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Nonlinear n-dimensional second-order diffusion equations admitting maximal Lie algebras of point
symmetries are considered. Examples of invariant solutions, as well as of solutions on invariant
subspaces for some nonlinear operators, are constructed for arbitrary n. A complete description of
all possible types of invariant solutions is given in the case n = 2 for the equation possessing an
infinitely dimensional symmetry algebra. The results obtained are generalized for the hyperbolic
and other fourth-order parabolic equations of thin film and nonlinear dispersion type.
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1. Introduction

In this paper, second-order nonlinear diffusion equations of the form ut = ∆f(u), where
u = u(t, x) > 0, (t, x) ∈ R × Rn, f : R → R, ∆ =

∑n
i=1 ∂2/∂x2

i , admitting the maximal
Lie algebra of the point symmetries are considered. From the group classification fulfilled
in [13] (for n = 1) and [4] (for n = 2, 3), it follows that the “most symmetric” equations are

ut = k∆u
n−2
n+2 (n �= 2), (1.1)

where k = sign(n − 2) (this is necessary for the parabolicity of the equation), and

ut = ∆ ln u (n = 2), (1.2)

as well as equations obtained from (1.1), (1.2) by a transformation u → au+ b, where a and
b are arbitrary constants, a �= 0. It can be shown that the restriction n ≤ 3 assumed in [4]
is not essential and (1.1) is the most symmetric equation for arbitrary dimensions n �= 2.
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The following statements hold; see [4,13] and also [1, Ch. 10]. The convention of summation
over repeated indices is adopted everywhere below.

Theorem 1.1. A basis of the algebra of point symmetries for Eq. (1.1) consists of the
infinitesimal operators

X0 =
∂

∂t
, Xi =

∂

∂xi
, Xij = xj

∂

∂xi
− xi

∂

∂xj
,

Yi = (2xixj − r2δij)
∂

∂xj
− (n + 2)xiu

∂

∂u
,

Z1 = 2t
∂

∂t
+ xi

∂

∂xi
, Z2 = 2xi

∂

∂xi
− (n + 2)u

∂

∂u
,

(1.3)

where i, j = 1, n, r = (
∑n

i=1 x2
i )

1/2, δij is Kronecker ’s delta.

Theorem 1.2. The algebra of point symmetries for Eq. (1.2) is infinitely dimensional and
has the following basis:

X1 =
∂

∂t
, X2 = t

∂

∂t
+ u

∂

∂u
,

Xξ = ξ1(x1, x2)
∂

∂x1
+ ξ2(x1, x2)

∂

∂x2
− 2(ξ1(x1, x2))x1u

∂

∂u
,

(1.4)

where ξ1(x1, x2) and ξ2(x1, x2) are arbitrary conjugate harmonic functions, (ξ1)x1 = (ξ2)x2 ,

(ξ1)x2 = −(ξ2)x1.

Note that both Eqs. (1.1) and (1.2) belong to the type of the so-called fast diffusion ones
and play an important role in the qualitative theory of parabolic equations (see [16, Ch. 2]).
In particular, it is known [5], that the asymptotic properties of solutions of the Cauchy
problem for the equation ut = k∆um substantially change for m reciprocal to the Sobolev
exponent p = ps ≡ (n + 2)/(n − 2) appearing for the elliptic operator ∆u + |u|p−1u,
when the compact embedding of the corresponding functional spaces for these operators,
H1

0 (Ω) ⊂ Lp+1(Ω), for any bounded smooth domain Ω fails precisely at p = ps (see the
seminal paper [15] for important consequences of such a failure and further references), i.e.,
exactly in the case of Eq. (1.1). Equation (1.2) arises in description of the thin films on a
smooth surface; see [12], where new exact solutions for this equation are also obtained with
the use of its local and nonlocal symmetries.

The present paper is devoted to the construction of invariant solutions for Eqs. (1.1) and
(1.2). In the next section, Sec. 2, solutions of Eq. (1.1) invariant with respect to the sum
of operators X1 and Y1 from (1.3) are considered. For construction of the exact solution of
the factor-equation obtained, an approach [7,9,20] based on the notion of linear functional
subspace invariant under the operator appearing on the right-hand side of equation is used.

