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In the literature, the generalized Sundman transformation has been used for obtaining necessary
and sufficient conditions for a single second- and third-order ordinary differential equation to be
equivalent to a linear equation in the Laguerre form. As far as we are aware, the generalized
Sundman transformation has not been applied to a system of equations. The motivation of this
work is then to expand the application of the generalized Sundman transformation to a system of
ordinary differential equations, in particular, to a system of two second-order ordinary differential
equations.
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1. Introduction

The basic problem in the modeling of physical and other phenomena is to find solutions

of differential equations. Many methods of solving differential equations use a change of

variables that transform a given differential equation into another equation with known

properties. Since the class of linear equations is considered to be the simplest class of

equations, there arises the problem of transforming given differential equations into linear

equations. This problem is called a linearization problem. The linearization problem has

been studied in many publications. A short review can be found in [1,2].
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1.1. Generalized Sundman transformation of a single equation

The linearization problem of a second-order ordinary differential equation via point trans-
formations was solved by Sophus Lie [3]. Lie also noted that all second-order ordinary
differential equations can be mapped into each other by means of contact transformations.
Hence, for a second-order equation the solution of the linearization problem via contact
transformations is trivial.

The linearization problem via a generalized Sundman transformation for a second-order
ordinary differential equation was investigated in [4]. The authors of [4] obtained the result
that any second-order linearizable ordinary differential equation which can be mapped into
the equation i = 0 via a generalized Sundman transformation has to be of the form

i+ Xa(z,9)9° + M(2,9)9 + Xo(z,y) = 0. (1.1)

They also found criteria that an equation can be mapped into the v” = 0 via a generalized
Sundman transformation. In [5] it is demonstrated that the solution of the linearization
problem via the generalized Sundman transformation of a second-order ordinary differential
equation given in [4] only gives particular criteria for linearizable equations.

The generalized Sundman transformation was also applied in [6,7] for obtaining neces-
sary and sufficient conditions for a third-order ordinary differential equation to be equivalent
to a linear equation in Laguerre form. Authors of [6] also discovered the Sundman sym-
metry. Detailed analysis of Sundman symmetries is given by Euler and Euler [8]. Some
applications of the generalized Sundman transformations to ordinary differential equations
were considered in [9] and earlier papers, which are summarized in the book [10].

We note that to the authors knowledge the generalized Sundman transformation has not
been applied to a system of equations. The motivation of the present paper is to expand the
application of the generalized Sundman transformation to a system of ordinary differential
equations, in particular, to a system of two second-order ordinary differential equations.

1.2. Linearizability and complete integrability

Here we demonstrate that the existence of linearizable transformations does not guarantee
that the equations in the study are integrable in quadratures. An example of this is presented
in [8]. Here we show that the problem mentioned in [8] is common. We give a simple example
supporting our statement.

Let us consider a second-order ordinary differential equation

Y+ a(z,y)y”? + bz, 9)y"? + c(z,y)y + d(z,y) = 0. (1.2)

Compatibility analysis for the linearizing transformation is separated in two cases [2]. Let
us consider here the case where the coefficients satisfy the conditions

¢y = 2by, dyy — bpy — byc+ byd +dyb = 0. (1.3)
The transformation

t=p(@), u=yy) (1.4)
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mapping Eq. (1.2) into the equation v” = 0 is found from the compatible conditions

¢yy = %b, 27/’xy = Sox_lq/’y()@xx + Cwya Vpw = Sox_lq/’x()@xx + ¢yda (1'5)
200" — 3 "2
# —H, (1.6)
'Y

where H = 4(d, + bd) — (2¢, + ¢?). Notice that by virtue of the second equation of (1.3)
the function H = H (x). For solving the system (1.5), (1.6), one has to first solve Eq. (1.6).

The change ¢’ = g2 reduces Eq. (1.6) into the equation

1
g+ 1 H9=0. (1.7)

It is well-known that the Riccati substitution
/
g =gv
reduces Eq. (1.7) into the Riccati equation

1
v’+v2+ZH:0.

Thus, in order to solve Eq. (1.6) one has to be able to solve the Riccati equation, which is
in the general case not solvable.

The example presented above shows that the problem of the generalized Sundman trans-
formation that is mentioned in [8] is not a specific problem of the generalized Sundman
transformation: this is a common “characteristic” of the linearization problem.

In [8,11], it was noted that the generalized Sundman transformation can provide an
intermediate integral of a particular class. Hence, despite not obtaining the general solution
one can use the generalized Sundman transformation for simplification of the original equa-
tion. For a single second-order ordinary differential equation an extensive study of particular
classes of intermediate integrals are considered in [12,13].

2. Expanding the Generalized Sundman Transformation

The expansion of the generalized Sundman transformation for a system of two ordinary
differential equations is defined by the formulae

u:fx(taxay)a U:fy(t7xay)7 dT:g(t,ﬂ?,y)dt, (21)

where g # 0 and A = fIfi — fifi #0.
Here we explain how the generalized Sundman transformation maps functions.
Assume that (%), yo(t) are given functions. Integrating the last equation of (2.1)

dr

dt
we obtain 7 = Q(t). Using the inverse function theorem, one finds ¢t = Q~!(7). Substituting
t into the functions f*(t,zo(t), yo(t)), one gets the transformed functions

uo(1) = fH(Q7H(7), 20(Q (7)), %o (Q™H(7))),
vo(7) = fUQ™HT), 20(Q7H(7)), 5o (Q™H (7))

= g(l‘,l’o(T), yO(T))a
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Conversely, let ug(7), vo(7) be given functions of 7. Using the inverse function theorem
one solves the equations

UO(T) :fm(t7x7y)7 UU(T) :fy(t,:c,y),

with respect to x and y: x = ¢ (7,t), y = ¥ (7,t). Integrating the ordinary differential
equation

= 4(t,0(r,1),4(5,1)),
one finds 7 = H (t). Substituting 7 = H (t) into the functions ¢(7,t), 1 (7,t), the transformed
functions zo(t) = ¢(H (t),t) and yo(t) = ¥(H(t),t) are obtained.

