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We obtain spikes or extremely short pulses for reduced Maxwell-Duffing equations under a gen-
eral boundary condition, connecting the electric field and electron amplitude, using a Möbius
transformation. For a nonzero background, this system is shown to admit two families of exact
solutions in the form of solitary waves and kink-type of solutions. Parameter domains are delin-
eated where localized solutions signifying both bright and dark spikes, as also singular solutions
indicating self-focusing effect, exist in this dynamical system, in nonresonant atomic media.

Keywords: Extremely short pulses; Maxwell-duffing equations; Möbius transformation.

1. Introduction

Ultrashort pulse propagation in nonresonant atomic media is currently attracting consider-
able attention, because of its relevance to femto-second pulses. Usually an atomic medium is
modeled by N-level atoms. The medium is called resonant if the pulse width is well detuned
from the resonant frequency, whence the system is effectively described by an ensemble of
two level atoms. This is characterized by the Bloch equations. A number of studies have
been carried out regarding the propagation of extremely short pulses (ESPs) in resonant
atomic medium [1, 3–5, 7, 8, 11, 16, 20]. Two level resonant approximation is seen to be
inaccurate in several physical situations [5, 21], like dense atomic media and systems involv-
ing three level atoms. Thus the resonant model needs to be generalized and extended to the
nonresonant scenario. Recently, the study of propagation of ESPs in nonresonant media has
become an area of active research [6, 12–14]. In Ref. 17, the propagation of vector ultra-short
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pulses has been studied. Also, in Ref. 10, solitary waves in two-wave Maxwell-Duffing type
model has been explored. More recently, propagation of ESPs in a doubly resonant medium
has been considered [9]. One of the well studied approaches is to consider the response of the
medium as weakly nonlinear. Such situation leads to the Duffing oscillator model, where the
nonlinear response of the medium is assumed to be cubic. This is the simplest generalization
of the Lorentz model, where atoms are assumed to be ideal oscillators. A very recent study
of the stabilization of ultra-short pulses in cubic nonlinear media is found in Ref. 6. Maxwell
wave equation, for a linearly polarized light, allows pulse propagation in both the directions.
However, this can be approximated to unidirectional wave propagation when anharmonic
contribution to the polarization is very small. As a result, the wave equation reduces from
second order to a first order equation. Here, we consider the reduced Maxwell-Duffing model
(RMD), which is the combination of unidirectional wave propagation approximation [7] and
the Duffing oscillator model for the propagation of ESP in a nonresonant atomic medium.
Soliton and multi-soliton solutions are found as exact solutions in Refs. 1, 8, 15 and 19.
A detailed study of the ultra short pulse propagation in an atomic media can be found in
Ref. 2. A class of exact solutions of this RMD system have been obtained recently [13],
where the coupled dynamical system involving electron and field variables satisfy a variety
of initial conditions and boundary conditions. The paper deals with a general boundary
condition, where field amplitude can possess a constant background. We employ a frac-
tional linear transform or Möbius transformation and systematically obtain both bright
and dark ESPs, as also singular solutions indicative of self-focusing effect. We emphasize
that these steady-state ESPs are nonperturbative in nature and cannot be obtained by
integrating the system of RMD equations using quadratures. Furthermore, we observe that
these steady-state ESPs obtained here also satisfy modified KdV equation — a well studied
equation in literature. In the following section we present a brief derivation of the reduced
Maxwell-Duffing (RMD) model and the general boundary conditions involving the electron
and field variables. We then outline the method of solving the system for localized pulses in
Sec. 3. The proper parameter ranges are also specified as compared with the previous one.
We end with the conclusions in Sec. 4.