In Sec. 3, a symmetry transformation for Eq. (1.2), reducing the operator Xξ from
(1.4) to the operator of the translations along x2 is suggested. The utilization of such a
transformation allows us to describe all types of invariant solutions of Eq. (1.2).

It is worth mentioning that similar results remain valid for more general equations than
(1.1) and (1.2) with linear differential operators l[u] including derivatives in t of arbitrary
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orders with coefficients depending on t in the left-hand sides. As typical examples, in Sec. 4,
hyperbolic equations

utt = k∆u
n−2
n+2 (n �= 2) and utt = ∆ ln u (n = 2)

are considered, which turn out to be the most symmetric nonlinear equations of the form
utt = ∆f(u); see group classification (for n ≤ 3) in [2, 3]. In Appendix A, using some
common ideas, we briefly describe other nonlinear PDEs admitting solutions on invariant
subspaces.

2. Invariant Solutions of Eq. (1.1)

Note that Eq. (1.1) admits the inversion

x → x

r2
, u → urn+2, (2.1)

mapping operators Xi and Yi into each other and not changing other operators in (1.3). An
arbitrary solution u = F (t, x) of this equation is then transformed into the solution

u =
1

rn+2
F

(
t,

x

r2

)
.

The sum of operators X1 and Y1,

X1 + Y1 = (1 + x2
1 − x2

2 − · · · − x2
n)

∂

∂x1

+ 2x1

(
x2

∂

∂x2
+ · · · + xn

∂

∂xn

)
− (n + 2)x1u

∂

∂u
, (2.2)

also does not change under the transformation (2.1). Let us next consider solutions, which
are invariant with respect to this operator. Using [18], one gets the following:

Lemma 2.1. A basis of invariants for the operator (2.2) consists of functions

t,
xi

1 + r2
(i = 2, . . . , n), u(1 + r2)

n+2
2 .

The corresponding invariant solution of Eq. (1.1) has the form

u = (1 + r2)−
n+2

2 F

(
t,

x̃

1 + r2

)
, x̃ = (x2, . . . , xn). (2.3)

Note that every solution of the form (2.3) is also invariant with respect to the transfor-
mation (2.1). Let us restrict the analysis to the cylindrically symmetric solutions,

u = (1 + r2)−
n+2

2 F (t, ρ), (2.4)

where ρ = r̃
1+r2 , r̃ = (x2

2 + · · · + x2
n)1/2. Substituting this expression into Eq. (1.1) leads to

the equation

kFt = (1 − 4ρ2)
(
F

n−2
n+2

)
ρρ

+
(

n − 2
ρ

− 4nρ

) (
F

n−2
n+2

)
ρ

+ (2 − n)nF
n−2
n+2 , (2.5)

whose particular solution can be constructed using the method of invariant subspaces [7,9].
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Namely, by the transformation F = ϕ−n+2
4 , Eq. (2.5) takes the form

ϕt = k
n − 2
n + 2

Φ[ϕ], (2.6)

where the operator notation

Φ[ϕ] ≡ (1 − 4ρ2)
[
ϕϕρρ − n + 2

4
(ϕρ)2

]
+

(
n − 2

ρ
− 4nρ

)
ϕϕρ + 4nϕ2

is introduced. This quadratic operator Φ[ϕ] admits the 2-dimensional invariant subspace

W = {C0 + C1ρ
2 |C0, C1 ∈ R}.

Indeed, for any C0, C1 ∈ R, the following holds:

Φ[C0 + C1ρ
2] = 4nC2

0 + 2(n − 1)C0C1 +
[
(n − 4)C2

1 − 8C0C1

]
ρ2,

i.e., Φ[W ] ⊆ W . Therefore, Eq. (2.6) possesses exact solutions of the form

ϕ = C0(t) + C1(t)ρ2,

where the expansion coefficients C0(t) and C1(t) satisfy the following dynamical system:


C ′
0(t) = k

n − 2
n + 2

[
4nC2

0 + 2(n − 1)C0C1

]
,

C ′
1(t) = k

n − 2
n + 2

[
(n − 4)C2

1 − 8C0C1

]
.