Formulae (2.1) also allow us to obtain the derivatives of ug(7) and vo(7) through the
derivatives of the functions xg(t) and yo(t), and vice versa.

Hence, using transformation (2.1), one can relate solutions of two systems of ordinary
differential equations. Therefore the knowledge of a solution of one of them gives a solution
of the other system, up to solving one ordinary differential equation of first-order and finding
inverse functions.

Notice that these procedures can be expanded for any number of dependent variables.

3. Necessary Conditions

We start with obtaining necessary conditions for the linearization problem.
First, we find the general form of a system of two second-order ordinary differential
equations

jﬁ:F(t,x,y,jﬁ,y), y:G(taxay>J}7y.)a

which can be mapped by the generalized Sundman transformation into the system of linear
equations

i = kiiu+ k120, U = kot + koov, (31)

where k;j, (4,7 = 1,2) are constant.
Differentiating (2.1) with respect to ¢, we find

=g 'Dif*, =g 'DifY, ii=Di(g 'Dif"), ©=Di(g  Dif¥),  (3.2)

where

D=2 130 130 1590 140
=0t Tar Yoy i Yo

Substituting the derivatives into (3.1), one has the following equations

i = Ma2 4 M@y + Agy? + M + A5y + A,

L 5o . 5 . . (3.3)
i = B + Boxy + B3y° + Bat + B59 + B,
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where the coefficients \; and f;, (i = 1,2,...,6) are related to the functions f*(¢,z,y),
fY(t,x,y), and g(t,z,y) by the formulae:

M= (gA) N (= fE S g+ FEflge + [ fleg — [E1292),
Xy = (gA) N (=2f%, g+ [Efiay + 215 fyg — i f2ay),

Ag = AN (= fo £+ )
= (9A) N (=2fE S g+ FEf9e + FEF g0 + 200 fEg — o1V 92 — [Ef20t), (3.4)

= (gA) N (=2fE flg+ fEfdgy + 217 109 — Fiflay),
= (9A) M= fifdg+ [Ef g+ i fhg — Fiflae — FEf g ko — L1V ko
+ [Tk + [y [Y93kaa),

Br=AN(fr fE — fEf),

Bo = (gA) 1 (218, flg = 2f% fiyg + [E1d 90 — [ f292),

B3 = (gA) " (= fEfiyg + L F gy + 5,029 — fiflgy),

By = (9A)(2fEflg — [Ef2ge — 202 flhg + FEF 9e), (3.5)

Bs = (gA) " (2ff flg — fiflgy — 215 g + FEflgy + i fd a0 — i f2at),

Bo = (gA) " (fiflg — [ fhge — fEfha + [Eflae + FEF70 ko + f2 V9P kaz

— f2f7 gk — f2 1Y g ki2).

Equations (3.3) present the necessary form of a system of two second-order ordinary
differential equations which can be mapped into a linear equation (3.1) via a generalized
Sundman transformation.

4. Sufficient Conditions. The Case f;” #0
In this case from (3.4), (3.5) and the definition of A one can find the derivatives

fi = (ffge — fEghe — [E90s + ¢° (f"kn + fYk12)) /g,
fm (fFge + fEae — fEgha — [29B4)/(29),
= (ffgy — fEgrs + [Ege — fL9Bs)/(29),
= (f¥ge — ffgh — fE9b1) /9,
(fEgy — [Egha + [L9. — f9B2)/(29),
= (- fx9A3+f 9y — [2983)/9,

fmy

f= (= FEfghe + fEfl o — FEfi9Bs + fEg° (f kar + [Yka2) + 9ANe)/ (fEg),
fhy = (- fxfyg/\5 + [ gy + FEf 9 — FEfiaBs + 9AXs) /(212 ),

fx = (fifd — D)/ 1,

o= (- fxfyg/\:s + [ figy — [ f 903 + gAXs) [ (fEg).
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Ay = (—fEfE gy + FEFEfl 90 + fEgyD + [T f 9y — FE2 1 90 + 2f 7 9:A
—fEgA(Bs + M)/ (2fE9),

Ay = (3922 — gA(B2 + 2)M1))/(29),

Ay = (3gyA — gA (263 + A2))/(29).

Thus, all first-order derivatives of the function A(t,x,y) and all second-order derivatives of
the functions f*(¢t,z,y) and fY(t,x,y) are defined. Equating the mixed derivatives

(fi), = (i), =0, (), = (fiy), =0, (£2),, — (£), =0,
(Fre)y = (i) =0, (F2), = () =00 (£2),, = (fi1), =0,

one finds all second-order derivatives of the function g(¢, z,y) as

gie = ([F9°va + FEgPm2 + 31798 — 215 92976 — 21 94906 + 417 9" k11
+ fEgP s + 4f] g ke + 69y9° (f ki + fYk12)) /(2f59),

Gte = (39192 — 9xgha — 9y9Bs + 9*11)/(29),

9ty = 399y — 92975 — 94905 + 9° 1)/ (29),
= (392 — 2929\ — 294961 + 9°1)/(29),

Gay = (3929y — 9ugr2 — 9y9B2 + 9*72)/(29),
= (—2929X3 + 392 — 294953 + 9°73) / (29),

where

Y1 = —4B1y + 282, + 45185 — 26122 — B3 + 2521,
Y2 = =202y + 403z — 4013 + B2z,

Y3 = 2Xay — 4A35 — 2023 + 20302 + 4\ A3 — A3,
p1 = =204y + 2050 — 261 A5 — B2B5 + B2 Aa + 206304,
V4 = 2Xgy — 2A50 — 2843 + B5A2 + 2A1A5 — A2y,
H2 = 2X5¢ — 4hey — P55 + 4063 + 2X206 — A4 s,
13 = 205t — 486y + 20206 + 48306 — Bars — 3.

