taken as points of departure for our approach (say, in alternative to the Möbius transforma-
tion (2.8)), and a few examples of invertible transformations involving arbitrary functions,
obtained by combining such transformations.

A.1. Elementary invertible transformations

We list them — first the direct transformation and then its inverse — with minimal com-
ments, but assigning to them a name. The quantities fk can depend on an arbitrary number
of variables unj (see the following subsection), but for notational simplicity this is not explic-
itly shown in this subsection.
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Linear transformation:

z = L · y = yf1 + f2, y = L−1 · z =
z − f2

f1
. (A.1)

Exponential transformation:

z = E · y = exp(yf1 + f2), y = E−1 · z =
ln(z) − f2

f1
. (A.2)

Rational (Möbius) transformation:

z = R · y =
yf1 + f2

yf3 + f4
, y = R−1 · z = −zf4 − f2

zf3 − f1
, (A.3)

with the condition that D = f1f4 − f2f3 not vanish identically (see (2.8)).
Note that this transformation reduces to the linear transformation (A.1) for f3 = 0,

f4 = 1.
Matrix transformation:


z = M · 
y,
(
z1
z2

)
=
(
f1 f2

f3 f4

)(
y1

y2

)
+
(
f5

f6

)
, (A.4a)

z1 = y1f1 + y2f2 + f5, z2 = y1f3 + y2f4 + f6; (A.4b)


y = M−1 · 
z,
(
y1

y2

)
=

1
D

(
f4 −f2

−f3 f1

)(
z1 − f5

z2 − f6

)
, (A.5a)

y1 =
(z1 − f5)f4 − (z2 − f6)f2

D
, y2 =

−(z1 − f5)f3 + (z2 − f6)f1

D
(A.5b)

D = f1f4 − f2f3 �= 0. (A.5c)

Note that — in contrast to the rational (Möbius) case, see above — now, to avoid the
occurrence of a singularity in the inverse transformation (A.5), it is not sufficient that the
quantity D not vanish identically ; the condition (A.5c) should hold for all (relevant) values
of the arguments of the four functions fn. Also note that this transformation is linear, and
that (for simplicity) we have restricted attention to a matrix of order two.

A.2. Combined transformations

In this subsection we list, again with minimal commentary, some invertible transformations
obtained by combining the elementary transformations listed in the preceding subsection.

Linear–linear transformation:

x1 = u1f11(u2) + f12(u2), (A.6a)

x2 = u2f21(x1) + f22(x1)

= u2f21(u1f11(u2) + f12(u2)) + f22(u1f11(u2) + f12(u2)); (A.6b)

u1 =
[
x1 − f12

(
x2 − f22(x1)
f21(x1)

)][
f11

(
x2 − f22(x1)
f21(x1)

)]−1

, (A.7a)

u2 =
x2 − f22(x1)
f21(x1)

. (A.7b)
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Linear–exponential transformation:

x1 = u1f1(u2) + f2(u2), (A.8a)

x2 = exp(f21(x1) + u2f22(x1))

= exp(f21(u1f11(u2) + f12(u2)) + u2f22(u1f11(u2) + f12(u2))); (A.8b)

u1 =
[
x1 − f12

(
ln(x2) − f21(x1)

f22(x1)

)][
f11

(
ln(x2) − f21(x1)

f22(x1)

)]−1

, (A.9a)

u2 =
ln(x2) − f21(x1)

f22(x1)
. (A.9b)

Exponential–linear transformation:

x1 = exp(u1f11(u2) + f12(u2)), (A.10a)

x2 = u2f21(x1) + f22(x1)

= u2f21(exp(u1f1(u2) + f2(u2))) + f22(u1f1(u2) + f2(u2)); (A.10b)

u1 =
[
ln(x1) − f11

(
x2 − f22(x1)
f21(x1)

)][
f11

(
x2 − f22(x1)
f21(x1)

)]−1

, (A.11a)

u2 =
x2 − f22(x1)
f21(x1)

. (A.11b)

Note that the exponential–linear transformation is quite different from the linear–
exponential transformation.