(2.7)

Returning to the original variables yields the following exact solution for Eq. (1.1):

u = (C0(t)(1 + r2)2 + C1(t)r̃2)−
n+2

4 , (2.8)

where {C0(t), C1(t)} is an arbitrary solution of the system (2.7).
In the case n = 1 (then k = −1), Eq. (1.1) takes the form

ut = −(u−1/3)xx, (2.9)

while (2.3) becomes the solution in separated variables, u = (1 + x2)−3/2F (t). Substituting
in (2.9) and finding F yields u =

(
C − 4

3 t
)3/4 (1 + x2)−3/2.

The existence of solutions of a more complicated structure for Eq. (2.9),

u = (C0(t) + C1(t)x + · · · + C4(t)x4)−3/4, (2.10)

with the expansion coefficients {C0(t), . . . , C4(t)} satisfying a dynamical system, was
observed in [7] (see Example 1.25). Note that the inversion

x → 1/x, u → u|x|3 (2.11)

maps the solution (2.10) to the form u = (C0x
4 + C1x

3 + · · · + C4)−3/4. Assuming that
C4 = C0, C3 = C1, we single out those solutions (2.10), which are invariant with respect
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to the transformation (2.11). Then the dynamical system for {Ci(t)} simplifies and, after
introducing the notation C = 2C0 + C2, takes the form



C ′
0 =

1
3

(
2C0C − 4C2

0 − 3
4
C2

1

)
,

C ′
1 =

1
3
(8C0 − C)C1,

C ′ =
1
3
(8C0 − C)C.

Consider the case C �= 0. From two last equations, it follows that C1 = qC (q = const.) and
hence the system takes the form


C ′

0 =
1
3

(
2C0C − 4C2

0 − 3
4
q2C2

)
,

C ′ =
1
3
(8C0 − C)C.

Excluding C0 yields the equation for C,

3
C ′′

C
= 2

(
1
4
− q2

)
C2 +

3
2

C ′2

C2
.

Restricting to the case q = 1
2 , up to the translations in t, one obtains, C = 2at2, a = const.,

and then

C0 =
1
4

(
at2 +

3
t

)
, C1 = at2, C2 =

3
2

(
at2 − 1

t

)
.

Substituting these expressions in (2.10) and changing t to t − b, where b = const., yields
the following exact solution of Eq. (2.9):

u(t, x) =
(

(x + 1)2

4

[
a(b − t)2(x + 1)2 − 3

b − t
(x − 1)2

]
+

)− 3
4

, (2.12)

where, dealing with nonnegative real solutions, we have to take the positive part [·]+ in the
square brackets.

Setting here, as a key example, a = 1 and b = 1, we will next describe evolution
properties of

u(t, x) =
(

(x + 1)2

4

[
(1 − t)2(x + 1)2 − 3

1 − t
(x − 1)2

]
+

)− 3
4

, (2.13)

Namely, the evolution of (2.13) is quite curious and unusual. It is shown on Fig. 1 for
t ∈ [0; 1), and on Fig. 2 for t ∈ (1;+∞).

First of all, there exist blow-up free boundaries, at which the solution takes
infinite values, u = +∞. Secondly, Fig. 1 shows contraction of blow-up free boundaries as
t → 1− to the single point x = 1. This asymptotic blow-up behaviour is approximately
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t=0.0
t=0.4t=0.8

t=0.9

0 1 2 3 4
x

5

10

15

20

u

Fig. 1.

self-similar: one can calculate from the simple explicit expression (2.13) that, as
t → 1−,

u(t, x) = (1 − t)−
3
2 (g(ξ) + o(1)), where g(ξ) = 2−

3
2

(
1 − 3

4
ξ2

)− 3
4

, ξ =
x − 1

(1 − t)3/2
.