The equation (Ay); — (Az)y = 0 give
Aow = (4A1y — 481X + Bada — 72)/2. (4.1)

Equating the remaining mixed derivatives:

(A — (Az)e =0, (Ar)y — (Ay)e =0,

(fi), = (fi), =00 (fi2), = (f2y), = 0. (fiy), = (f2y), = 0. (fih), — (Fip), = O,
(fir), = (), =0 (f), — (£),, =0, (fi), — (), =0 (fi), — (£), =0,
(9tt)y — (gty)e = 0, (9ta)y — (Gty)e =0,  (9gza)y — (Gay)z =0,  (gay)y — (gyy)a =0,
(9tz)z = (9za)e = 0, (gtz)y — (Gay)t = 05 (Gry)x — (gag)t = 0, (9ty)y — (9yy)e = O,
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one obtains the equations

i — favi — fyra =0, (4.2)

Jive — favs — fyva =0, (4.3)

fivs — fyvs — fjve =0, (4.4)

Gt — a1 — gyv2 — gvr = 0, (4.5)

972 — 9aV3 — Gyva + 9(—=2%21 + 2742 + Bova — B5y2 — 11 A5 + A2p1) = 0, (4.6)
9173 = 9aVs — GyV6 + 9(—273t + 274y + 28371 — B573 — 25 + 2A3p1) =0, (4.7)
W fEf] = 1) + Auz =0, (4.8)

fEfivs = [y fivs + £y fijve — Avs =0, (4.9)

fEfvs — fi five + £ fjva — Avg = 0, (4.10)

fefjv — fyfim + fi fijve — Ay =0, (4.11)

fEfEva = fEfgm + (F2)ne + [ five + (f)ve = 0, (4.12)

pfy (fyf) = fEF)) + A(fEya+ fpe + fvs) =0, (4.13)

Ty = (2722 + 28173 — Bay2 — M1 A2 + 272M1) /2,
Py = (2712 + Bays — Bsv2 — M1 A5 + 7204) /2, (4.14)
Y3z = (2729 — Bov3 + 20372 + 271 A3 — 12 )2)/2,

where

vy = =4y + 2Xae + 26105 — Bada + pa,

vo = —4f1t + 204z + 20185 — 201 4 — 284 + 2P4 M1,

v = —2Xot + 2X50 + SaAs — B5A2 + 74 — 2A1 05 + Aoy,
vy = =20 + 2052 — 2015 + BaAe,

Vs = —4A3s + 2X5y + 20305 — 28503 — A2 A5 + 2A3)y,
ve = — 403t + 205y — PaAs + 284A3 + 4,

vr = 2y1t — 201z — 20174 + Bave + V1Aa — 2A 1,

vg = —2gt + 46w + Bads — 2862 — 4A1 X6 + AT + ps,
v = =204 + 406z — 401X6 — 26206 + P15 + Bala.

Furthermore we assume that

ko1 =0, ki2=0, ki1 =0, k=0

4.1. Case v1 #0
Let 41 # 0.
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From Eqgs. (4.2), (4.5) and (4.11) we find

JE = (fEvi+ fiv) /m,
9t = (gav1 + gyv2 + gv7) /M,
fE = (fEfivi+ £ five — An) [ (fyn).-

Substitution of these expressions into Eqgs. (4.8), (4.13), (4.12), (4.9), (4.4), (4.10) and
(4.3) leads to

Yipe +yav1 =0, v+ yave — vy =0,  yivg — pive =0,

(4.15)
Y1vs —y3v1 =0, mv3 — vy =0, vy —yere =0, v — y3v2 = 0.

The following equations also need to be satisfied:

fi= (), =0, f&- (), =0, fa—(f),=0,
fo— (), =0, (D= (), =0 fi,—(f),=0,
0, gtz — (9t)e =0, gy — (gt)y = 0.

The equations f7, — (ftm)x =0, (f%)t - (fty)x =0, fi— (ft””)t =0 and f}, — (fty)t =0 are
reduced to the conditions, respectively,

2712v1 — YiA + 271\ + Y1 deve + vy — 271va, = 0, (4.16)

2712V2 + 217101 + Bayive — Bayi — 2vive, = 0.

2y1¢v1 — 2'7%)\6 + ’71)\4U1 + ’71/\5U2 + vy — 2viv1 =0, (4 17)

2v1v2 + Bayiva + Bsyive — 26677 + vavr — 2y1v2 = 0.

There are no other new conditions: all are satisfied. Thus one obtains the following result
for v; # 0.

Theorem 4.1. If the coefficients of Egqs. (3.3) satisfy the conditions (4.1), (4.14)-(4.17)

and v1 # 0, then Eqs. (3.3) can be reduced to the equations i = 0, ¥ = 0 by the generalized
Sundman transformation.