2. The Constitutive Model

The propagation of electromagnetic waves in a media is described by the Maxwell wave
equation, which for unidirectional wave propagation can be reduced to a first order equation,

∂E

∂z
+

1
c

∂E

∂t
= −2π

c

∂P

∂t
. (2.1)

Here E is the electric field and P being the polarization of the medium. In a homogeneous
broadening medium electrons (effective mass m and charge q0) are assumed to oscillate with
frequency ω0 and displacement Φ from their equilibrium position due to the influence of
electromagnetic field:

∂2Φ
∂t2

+ ω2
0Φ + βΦ3 =

q0

m
E. (2.2)

β is the nonlinear coefficient. The medium polarization is defined as P = nq0Φ, where n is
the number density of the oscillators in the medium. Considering the scalings: τ = z/l, x =
ω0(t−z/c), q = E/a0, g = Φ/Φ0 and the parameters: a0 = mω2

0Φ0/q0 = mω3
0q

−1
0 (2µ/|β|)1/2,
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Φ0 = (2µω2
0/|β|)1/2, l = mcω0/(2πnq2

0), and 2µ = βΦ2
0/ω

2
0 , Eqs. (2.1) and (2.2) can be

written in terms of the rescaled variables as

∂q

∂τ
= −∂g

∂x
,

∂2g

∂x2
+ g + 2µg3 = q. (2.3)

The system of equations in (2.3) together are called reduced Maxwell-Duffing equations.
For finding propagating solutions, one defines η = x−τ/α, where α is related to the velocity
of the pulse. The first equation in Eq. (2.3) can be integrated with respect to the single
variable η to yield

q(τ, x) = αg(τ, x) + C, (2.4)

where C is a constant, which signifies the background electric field, when electron amplitude
g goes to zero. The boundary condition corresponding to the earlier case was for C = 0.
Here, the electric field contains an independent part in addition to the g-dependent term.
Then Eq. (2.3), takes the form:

d2g

dη2
+ (1 − α)g + 2µg3 = C. (2.5)

For a pulse propagating in the right direction, α > 1 and µ > 0. Let us consider the following
initial and boundary conditions:

q(τ = 0, x) = q0(x),

and at x → ±∞, we consider a constant electron amplitude g = g0, for which

∂g(τ, x)/∂x = 0. (2.6)

The above condition can be used to obtain the background electric field C from
Eq. (2.5) as

C = g0

[
(1 − α) + 2µg2

0

]
. (2.7)

At x → ±∞, initial electric field is determined as q0(x) = g0 + 2µg3
0 . Thus, C is fixed by

uniform electron amplitude g0, which also fixes the initial constant electric field q0(x).

3. Localized Solutions for the ESP

For propagating solitons, Eq. (2.5) yields nonlinear Schrödinger equation with a source [18],
making it imperative to investigate localized solutions of this nonlinear dynamical system.
It is very interesting to note that the traveling wave solutions of RMD equations also include
the solutions of modified KdV equation, Vxxx + a1V

2Vx + a2Vt = 0, a well studied equation
in literature. This can be easily seen by simply going to traveling coordinate ζ = x − vt

and integrating the resultant equation to obtain Vζζ + a1/3 V 3 − va2V = s, where s is
the integration constant. By writing a1 = 6µ, a2 = −(1 − α)/v and s = C, we arrive at
Eq. (2.5). Hence, the fractional transformation solutions obtained for the RMD system in
this paper also satisfy modified KdV equation. For finding out explicit solutions we consider
Eq. (2.5) in the form:

g′′ + λg3 + εg = C, (3.1)
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provided λ = 2µ and ε = (1 − α). Prime indicates differentiation with respect to η.
It is known earlier [18], that this equation can be connected to the elliptic equation
g′′ + ag + bg3 = 0 through the following fractional transformation (FT):

g(η) =
A + Bf(η,m)δ

1 + Df(η,m)δ
(3.2)

where A, B and D are real constants, δ is an integer, and f(η,m) is a Jacobian elliptic
function, with the modulus parameter m (0 ≤ m ≤ 1). Here we describe two families of
localized solutions of Eq. (3.1) for δ = 1, f(η,m) = cn(η,m), and f(η,m) = sn(η,m) in
the FT.