(2.14)
On one hand, this looks like a standard blow-up limit, but, on the other hand, we should
bear in mind that the formula (2.14) describes an unusual phenomenon of self-focusing of
two blow-up interfaces to a single point. Then the “invariant” variable ξ in (2.14) shows
that such a singular process occur on shrinking compact subsets of the order O((1 − t)

3
2

around the point x = 1.
Moreover, it is natural to declare that, actually, (2.14) contains convergence to a measure:

in the sense of distributions,

(1 − t)−3

u(t, x)
→ c0 δ(x − 1) as t → 1−, (2.15)

where δ(x − 1) is Dirac’s delta concentrated at x = 1, and c0 > 0 is an easy computed
constant:

c0 = 2
3
2

∫ +∞

−∞

(
1 − 3

4
ξ2

) 3
4

+

dξ = 2
5
2 3−

1
2 B

(
7
4
,
1
2

)
,

B(·, ·) being Euler’s beta function. It is worth mentioning that singular blow-up limits
given by formulae (2.14), (2.15) for the fast diffusion equations such as (2.9) are practically
unknown in modern parabolic PDE (porous medium) theory, regardless its huge success
and development in recent decades; see [21] as an advanced updated guide. Even for (2.9),
proving such convergence for a more general class of blow-up solutions represents a difficult
open problem.

Next, on Fig. 2, the solution decays to zero as t → +∞ almost everywhere, except
the single point x = −1, where it remains infinite (a permanent standing blow-up point).
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Fig. 2.

Calculating this limit yields the following asymptotics of (2.13) as t → +∞:

u(t, x) = t3ĝ(η)(1 + o(1)), where ĝ(η) = 3−
3
4 η−

3
2

(
1 +

η2

12

)− 3
4

, η = (x + 1)t3/2.

(2.16)

Here the similarity-like variable η reflects the fact that “focusing” as t → +∞ of such a
blow-up structure at x = −1 occurs on shrinking compact subsets of the order O(t−3/2).
Note also that the function ĝ(η) is not locally measurable close to η = 0, i.e., for x ≈ −1,
so that this singularity belongs to the very singular type.

Let us mention again that the mathematics concerning such strong complicated sin-
gularities is rather involved. In particular, proving existence and uniqueness (after such a
blow-up) in corresponding PDE theory represent a challenging problem even nowadays.
Here, we just get some interesting evolutions/singularity phenomena via explicit solutions
on invariant subspaces for such fast diffusion processes.

3. Invariant Solutions of Eq. (1.2)

Setting x1 = x, x2 = y, we rewrite Eq. (1.2) as

ut =
(

ux

u

)
x

+
(

uy

u

)
y

, (3.1)

while the symmetry operators (1.4) take the form

X1 =
∂

∂t
, X2 = t

∂

∂t
+ u

∂

∂u
,

Xξ = ξ1(x, y)
∂

∂x
+ ξ2(x, y)

∂

∂y
− 2(ξ1(x, y))xu

∂

∂u
,

(3.2)

where (ξ1)x = (ξ2)y, (ξ1)y = −(ξ2)x. Following [18], along with the pair of conjugate
harmonic functions ξ1(x, y) and ξ2(x, y), we introduce new functions η(x, y) and δ(x, y)
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satisfying conditions

δx = ηy =
ξ1

(ξ1)2 + (ξ2)2
, δy = −ηx =

ξ2

(ξ1)2 + (ξ2)2
, (3.3)

and also being conjugate harmonic functions.
From the results obtained in [18], the next statement follows.

Lemma 3.1. Equation (3.1) is invariant with respect to the transformation

t → t, x → η(x, y), y → δ(x, y), u → u

η2
x + η2

y

. (3.4)

The transformation maps any solution u = F (t, x, y) of Eq. (3.1) into the solution

u = (η2
x + η2

y)F (t, η(x, y), δ(x, y)). (3.5)

The operators X1 and X2 from (3.2) do not change under the transformation (3.4), while
Xξ reduces to ∂/∂y.

Lemma 3.2. The functions

t, η(x, y) and
u

η2
x + η2

y

form a basis of invariants for the operator Xξ.