4.2. Case v1 =0 and v2 # 0
Let 1 = 0. Equations (4.2), (4.11) and (4.5) give

=0, vn,=0, v;=0. (4.18)
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Since v # 0, Eqs. (4.3), (4.6), (4.10), (4.4), (4.9), (4.8), (4.7), (4.13) and (4.12) lead to
the equations

JE = (fEvs + fEva) /e,
[ = (fEfvs + [ filva — Avs) /(fi2),
Gt = (9av3 + gyva + 9272t — 27v40 — Boya + P52 — Aapin)) /72,

Vs = Y3U3/Y2, Ve = Y3Va/Y2, M2 = —YaV3/7V2, (4.19)

Yay = (—272073 + 273672 + 274273 + Boyava — 2637274 + Y3 A5 — 272301 + Y3 hap)/(272),

(4.20)
vg = (—yavs + p1v3)/y2, vo = (u1va)/ve. (4.21)
The equations f}, = (f/): and f% = (f%); give
vt = (4213 — 2940V3 — B2yals + Bsy2v3 — 273 N6
+ Y2 Xav3 + Yadsva — Aapvz)/(272), (4.22)

var = (4204 — 2va0va — Boyava + Baryevs + 2857214
— 20673 — Aapiva)/(272).
The other equations
fo= (e Sy = (=D 1= (),
g = (9)t,  Gre = (G)as Gy = (9t)y
are satisfied. Thus one obtains the following result for 7, = 0 and ~, # 0.

Theorem 4.2. If the coefficients of Eqs. (3.3) satisfy the conditions (4.1), (4.14), (4.18)—
(4.22), v1 = 0 and 2 # 0, then Eqgs. (3.3) can be reduced to the equations it = 0, ¥ = 0 by
the generalized Sundman transformation.

4.3. Case v1 =0, v2 =0 and v3 #0
Since 2 = 0, the first equation of (4.14) becomes
Bivs = 0.
Equations (4.3) and (4.10) give
v3 =0, wvg4=0. (4.23)
Since v3 # 0, then 3; = 0. Equations (4.4), (4.7)-(4.9), (4.12) and (4.13) become
JE = (fEvs + five) /s,

I = (fEfdvs + fEfive — Avs) [ (fEv3),
9t = (925 + gy6 + 9(2us, + Povs + ¥3Aa — 2M115 — Aavs)) /73,

po = —Yavs/v3, Vs = (—Yals + vs)/v3, Vo = pive/73- (4.24)
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The equations

=D fi= U0 fy= W), fy= ),
give

Vst = (273tV5 + 2us, U5 + ﬂQVg — 2’}/3%/\6 + 2"}/3/\4V5 -+ 'YS/\E)VG
— 2012 — Xavsig) [ (293),

Vet = (2v31v%6 + 205016 + Pavsis + Baysvs + Bs5v3v6 — 20673
+ 3\ — 2M1v5v6 — Aord) /(273),

(4.25)

sy = (293415 — V3As + 13Xt + 273A316) /(273)
Vse = (—273y¥6 + 20673 — 202735 — 2837306 + 0573 — 13 M (4.26)
+2v3\1v5 + 13A206) / (273).

The other equations

ftl:;: = (ftx)xa (fg)t = (fty)x, git = (Qt)ta Gtx = (Qt)x, Gty = (gt)y

are satisfied.

Theorem 4.3. If the coefficients of Eqs. (3.3) satisfy the conditions (4.1), (4.14), (4.18),
(4.23)-(4.26), v1 = 0, 72 = 0, /1 = 0 and v3 # 0, then Egs. (3.3) can be reduced to the
equations i = 0, ¥ = 0 by the generalized Sundman transformation.

4.4. Case v1 =0, v =0, v3 =0 and v4 # 0
For 73 =0 Egs. (4.4) and (4.9) give

Vs = 0, Vg = 0. (427)
Since 4 # 0, Egs. (4.8), (4.13), (4.12) and

(9tt)y = (gey )t (4.28)

become

JE = (= fEyape — [3(vavs + pap2)) /73,

J = (fEflva+ Apa) /(fiiva),

9t = (fE97a(—2p2y — 283112 + YaXs + Aapia + 2X308) — 2fF guryapio
—2f gy (avs + pap2) + fgva(—2u00 — 208y + Bopz + Psya + Yara
+ 2X1 2 4 Aovg + AXsvg — Asp1))/ (2F597)

vo = (—p1(yavs + pap2)) /i (4.29)
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The equations
ftt: (fty)ta ftxt: (ftx)ta fty: (fzgl)ya ft:z: (ftx)y> ftxx: (ftz)z
give
pae = (2yavipe — 2vsyVipe + 2627315 + Bsvatz + 274 A6 + Vi Aape
Vi Asvs — dyadsppavs — Adspti3) /(293), (4.30)

Vst = (29aVivs + 2ymvapa iz — 2010Yi e — 2UsyVivs + 28273 Havs + Bui pia
+2B573vs + Bsvikatte + 28674 — 293 Aek1 — Vi Aap 2 — 2Y3 A5 1108

— Ay s — Yadspipe — Asptpovs)/(293), (4.31)
poy = (28342 + YaAs + Aapiz + 2A318) /2, (4.32)
poz = (2vsy73 — 3B2vik2 — BsVis + YiAa + 275 A2 + V3 Aavs + Vi As

+dydspavs + Aspiue)/(2743), (4.33)

Vse = (—2usy i + 4B pa + 2807 i pe + Bavi + Bsviin — vidamn
— 29F dapvg — ViAsp — 2vadapipe — dyadspivs — Adspipe) /(207).  (4.34)

The other equations
(fé/)t = (fty)z> gt = (9t)ts Gtz = (9t)z, Gty = (gt)y
are satisfied.

Theorem 4.4. If the coefficients of Eqs. (3.3) satisfy the conditions (4.1), (4.14), (4.18),
(4.23), (4.27), (4.29)-(4.34), v1 = 0, 72 = 0, v3 = 0, 74 # 0, then equations (3.3) can be
reduced to the equations i = 0, ¥ = 0 by the generalized Sundman transformation.