3.1. Steady state solitary waves

In the following, we illustrate the steady state solutions for f(η,m) = cn(η,m). The con-
sistency conditions for m = 1 are given by

A3λ + Aε − C = 0, (3.3)

3A2Bλ − AD(1 − 2ε) + B(1 + ε) − 3CD = 0, (3.4)

3AB2λ + AD2(1 + ε) − BD(1 − 2ε) − 3CD2 = 0, (3.5)

B3λ + 2AD − 2B + BD2ε − CD3 = 0. (3.6)

It should be pointed out that cn(η, 1) = sech(η). Note that A = 0 does not allow any
solution for C �= 0. Although a wide class of solutions is allowed, here we only outline a few
of the interesting solutions.

Case 1: General solution. One can see from the above FT (Eq. (3.2)) that AD = B

implies only a constant or trivial solution and is not considered here. An (AD − B) factor
can be taken out of all the conditions by tactically using the first consistency Eq. (3.3).
Therefore Eq. (3.4) is made to solve for A:

A = ±
√

−(1 + ε)
3λ

. (3.7)

We simplify Eqs. (3.5) and (3.6) in similar manner and solve for D and B, respectively to
arrive at

D = ±
√
−2(1 + ε)

(1 − 2ε)
and B = ±

√
2(ε − 2)2

3λ(1 − 2ε)
. (3.8)

As we are have three unknown variables A, B and D, which are already solved in terms of
the equation parameters. Thus, Eq. (3.3) would imply a constraint condition between the
equation parameters — ε, λ and C:

C2 = −(1 + ε)(1 − 2ε)2

27λ
. (3.9)
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Thus, the electric field of the electromagnetic wave is given as

q(τ, x) = g0 + 2µg3
0 +

A + Bsech(x − τ/α)
1 + Dsech(x − τ/α)

. (3.10)

As is already mentioned that pulse propagation in the right direction means µ > 0 and
α > 1, which imply λ > 0 and ε < 0, respectively. Again from Eq. (3.7) reality of A

demands ε < −1. This last condition simultaneously satisfies the reality of D, B and C. It
is worth pointing out that all of the solutions are nonsingular in nature. This is because the
magnitude of D remains always less than unity. Localized solutions are depicted in Fig. 1
for all possible signs of A, B and D. These contain both bright as well as dark localized
pulses. In this particular case, the source becomes C = 0.616 for µ = 0.05 and α = 2.1. The
variations of the pulse with µ and α are shown in Fig. 2, where A, B and D are all positive.
The amplitude and the background of the bright solitonic electron amplitude decreases with
increase in µ for a fixed value of α (Fig. 2(a)). Variation of the solution with α is more
interesting as shown in Fig. 2(b). The background electron amplitude rises slowly with α,
whereas the peak value of the electron amplitude initially decreases then slowly increases.
In both the cases the localized pulses gradually broaden with µ and α, respectively. We
would like to emphasize that all these steady state solutions of the RMD equations are new
and they are nonperturbative in nature.

Case 2: Solution for B = 0. In this case, there are four consistency conditions and two
unknowns. Thus the solution is more restrictive compared to the earlier case (B �= 0).
Comparison of the second and third consistency conditions fixes the value of ε = 2, which
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Fig. 1. Localized pulses for µ = 0.05 and α = 2.1, (a) A > 0, B > 0 and D > 0; (b) A < 0, B < 0 and
D < 0; (c) A > 0, B < 0 and D > 0; (d) A > 0, B < 0 and D < 0; (e) A < 0, B > 0 and D > 0; (f) A < 0,
B > 0 and D < 0.
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Fig. 2. Variation of bright localized pulse of Fig. 1(a) with (a) α = 3 and (b) µ = 0.05.

immediately provides the value of A from the third condition: A = C. Last condition yields
D = ±√

2. So far we have not used the first consistency condition, which would obviously
imply a constraint:

C2 = − 1
λ

. (3.11)

In this case, the allowed domain of localized solutions is g < 0, where ε = 2. For this solution
we have the following relation

q(x, τ) = g0 + 2µg3
0 +

A

1 + Dsech(x − τ/α)
. (3.12)

This would imply a unidirectional propagation in the left direction. Figure 3 shows the
dark and bright pulses with C = 10 and C = −10, respectively, for D =

√
2 and D = −√

2
implying singular pulse, indicative of self-focusing effect.