Formula (3.5) allows one, starting with some particular solutions of Eq. (3.1), to obtain
new solutions depending on arbitrary conjugate harmonic functions η(x, y) and δ(x, y).

Example 3.1. Equation (3.1) possesses solution ([6, Example 14]),

u = (C0(t) + C1(t) cos 2x + C2(t)e2y + C3(t)ey cos x)−1,

where functions Ci(t) satisfy some dynamical system. Applying (3.4), one obtains the
solution

u = ((ηx)2 + (ηy)2)(C0(t) + C1(t) cos 2η(x, y) + C2(t)e2δ(x,y) + C3(t)eδ(x,y) cos η(x, y))−1,

including two arbitrary conjugate harmonic functions η and δ.

Example 3.2. Starting with the solution ([7, Example 4.8]),

u = (C0(t) + C1(t) cos 2x + C2(t) cosh 2y + C3(t) cosh y cos x)−1

yields

u = ((ηx)2 + (ηy)2)(C0(t) + C1(t) cos 2η(x, y) + C2(t) cosh 2δ(x, y)

+ C3(t) cosh δ(x, y) cos η(x, y))−1.
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The transformation (3.4) can be applied to construct all types of invariant solutions (of
the rang 1) for Eq. (3.1). Consider an arbitrary linear combination of operators (3.2)

X = C0Xξ + C1X1 + C2X2.

Then, the change of variables

t̄ = t, x̄ = η(x, y), ȳ = δ(x, y), ū =
u

η2
x + η2

y

,

yields (omitting the bar)

X = C0
∂

∂y
+ C1

∂

∂t
+ C2

(
t
∂

∂t
+ u

∂

∂u

)
= C0

∂

∂y
+ (C2t + C1)

∂

∂t
+ C2u

∂

∂u
. (3.6)

Note that, if C2 �= 0, then using translations in t it is possible to vanish C1 and, dividing
by C2, reduce the operator (3.6) to the form X = s ∂

∂y + t ∂
∂t + u ∂

∂u (s = const.). If C2 = 0,
C1 �= 0, then, dividing by C1, yields X = s ∂

∂y + ∂
∂t . Finally, if C2 = C1 = 0, C0 �= 0, then

(3.6) takes the form X = ∂
∂y . Taking into account dilations in x, y, and u admitted by

Eq. (3.1) in the first two cases, it is sufficient to consider only two variants: s = 0 and s = 1.
Thus, the operator (3.6) reduces to one of the following forms:

X1 =
∂

∂t
, X2 =

∂

∂y
, X3 =

∂

∂t
+

∂

∂y
, X4 = t

∂

∂t
+ u

∂

∂u
, X5 = t

∂

∂t
+

∂

∂y
+ u

∂

∂u
.

(3.7)

Calculating the invariants for every operator (3.7), one obtains five possible types of
invariant solutions (of the rang 1) for Eq. (3.1) and the corresponding factor-equations:

(1) u = F (x, y), ∆ ln F = 0;
(2) u = F (t, x), Ft =

(
Fx
F

)
x
;

(3) u = F (x, h), −Fh =
(

Fx
F

)
x

+
(

Fh
F

)
h
, h = y − t;

(4) u = tF (x, y), F = ∆ ln F (the Liouville equation);
(5) u = tF (x, h), F − Fh =

(
Fx
F

)
x

+
(

Fh
F

)
h
, h = y − ln|t|.