Rational–rational transformation: see the formulas (2.11) and (2.12). We do not rewrite
them, but display some subcases.
Linear–rational transformation:

x1 = u1f11(u2) + f12(u2), (A.12a)

x2 =
u2f21(x1) + f22(x1)
u2f23(x1) + f24(x1)

=
u2f21(u1f11(u2) + f12(u2)) + f22(u1f11(u2) + f12(u2))
u2f23(u1f11(u2) + f12(u2)) + f24(u1f11(u2) + f12(u2))

; (A.12b)

u1 =
[
x1 − f2

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)][
f1

(
−x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

)]−1

, (A.13a)

u2 = −x2f24(x1) − f22(x1)
x2f23(x1) − f21(x1)

. (A.13b)

Rational–linear transformation:

x1 =
u1f11(u2) + f12(u2)
u1f13(u2) + f14(u2)

(A.14a)

x2 = u2f1(x1) + f2(x1)

= u2f1

(
u1f11(u2) + f12(u2)
u1f13(u2) + f14(u2)

)
+ f2

(
u1f11(u2) + f12(u2)
u1f13(u2) + f14(u2)

)
; (A.14b)
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u1 = −
[
x1f14

(
x2 − f2(x1)
f1(x1)

)
− f12

(
x2 − f2(x1)
f1(x1)

)]

·
[
x1f13

(
x2 − f2(x1)
f1(x1)

)
− f11

(
x2 − f2(x1)
f1(x1)

)]−1

, (A.15a)

u2 =
x2 − f2(x1)
f1(x1)

. (A.15b)

Note the difference among the linear–rational and the rational–linear transformations.
Rational–matrix transformation:

x1 =
u1f11(u2, u3) + f12(u2, u3)
u1f13(u2, u3) + f14(u2, u3)

, (A.16a)

x2 = u2f21(x1) + u3f22(x1) + f25(x1)

= u2f21

(
u1f11(u2, u3) + f12(u2, u3)
u1f13(u2, u3) + f14(u2, u3)

)
+ u3f22

(
u1f11(u2, u3) + f12(u2, u3)
u1f13(u2, u3) + f14(u2, u3)

)

+ f25

(
u1f11(u2, u3) + f12(u2, u3)
u1f13(u2, u3) + f14(u2, u3)

)
, (A.16b)

x3 = u2f23(x1) + u3f24(x1) + f26(x1)

= u2f23

(
u1f11(u2, u3) + f12(u2, u3)
u1f13(u2, u3) + f14(u2, u3)

)
+ u3f24

(
u1f11(u2, u3) + f12(u2, u3)
u1f13(u2, u3) + f14(u2, u3)

)

+ f26

(
u1f11(u2, u3) + f12(u2, u3)
u1f13(u2, u3) + f14(u2, u3)

)
; (A.16c)

u1 = −x1f14(u2, u3) − f12(u2, u3)
x1f13(u2, u3) − f11(u2, u3)

, (A.17a)

u2 =
f24(x1)[x2 − f25(x1)] − f22(x1)[x3 − f26(x1)]

f21(x1)f24(x1) − f22(x1)f23(x1)
, (A.17b)

u3 =
−f24(x1)[x2 − f25(x1)] + f21(x1)[x3 − f26(x1)]

f21(x1)f24(x1) − f22(x1)f23(x1)
. (A.17c)

In the right-hand side of the first of the three Eqs. (A.17) the quantities u2, u3 should be
replaced by their expressions in terms of x1, x2, x3 given by the last two of these three
formulas.