4.5. Case v1 =0, v2 =0, v3 =0, v4 =0 and pu1 # 0
Since v4 = 0, Eq. (4.8) gives

p2 =0, (4.35)
and Egs. (4.6) and (4.7) become
piA2 =0,  piAz = 0.
Let p1 # 0, then
Ao =0, A3=0, (4.36)

and Egs. (4.12), (4.13) and

(9tt)e — (gt )t =0 (4.37)
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give

fE = (fivs + fivg) /1,
f = (fEfm — Aw) [ (fim),
9t = (9218 + gyvo + 9(2v9y — Bavg — 208319 + B5p1))/ pu1-

Equation (4.28) is reduced to
Vgy = —A5u1/2.
The equations
=D fii=U0s (D), = (), fo=Ue

give

vgy = (2p1v8 + 2wgyvg — Povg — 2031819 + P5pi1vs

+ Aapavs + Aspavg — 2X63) /(2001),
vor = (2p1¢v9 + 2woyvg — Bavsry — 20313 + Bapvs + 205 p1v9 — 2Bs13) / (2001),

Voy = (21/8:5 + Pavg + 2039 — Bl + /\4N1)/2>
Vor = (20108 + Pavy — Bapin — 2A\115) /2.

The remaining equations

fiy = (ff)y, ft%, = (fty)y, gt = (9t)t, Gtz = (Gt)e, 9ty = (Gt)y

are satisfied.

4.6. Case v1 =0, v2 =0, v3 =0, v4 =0 and p1 =0
For p; = 0 Egs. (4.13), (4.12) are reduced to

1/8:0, 1/9:().

(4.38)

(4.39)

Remark 4.1. One can check that if the assumptions of Theorems 4.2-4.5 are satisfied, then
the conditions (4.1), (4.14)—(4.17) are also satisfied. This allows to propose the conjecture: if
the conditions (4.1), (4.14)—(4.17) are valid, then Egs. (3.3) can be reduced to the equations

i = 0, ¥ = 0 by the generalized Sundman transformation.

Notice that this conjecture is to be expected. For example, for a linearizable single
second-order equation via a point transformation the linearizable criteria combine to only
two conditions, whereas during compatibility analysis one has to study two separable

cases [2].

5. Case f;’:O and f¥ =0

Let us assume that f; = 0, then without loss of generality one can also assume that fi=0.

Hence, it is assumed that
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In this case from (3.4), (3.5) one finds

A3=0, pB1=0, (5.1)
ffAa = i =0, (5.2)
f{B2— fi/Bs=10 (5.3)
9y =92, Gz = gPo. (5.4)

and the second-order derivatives
JE = (g — fighe + * (f"k1 + fYk12)) /9,
[t = (fFgb2 + g — figha)/(29), (5.5)
faz = (B2 = A1),

fi= (Lo — flaBs + ¢*(fka + [Yk22)) /9,
fhy = (flora + filge — fi955)/(29), (5.6)
fzzfy = fzgf(/\Q - ﬁ3)
Notice that all second-order derivatives of the functions f* and fY are then defined.
Equating the mixed derivatives

(F2), =0, (f4), =0, (g)y —(9): =0, (f), — (f5), =0,
one finds
Boy = Ay, B3z = A2zy A1y = A2z,
and
gt = (— [F 91982 + fFg* (2B + Poda) + 3f2g7 + 4fFg ki
+ £2% (20 — AXez — 268226 + 41 A6 — M)
+69" B (f k11 + fYk12))/ (2£%9). (5.7)

Thus, we find all second-order derivatives of the functions f* f¥ and g. Equating the
remaining mixed derivatives

(Fi)y = () =00 (), = (F2), =0, (f2), — (5),, =0,
(fi) = (2)y = 0. (fa), = (fig), = 0o (fig), = (f2)y, = 05 (fiy), — (f5)¢ = O,
(9tt) — (92)ee = 0, (gu)y — (gy)1e = 0.
We then obtain the following:

FE ot = fiXey + fL97k1a + 29" Ao (f¥ k11 + fYk12) = 0, (5.8)
fEg(2B0r — B2+ 28oM1) + fEg:Bo 4 fRg(4N1s — 282 — 2M4e — Boy) = 0, (5.9)
[t Xow + [ (A2t — Agy) = 0, (5.10)

fEg% ko + [ B2t — fUBsa + 297 B (f ka1 + fYha2) =0, (5.11)
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FEF) B2 — [ 9202 + B2Aa) — fo [ gida + f £ (200t + B5)2)
+ 2 fYg(285 — 4Bsy — 2Aat + 6o + 2826 + 48385 — B3 — 286X2 — A1 )6 + A7)
+AfE UG (koo — k1) + 6£59° Mo (f 7 ka1 + fYkaz)
— 619 Bo(f k11 + fYk12) =0, (5.12)

I X + £ (Bar — Bsa) = 0, (5.13)
Fl9(20ay + X3) + f191(—265 + 3X2) + fYg(—28sy + 2Xo1 + 28305 — 3B5X2) = 0, (5.14)

fEat9(—2B20 + B3 — 282M1) + £ 9% (4Pate — 4B2tB2 + 4821 + 2820\ + 2402
— B5Aa + 2820 M) — frgiBo + 215 9:9(3Bor + Bada) + 28f1 " Bakny
+ FEg*(— 4Bt — 202t Aa — 482206 + 8126 + e — AAaz s — S8\ua
— 4X6z B2 + 8Aea A1 — B2A]) + 120" (Bor f k11 + Bou fUh12 + B3 fk1y + B3 [Vk12
+ BofT k11 A1 + Ba fUR12A1) = 0, (5.15)

— fFgidar + FEg(20ate — AatBa + Aaxda + AayB2) + 2FFgidar + 8Fg k11 e
+2f7g(—A2mt + A2z A6 + Aty — AayAa — 2X6zy — A6y + 26y A1) + 6f§’g352k12
+69° (Mg f7k11 + Aaw fYk12 + 282 f k110 + 262 fVk12A9) = 0.