Returning to the original variables, one obtains the following result [19]:

Theorem 3.1. Equation (3.1) admits the following five types of invariant solutions and
corresponding reductions:

(1) u = (η2
x + η2

y)F (η, δ), ∆η,δ ln F = 0;

(2) u = (η2
x + η2

y)F (t, η), Ft =
(

Fη

F

)
η
;

(3) u = (η2
x + η2

y)F (η, h), −Fh =
(

Fη

F

)
η

+
(

Fh
F

)
h
, h = δ − t;

(4) u = t(η2
x + η2

y)F (η, δ), F = ∆η,δ ln F ;

(5) u = t(η2
x + η2

y)F (η, h), F − Fh =
(

Fη

F

)
η

+
(

Fh
F

)
h
, h = δ − ln|t|.
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Note that, for the first and the fourth [11] equations for the function F in this list, their
general solutions are written down in the explicit form as

F = eΦ(η,δ) and F = 2
(Φη)2 + (Φδ)2

Φ2
,

where Φ(η, δ) is an arbitrary harmonic function, ∆η,δΦ = 0. For the other equations given in
Theorem 3.1, the construction of particular solutions is possible as well, e.g., by using some
symmetries. For example, the second equation is invariant with respect to the dilations
t → at, η → aη, F → a−1F (a �= 0) and, then, possesses a self-similar solution,

F =
(
αt + η2

2t

)−1
(α = const.).

4. Final Remarks: Extensions to Hyperbolic Wave Equations

The remarkable quality of Eqs. (1.1) and (1.2) studied above is determined by the fact that
their Lie point symmetry group includes, as a subgroup, the complete group of conformal
transformations in Rn (extended to the variable u).

Indeed, this property holds for any equations obtained from (1.1) and (1.2) by changing
their left-hand sides to an arbitrary linear differential operator l[u], which do not depend
on x and include derivatives in t of arbitrary order. Then, setting l[u] ≡ utt, one obtains
hyperbolic (or wave) equations

utt = k∆u
n−2
n+2 (n �= 2) (4.1)

and

utt = ∆ ln u (n = 2). (4.2)

From the results of the group classification [2, 3], it follows (at least for n ≤ 3) that (4.1)
and (4.2) are the most symmetric nonlinear wave equations of the form utt = ∆f(u).

For Eqs. (4.1) and (4.2), the results similar to those that obtained above hold. For
example, these equations admit transformations (2.1) and (3.4) respectively. Equation (4.1)
possesses an invariant solution of the form (2.4) (or (2.3)), and the function F satisfies
an equation similar to (2.5) (with Ftt on the left-hand side rather than Ft). Finally, for
Eq. (4.2) it is possible to list all possible types of invariant solutions and corresponding
reductions. In particular, it has the solution

u = (η2
x + η2

y)F (t, η(x, y)),

where η(x, y) is an arbitrary harmonic function, and F (t, η) satisfies the equation

Ftt =
(

Fη

F

)
η

.

The last equation admits dilations defined by the operator

X = t
∂

∂t
+ mη

∂

∂η
+ 2(1 − m)F

∂

∂F
, m = const.,

and possesses a self-similar solution of the form F = t2−2mf(ηt−m), where the function f

satisfy some ordinary differential equation.
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Appendix A. On Some Exact Solutions on Invariant Subspaces for
Higher-Order PDEs

A.1. Thin film equation

We begin with the fourth-order thin film equation (the TFE–4)

ut = −∇ · (um∇∆u), (A.1)

where m �= 0 is a fixed exponent and solutions u(t, x) are assumed to be nonnegative in
a free-boundary setting; see [9, Ch. 4] for a survey concerning physical motivation and
mathematics for such PDE models. Similarly, m < 0 can be attributed to a “fast diffusion
case”. We will use a technique that is similar to that applied to (2.9). We refer to the key
papers [10,17] containing basic ideas.

A.2. One-dimensional TFE

We begin with a typical explanation how exact solutions on invariant subspaces occur for
the operator of the TFE (1.1) in 1D:

ut = −(umuxxx)x. (A.2)

Setting in (A.2)

u = vµ, where µ = 3
m , (A.3)

splits the thin film operator into five primitive monomials of the algebraic homogenuity
four:

vt = −[
v3vxxxx + (4µ − 1)v2vxvxxx

+ 3(µ − 1)v2(vxx)2 + 3(µ − 1)(2µ − 1)v(vx)2vxx + µ(µ − 1)(µ − 2)(vx)4
]
. (A.4)

We are interested in solutions of typical bell-shaped forms localized on a bounded interval
in x. This requires quadratic polynomial subspaces:

Proposition A.1. The operator given in (A.4) preserves the subspace W3 = L{1, x, x2} iff
m = 3, m = 6, or m = −2.