Note the (“linear-matrix”) subcases that obtains by setting f13 = 0 and f14 = 1.
Matrix–rational transformation:

x1 = u1f11(u3) + u2f12(u3) + f15(u3), (A.18a)

x2 = u1f13(u3) + u2f14(u3) + f16(u3), (A.18b)

x3 =
u3f21(x1, x2) + f22(x1, x2)
u3f23(x1, x2) + f24(x1, x2)

; (A.18c)
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u1 =
[x1 − f15(u3)]f14(u3) − [x2 − f16(u3)]f12(u3)

f11(u3)f14(u3) − f12(u3)f13(u3)
, (A.19a)

u2 =
−[x1 − f15(u3)]f13(u3) + [x2 − f16(u3)]f11(u3)

f11(u3)f14(u3) − f12(u3)f13(u3)
, (A.19b)

u3 = −x3f24(x1, x2) − f22(x1, x2)
x3f23(x1, x2) − f21(x1, x2)

. (A.19c)

In the right-hand side of the last one of the three formulas (A.18) x1 and x2 should of
course be replaced by their expressions in terms of u1, u2, u3 given by the first two of these
three formulas; likewise in the right-hand sides of the first two formulas (A.19) u3 should be
replaced by its expression in terms of x1, x2, x3 given by the last one of these three formulas.

Note the (“matrix-linear”) subcase that obtains by setting f23 = 0 and f24 = 1.
And let us emphasize the difference of this matrix–rational transformation from the

preceding rational–matrix transformation.
Matrix–matrix transformation:

x1 = u1f11(u3, u4) + u2f12(u3, u4) + f15(u3, u4), (A.20a)

x2 = u1f13(u3, u4) + u2f14(u3, u4) + f16(u3, u4), (A.20b)

x3 = u3f21(x1,x2) + u4f22(x1,x2) + f25(x1,x2), (A.20c)

x4 = u3f23(x1,x2) + u4f24(x1,x2) + f26(x1,x2); (A.20d)

u1 =
[x1 − f15(u3, u4)]f14(u3, u4) − [x2 − f16(u3, u4)]f12(u3, u4)

f11(u3, u4)f14(u3, u4) − f12(u3, u4)f13(u3, u4)
, (A.21a)

u2 =
−[x1 − f15(u3, u4)]f13(u3, u4) + [x2 − f16(u3, u4)]f11(u3, u4)

f11(u3, u4)f14(u3, u4) − f12(u3, u4)f13(u3, u4)
, (A.21b)

u3 =
[x3 − f25(x1,x2)]f24(x1,x2) − [x4 − f26(x1,x2)]f22(x1,x2)

f21(x1,x2)f24(x1,x2) − f22(x1,x2)f23(x1,x2)
, (A.21c)

u4 =
−[x3 − f25(x1,x2)]f23(x1,x2) + [x4 − f26(x1,x2)]f21(x1,x2)

f21(x1,x2)f24(x1,x2) − f22(x1,x2)f23(x1,x2)
. (A.21d)

In the right-hand sides of the last two of the four formulas (A.20) the quantities x1, x2

should of course be replaced by their expressions in terms of u1,u2, u3,u4 provided by the
first two of these four formulas; likewise in the right-hand sides of the first two of the four
formulas (A.21) the quantities u3, u4 should be replaced by their expressions in terms of
x1,x2, x3,x4 provided by the last two of these four formulas.

Linear–linear–linear transformation:

x1 = u1f11(u2, u3) + f12(u2, u3), (A.22a)

x2 = u2f21(u1f11(u2, u3) + f12(u2, u3), u3) + f22(u1f11(u2, u3) + f12(u2, u3), u3), (A.22b)

x3 = u3f31(x1, x2) + f32(x1, x2); (A.22c)
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u1 =
x1 − f12(u2, u3)
f11(u2, u3)

, (A.23a)

u2 =
[
x2 − f22

(
x1,

x3 − f32(x1, x2)
f31(x1, x2)

)][
f21

(
x1,

x3 − f32(x1, x2)
f31(x1, x2)

)]−1

, (A.23b)

u3 =
x3 − f32(x1, x2)
f31(x1, x2)

. (A.23c)

In the right-hand side of the last of the three formulas (A.22) x1 and x2 should of course be
replaced by their explicit expressions in terms of u1, u2, u3 provided by the first two of these
three formulas; and likewise in the right-hand side of the first of the three formulas (A.23)
u2 and u3 should be replaced by their explicit expressions in terms of x1, x2, x3 provided by
the last two of these three formulas.
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