(5.16)
For further analysis we assume as in the previous case that
ko1 =0, kia=0, ki1=0, kyp=0.
5.1. Case A2 #£0
Equation of (5.2), Egs. (5.8) and (5.10) give
fE= 1" Xey = Auds,  Aay = Aoy + Aoz s,

where A5 = A5/ Ao. Equating the mixed derivatives (f,f”)y — (fy)t = 0, one obtains

Asy = 0. (5.17)
The second equation of (5.5) gives

gt = gp4, (5.18)

where
(g = 250 + Bads — 2M1 05 + A4
Equation (5.9) becomes
2Mz = 20205 — 2021+ 4A1e — B35 + Bapia + 2022105 — B (5.19)
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Equations (5.5), (5.7) and

(9)e — (92)e =0,  (fF), = fii=0, (9)r —gu =0,

give
:\515 — 5\5:\53; + )\1:\3 — )\4:\5 4+ Xg = 0, (5.20)
— 2894 A5+ 204 — 2\ s + Aoz + Baprads — Badads + 20206 — 1 — 4N A + A = 0, (5.21)
Pz — P = 0. (5.22)

Notice that the equation (g;), — (gy): = 0 is satisfied.

5.1.1. Case B2 # 0
Let B2 # 0. Equation of (5.3) gives

I = fix.

Equations (5.11), (5.13) and (5.22) become

Box = BatA7, (5.23)
Bsaz = Bat + A1 A2z (5.24)
Pz = Pat (5.25)

where /\7 = ,84/,82.
From the first and second equations of (5.6) and the equations

(f)e = () =00 (), = Fir =0, (f), = fiy =0, (f), — (), =0

one has

2M7t + 206 — /\7(ﬂ5 + M4) + )\%)\2 =0, (5.26)
A7 = 0, (5.27)
27y + M( Ay —203) + 85 — g = 0. (5.28)

The remaining Eqgs. (5.12) and (5.14) become

209 A5 + 2051 — 406y + 2Xat A7 — 2Mas + ANgs + Boprads — Badads + 262X
+ 48386 + A1BsAa — Arpiada — Bz — 2BA2 — 4\ g + A =0 (5.29)
2/\2,5 + 2)\2y)\7 — 2,85y + 2,83,85 - 253#4 -+ )\7/\% - 3,85/\2 + 3#4)\2 =0. (530)

Theorem 5.1. If the coefficients of Eqs. (3.3) satisfy the conditions (5.23)—(5.30) and
Aoy # 0, then Egs. (3.3) can be reduced to the equations i = 0, ¥ = 0 by the generalized
Sundman transformation.



228 S. Moyo & S. V. Meleshko

5.1.2. Case B2 =0
Let B2 = 0. Then Egs. (5.11), (5.15), (5.3), (5.22) and (5.21) become

Bez = 0,
A6zz = Mt — A1edd + Az A6 + AezAi,
p1 =0,
paz =0,
par = (2Ma¢ — Ao + pf + 4N A6 — AJ)/2.

5.1.3. Case Aoz #0
Equation (5.13) gives
I = [ Bsa/ Moz
Equations (5.12) and (5.14) become
Bsatts + A2wpe = 0,
Bsapvr + Agpps = 0.
From the first and second equations of (5.6) and the equation
(f)s = (f2), =0
one obtains
B30 + Bsedawfs — BoaAaxfia + 4oz piee = 0,
/85xxA21 - /85xA2xx =0,
ﬂSxﬂ?x + )\2x/~L8x = 0.

Here

ps = (20t + Psda — pado) /4, pr = (209 +A3) /4,

p6 = (2651 — 486y — 2Aa + A6z + 48386 — B2 — 286 X2 — 4\ X6 + A7) /4,

pg = (—Bsy + B305 — Bapa — 250 + 240 + 2415) /2.

(5.38)
(5.39)
(5.40)

Theorem 5.2. If the coefficients of Eqs. (3.3) satisfy the conditions (5.31)~(5.40) and

Aoy # 0, By = 0, then Egs. (3.3) can be reduced to the equations i =

generalized Sundman transformation.

5.1.4. Case Aoy, =0
For Ao, = 0 Eq. (5.13) becomes

/85x:0

0, v = 0 by the

(5.41)
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5.1.5. Case u7 #0
Let also p7 # 0, then from equation (5.14) one obtains

I =—flns/ .
Equation (5.12) becomes

pepr — psps = 0. (5.42)

The first and second equations of (5.6), and the equation ( b4 )x — ( fi ) . = 0 become

2purepis — 2psepir + Boprps + 206103 + paprps + Aopg = 0, (5.43)
Wrzpis — pgzpir = 0, (5.44)
Quryps — 2usyiir + 203pur s + Bopd — papd — Aaprpg = 0. (5.45)

Theorem 5.3. If the coefficients of Eqs. (3.3) satisfy the conditions (5.41)~(5.45) and
wrde # 0, By = 0, Aoy = 0 then Egs. (3.3) can be reduced to the equations i = 0, o = 0 by
the generalized Sundman transformation.

5.1.6. Case uy =0
If 47 = 0, then from Eq. (5.14) one finds
js = 0. (5.46)
Assuming that ps # 0, Eq. (5.12) gives
fl=—Flus/us.