Proof. Plugging v = C1 + C2x + C3x
2 ∈ W3 into the quadratic operator yields that the

terms on L{x3, x4} vanish iff 4(µ − 1)[3 + 6(2µ − 1) + 4µ(µ − 2)] = 0, which yields either
µ = 1, or 4µ2 + 4µ − 3 = 0, i.e., µ = 1

2 , or µ = −3
2 .

Consider a particularly interesting case m = 6 (µ = 1
2). Then, the diffusion-absorption

equation takes the form

vt = −
[
v3vxxxx + v2vxvxxx − 3

2
v2(vxx)2 +

3
8
(vx)4

]
.
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We have the following exact solutions on W2 = L{1, x2}:
v(t, x) = [C1(t) + C3(t)x2]+ , (A.5)

with the dynamical system on the expansion coefficients{
C ′

1 = 6C2
1C2

3 ,

C ′
3 = 12C1C

3
3 .

The positive part [·]+ in (A.5) means a certain free-boundary setting for the TFE–4, where
special Stefan–Florin type conditions are assumed at the interfaces. We do not treat those
here and refer to [9, p. 107] for further details.

The above dynamical system for {C1(t), C3(t)} is easy to solve explicitly: C1(t) =
[18A2

0(1 − t)]−1/3 and C3(t) = A0[18A2
0(1 − t)]−2/3, where A0 �= 0 is a constant of inte-

gration. Thus, we obtain an explicit blow-up solution of the present TFE–4, which, similar
to (2.13), deserves further study and physical interpretations.

A.3. Solutions of TFE–4 with zero contact angle

Such solutions play quite a special role in TFE theory, where the requirement of the zero
contact angle (ux = 0) at free boundaries expresses a deep physical meaning; [9, § 3.1].
Namely, consider the TFE (A.2) for m = 1, i.e., in the quadratic case:

ut = −(uuxxx)x. (A.6)

We now impose the zero contact angle condition, so, at each finite interface x = s(t),

u = ux = uuxxx = 0 at x = s(t). (A.7)

Setting next u = v2 yields an equation with the cubic operator,

vt = −1
2

v(v2)xxxx − vx(v2)xxx ≡ F3[v], (A.8)

exhibiting the following invariant property:

Proposition A.2. Operator F3 in (A.8) admits the subspace W3 = L{1, x, x2}.
Indeed, taking v = C1 + C2x + C3x

2 yields

F3[v] = −12(C1C3 + C2
2 )C3 − 60C2C

2
3x − 60C3

3x2 ∈ W3. (A.9)

For simplicity, setting C2(t) ≡ 0 (meaning even and symmetric in x patterns) gives the
following solutions of the original PDE (A.6) on W2 = L{1, x2}:

u(t, x) = v2(t, x) ≡ [C1(t) + C3(t)x2]2+, (A.10)

which, clearly, satisfy all three free-boundary conditions (A.7). In this case, (A.9) gives the
dynamical system {

C ′
1 = −12C1C

2
3 ,

C ′
3 = −60C3

3 .
(A.11)

The last ODE is solved explicitly, C3(t) = ± 1√
120

1√
t

for t > 0 and, from the first one,

C1(t) = A0t
− 1

10 , where A0 = constant. For a more general analysis of such solutions for
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TFEs with extra absorption phenomena, we refer to [9, p. 120], where further results and
references can be found.

A.4. TFE in n dimensions

The above approach extends to the n-dimensional TFE (A.1). Consider radially symmetric
functions from the subspace

W2 = L{1, |x|2}. (A.12)

Using the same transformation (A.3) yields a PDE with a quartic operator which can be
analyzed in a manner similar to Proposition A.1. Namely, we then obtain the PDE

vt = − 1
µ

v1−µ∇ · (v3∇∆vµ) ≡ F4[v]. (A.13)

Using the radial form of this operator,

F4[v] = − 1
µ

v1−µ 1
rn−1

[
rn−1v3

(
1

rn−1
[rn−1(vµ)′r]

′
r

)′

r

]′
r

,

we arrive at the following conclusion:

Proposition A.3. Operator F4 in (A.13) admits subspace (A.12) iff

(µ − 1)(4µ2 + 4nµ + n2 − 4) = 0,

i.e., in the following three cases: m = 3 (µ = 1); m = − 6
n−2 for n �= 2

(
µ = −n−2

2

)
; and

m = − 6
n+2

(
µ = −n+2

2

)
.