3.2. Kink-type of steady state solutions

In the following we elucidate the steady state solutions of the RMD system signifying kink-
type of solitary waves. For this purpose, we put f(η,m) = sn(η,m) in the FT and take the

−10 −5 0 5 10
η

−10

−5

0

5

10

q

Fig. 3. Localized dark pulse (C = 10) and bright pulse (C = −10) for B = 0.
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limit m = 1. We obtain the following consistency conditions

− 2D(B − AD) + A3λ + Aε − C = 0, (3.13)

2(B − AD) + B3λ + BD2ε − CD3 = 0, (3.14)

2D(B − AD) + 3AB2λ + (AD2 + 2BD)ε − 3CD2 = 0, (3.15)

−2(B − AD) + 3A2Bλ + (2AD + B)ε − 3CD = 0. (3.16)

The above consistency conditions clearly indicate that for solitonic limit, various kink-type
of solutions are possible for the RMD system. We illustrate below various interesting cases.

Case 1: General solution. To obtain the general kink-type solution, we keep all the
parameters in the FT. From Eqs. (3.15) and (3.16), we obtain D = − 3λ

(ε+4)AB. Substituting
this value in Eq. (3.16), we get an equation, quadratic in A, which is solved to give

A =
−b ±√

b2 + 4d
2

, (3.17)

where b = 3C
2−ε and d = (ε + 4)/3λ. Further, Eq. (3.13) is solved to give

B = ±
√

(C − λA3 − εA)(ε + 4)2

6λA(ε + 4) + 18λ2A3
. (3.18)

And Eq. (3.14) would imply a constraint condition between the equation parameters — ε,
λ, and C:

C = −(2 + λB2)(ε + 4)3 + 6λA2(ε + 4)2 + 9λ2A2B2ε(ε + 4)
27λ3A3B2

.

Thus the general kink-type of solitary wave solution signifying ultrashort pulse is

g(η) =
A + Btanh(η)
1 + Dtanh(η)

. (3.19)

Localized kink-solutions are demonstrated in Fig. 4. This includes all the possible solutions
in Case 1. The condition for the localized solution is D < 1 or |AB| < | ε+4

3λ |.
Case 2: Solution for A = 0. In this case, we obtain a special kink-type of solitary solution,
which surprisingly is a solution in the absence of Duffing term in RMD system. The steady
state solution is given by

g(η) =
Btanh(η)

1 + Dtanh(η)
, (3.20)

where B = C/2, D = ±1 and ε = −4.

Case 3: Solution for B = 0. We obtain yet another interesting kink-type of solution
given by

g(η) =
A

1 + Dtanh(η)
, (3.21)

where A = (3C)/(ε − 2), D2 = 6, ε = 1 and λ = −40/27C2.



December 13, 2011 15:56 WSPC/1402-9251 259-JNMP S1402925111001763

498 U. Roy et al.

−10 −5 0 5 10

−6

−3

0

3

6

η

q

Fig. 4. Localized kink-type solution in the general case (Eq. (3.19)) for α = 3, µ = 0.05 and C = 5. Solid
and dashed solutions correspond to two roots of A, dotted and dot-dashed solutions correspond to the same
with opposite sign of B.

4. Conclusion

In conclusion, two families of novel localized solutions have been obtained for the reduced
Maxwell-Duffing equations, which are unidirectional, using a Möbius transformation. These
are the new steady state pulses in nonzero background electric field, signifying electromag-
netic spikes propagating in a nonlinear medium. Our procedure yields both bright and dark
ESPs, as also singular solutions indicating self-focusing effect. We emphasize that all these
novel solutions obtained in this paper are new and they are nonperturbative in nature and
cannot be obtained by mere integration of RMD system of equations using quadratures.
These ones correspond to the situation where electric field has a constant part. Hence the
coupled dynamical system lead to dark and bright solutions having the above constant value
in the asymptotic condition.
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