The first and second equations of (5.6), and the equation ( it )x — ( fi ) . = 0 become

st — 2p6tits + Bssiie + 28613 + paps i + Aopg = 0, (5.47)
isytie — 2Heyiis + 2035 s + Bspd — papi — Napspig = 0. (5.49)

Theorem 5.4. If the coefficients of Eqs. (3.3) satisfy the conditions (5.46)—(5.49) and
tsAe # 0, B2 = 0, Aoy = 0, 7 = 0 then Egs. (3.3) can be reduced to the equations i = 0,
v = 0 by the generalized Sundman transformation.

For ps = 0, then there are no conditions.

Theorem 5.5. If the coefficients of Eqs. (3.3) satisfy the conditions Ay # 0, B = 0,
Aoy =0, u7 =0, us = 0, then Eqgs. (3.3) can be reduced to the equations it = 0, ¥ = 0 by
the generalized Sundman transformation.
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5.2. Case A\ =0
Equations (5.8), (5.10), (5.13) and (5.2) give

)\Gy = O, A4y = O; /8556 - IBQtJ )\5 =0.

If By # 0, then Eq. (5.3) gives

ft = fg?fﬁ4/ﬂ2
Equation (5.11) becomes

Bz 2 — BatBs = 0.

(5.50)

(5.51)

The first and second equations of (5.6), and the equation ( 17 )m — ( 1y ) , = 0 become

Bar = (B2tBa + BayBa — 0386 + B284Bs — B307) / B

9t = 9(2B4y + B2fs5 — 28354)/ Ba,
5423/82 - /821/84 = 0.

(
(5.53)
(
)

5.52)

5.54)

Substituting ¢ into Egs. (5.14), (5.7), and equating the mixed derivatives (g¢)» = (g»): and

(gt)y = (gy)t, one finds

Bsy = 203(—Bay + £364)/ B2,
Ba(— B3tB2 — PayBs + 364) =0,

— B2z B4y + 220384 + Bazy B2 — BazP283 = 0,

ﬁ4yy = 633/64 + 2ﬁ4yﬁ3 - ﬁ§ﬁ4
Equation (5.9) is
[P+ fiq =0,

where

5.55
5.56
5.57

(
(
(
(5.58

)
)
)
)

Bo = 200z — B3 + 262\, @1 = 4\1y — 2801 + 281y — 24z + 525 — Boda — 25334

Notice:chat [;’Qy =0.
If By # 0, then

1= —frq/Bs.

The first and second equations of (5.5), and the equation ( ff)y — (fy)t = 0 become

0126282 + 284y B2 + B3q1 + B2B2B5 + B2B2 s — 232364)

+ 262326 — 282621 = 0,
q1(262:82 — (352 + 2622 \1)

+ 33(283 B4 — Bafs + Bada — 2Bay) — 203252 = 0,

g1y = 0.

(5.59)

(5.60)

(5.61)
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Equation (5.12) becomes
285102 — 486y 02 + 4M11q1 — 22a1P2 — 2Xazq1 + 46 B + 262 P26
+ 400306 — Pa B — 4Ba M N + Fo] — af = 0. (5.62)

Theorem 5.6. If the coefficients of Eqs. (3.3) satisfy the conditions (5.50)(5.62) and
B2 # 0, Ao = 0, then Egs. (3.3) can be reduced to the equations i = 0, ¥ = 0 by the
generalized Sundman transformation.

Let 32 = 0, then ¢; = 0. Equation (5.12) is
2f A8 + frdo =0, (5.63)
where

A8 = =21t + Mg,
Ao = 285t — 486y — 2Aat + 4X6x + 2026 + 48386 — B2 — 4M1 X6 + A2

Notice that Ag, = 0. Combining Eqs. (5.12) and (5.15), one has

Aoz = (— 4BayAs — B3 Ao — 282858 + 262 MaAs + 48384 0s) / (262). (5.64)

If Ag # 0, then

I = —Ffio/(2Xs).

The first equation of (5.5) becomes

4By AoXs — 4Xgt B2 As + AAst B2 g + B3NS + 26285 A9 s
+ 2ﬂ2)\4/\9/\8 + 862/\%)\6 — 46364)\9/\8 =0. (5.65)
Theorem 5.7. If the coefficients of Eqs. (3.3) satisfy the conditions (5.50)—(5.58), (5.64),

(5.65) and Agfa # 0, Ay = 0, 3o = 0, then Eqs. (3.3) can be reduced to the equations i = 0,
v = 0 by the generalized Sundman transformation.

If Ag = 0, then from Eq. (5.12) one obtains A\g = 0. Equation (5.21) becomes

(B3t2 + BayBs — B364) B1 = 0. (5.66)

Theorem 5.8. If the coefficients of Eqs. (3.3) satisfy the conditions (5.50)-(5.58), (5.64),
(5.66) and By # 0, Aa =0, B2 =0, A\g = 0, \g = 0, then Egs. (3.3) can be reduced to the
equations i = 0, ¥ = 0 by the generalized Sundman transformation.

Let 2 = 0, then Eq. (5.3) gives 84 = 0. From Egs. (5.9), (5.12), (5.11) and (5.16) one
finds

Az —2XM11 =0 (5.67)
2At = 2851 — 486y + 46w + 40306 — B — 4A1 A6 + A%, (5.68)
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2B6yy = 2063y86 + Bsty — BsyB5 + 206y 03- (5.70)

Equation (5.14) becomes

9t03 + 9(Bsy — B305) = 0.

Assume that (3 # 0, then

gt = 9(—Bsy + £3055)/ 5.

Substituting g; into Egs. (5.14), (5.7), and equating the mixed derivatives (g;)» = (g): and
(gt)y = (gy)t, one obtains

233t 85y — 20851y /33 — ﬂﬁy + 25,3335 + 486,05 — 45336 = 0, (5.71)
53y55y - /85yy/83 + /85y/8§ = 0. (572)

Theorem 5.9. If the coefficients of Eqs. (3.3) satisfy the conditions (5.50), (5.67)—(5.72)
and (B3 # 0, Bo =0, B4 =0, Ay = 0, then Egs. (3.3) can be reduced to the equations i = 0,
v = 0 by the generalized Sundman transformation.