Fix now the negative n = − 6
n+2 (a fast diffusion range) and consider the TFE

ut = −∇ · (u− 6
n+2∇∆u

)
. (A.14)

Then, the corresponding exact solutions are

u(t, x) = v
3
n (t, x) = [C1(t) + C2(t)|x|2]−

n+2
2

+ , where

{
C ′

1 = aC2
1C2

2 ,

C ′
2 = −bC1C

3
2 ,

(A.15)

with a = 2n(n + 2)(n + 4), b = 12(n + 2)(n + 4), so that a− b = 2(n + 2)(n + 4)(n− 6) > 0
for all dimensions n > 6. The dynamical system can be easily solved that gives: for n �= 6,

C1(t) = [(6 − n)aA0t/n]n/(6−n), C2(t) = A0[(6 − n)aA0t/n]−6/(6−n),

where A0 is a constant of integration. For n = 6, the functions involved are exponential:
C1(t) = eaA0t and C2(t) = e−aA0t. Concerning other types of exact solutions of the TFEs
in 1D and in n dimensions, we refer to [9, Ch. 3] and [9, Ch. 6], respectively, where more
detailed mathematical and applied interpretations of those can be found.
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A.5. Towards third-order NDEs

As a last example, consider an odd-order PDE from the family of the third-order nonlinear
dispersion equations (NDEs–3):

ut = umuxxx , (A.16)

where, as usual, m �= 0. For m = 3, (A.16) gives the Harry Dym equation ut = u3uxxx ,

which is integrable and is one of the most exotic soliton equations. It is associated with the
classical string problem and is linearizable by the inverse spectral transform method; see
[9, Ch. 4] for details and a survey on various NDEs.

Let us show that, for the PDE (A.16), the same method applies, so setting

u = vµ, with the exponent µ =
2
m

,

yields the following equation with a homogeneous cubic operator:

vt = F [v] ≡ v2vxxx + 3(µ − 1)vvxvxx + (µ − 1)(µ − 2)(vx)3. (A.17)

Substituting v = x2 yields that the operator F in (A.17) preserves the extended 3D subspace

W3 = L{1, x, x2}, if 12(µ − 1) + 8(µ − 1)(µ − 2) = 0, (A.18)

i.e., for µ = 1 (m = 2, the trivial case: u = v and vxxx = 0 on W3) and for µ = 1
2 (m = 4)

that gives some applications and extensions. Namely, consider the NDE

ut = u4uxxx (u ≥ 0). (A.19)

Setting u =
√

v
(
µ = 1

2

)
yields the PDE

vt = v2vxxx − 3
2

vvxvxx +
3
4
(vx)3 (A.20)

that possesses solutions v ∈ W3,

v(t, x) = u2(t, x) = C1(t) + C2(t)x + C3(t)x2, (A.21)

where the coefficients satisfy the dynamical system


C ′
1 = −3C1C2C3 +

3
4
C3

2 ,

C ′
2 = −6C1C

2
3 +

3
2
C2

2C3,

C ′
3 = 0.

Setting C3(t) ≡ 1 reduces this to a simpler 2D system,


C ′
1 = −3C1C2 +

3
4

C2
2 ,

C ′
2 = −6C1 +

3
2

C2
2 .

Though this cannot be integrated explicitly, the asymptotic study of exact solutions is not
that difficult. This last example shows that exact solutions on finite-dimensional invariant
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subspaces exist for various nonlinear PDEs: from even-order parabolic (and hyperbolic)
ones to odd-order NDEs and others.
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