In the case B3 = 0, Eq. (5.14) gives

ﬁ5y =0. (5.73)

Theorem 5.10. If the coefficients of Eqs. (3.3) satisfy the conditions (5.50), (5.67)—(5.70),
(5.73 ) and B3 =0, P2 =0, B4 =0, Ay = 0, then Egs. (3.3) can be reduced to the equations
i =0, v =0 by the generalized Sundman transformation.

Remark 5.1. This is a similar conjecture as in the previous section, but is more compli-
cated, and can be proposed for the case f; =0 and fy=o.

6. Examples

In [14], necessary and sufficient conditions for a system of n > 2 second-order ordinary
differential equations to be equivalent to the free particle equations were given. Later using
the Cartan approach these conditions for n = 2 were also obtained in [15]. It has to be noted
that the complete solution of the linearization problem via point transformations even for
a system of two second-order ordinary differential equations has not yet been obtained. A
particular class of systems of two (n = 2) second-order ordinary differential equations

i = M(z,y)2% + Aa(z, )29 + A3(z, )92,

6.1
y:ﬂl(ﬂfay)x2+52($ay)5€y+ﬂ3($ay>y2: ( )

was considered in [16]. The criteria of equivalency to the free particle equations with respect
to point transformations in explicit form were given there. Equivalency of this class of sys-
tems to the free particle equations with respect to the generalized Sundman transformations
is analyzed in this section.
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The criteria obtained in [16] are
S;=0, (i=1,23,4),

where
451 = 4X1y — 2X0; — 45123 + B2,
485 = 2Xgy — 43z — 2623 + 26302 + 4M A3 — A3,
485 = 4B1y — 202, — 451583 + 28102 + B3 — 2621,
28y = —Boy + 2030 — 2A1y + A2g.

For this system

)‘4207 )‘5207 A6:07 /84:07 ﬂ5207 /86:07

M =—483, 2 =4(S1+51), =45, =0, A=0, I =0,
pr =0, p2=0, p3=0, pg=0, v1=—4Ny, vo=—40y,
vy = =2y, vy =20, vs=—4A\s3,
ve = —433, vr= -85, vg=0, vg=0.
Assuming that v # 0, the conditions for the existence of the linearizing generalized Sund-
man transformation (4.1), (4.14)—(4.17) are reduced to the relations
251, + 25’3y + 2854, + 206159 — P2S1 — B2S4 + 2A1.51 + 2A1.54 + X255 = 0,

6.2
251y — 2859, + 2S4y — (89855 4+ 23351 4+ 23354 — XoS1 — X254 — 2A353 = 0, ( )

A1S2 + A353 = 0, 2A11S1 + 2A1454 + Aoy S3 = 0, B1S2 + (3453 = 0,
2061151 + 201654 + BarS3 = 0, Mt S3 — 2A1153t = 0, B1eS3 — 261653t = 0,
S1=0, (2112 — Prer2 — 2A14A1)S3 — 2153, — 253153 = 0, (6.3)
(26112 — B1efB2 — 2A1151)53 — 201453, = 0, 281451 + 261454 + P24.S3 = 0,
AtS3 — 2A1653t = 0, S1ueSs — 20153 = 0.
From these conditions one can note that any system of Egs. (6.1) which is linearizable
via point transformations is linearizable via the generalized Sundman transformation. Let
us present a class of systems (6.1) which can be mapped into a system of free particle
equations via a generalized Sundman transformation and cannot be mapped into a system

of free particle equations via a point transformation. For the sake of simplicity it is assumed
that

S1=0, Sy=0, S3#0
or
41y = 2X9p + 46173 — B2 do,
2Xoy = 43z + 262A3 — 203X2 — AN A3 + A3,
Boy = 203z — 2A1y + Aoy
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Since S5 # 0, system (6.1) cannot be mapped by a point transformation into a system of
free particle equations.
From (6.2) and (6.3) one obtains

A3 =0, Ay=0, [or=0, [3=0,
25’3y + A2S3 = 0.
Let us also define 3, from the definition of Ss:
431y = 200x + 4P10s — 2612 — B3 + 2021 + 455,

This allows us to include the function S3(t,z,y) in the set of the uknown functions that we
are looking for. The remaining conditions are

(2A 1tz — BieA2 — 2A14 A1) S3 — 253,53 — 2A14.53, = 0,

6.4
(208110 — P12 — 2M1451) 53 — 261153, = 0, 64

At S3 — 2MS3¢ = 0, S S3 — 261153 = 0.
From the last two equations of (6.3) one obtains
Aie = AS3, B = B3S3,
Where A = Az,y) and f = B(x,y). The equations (A14)y — (A1) = 0 and (B1t)y — (Biy)t =0
give
St

Ay = A, 25—3

=26, — 2665 — BAz — B2\

The equation (S3;), — (S3y)¢ = 0 is
2Byy = 28y(B3 + A2) + 2B3: A + 203y 8 — 280322 + B2 Ao
From Eqgs. (6.4) one finds
S

20; = (26y — 2803 — BoA + 2\ A) — 2/\%,
3

Bz = (=285, + 261 AS3 + B3253)/(253).
Thus, the conditions are
Me=AS2, Ay = (2 — Bodo)/4, A =0, Aoy = Aa(X2 —203)/2,
Bie = BS3,  Biy = (2B2x + 451085 — 28102 — B3 + 2021 + 4S53) /4,

Bor =0,  Poy = (403 + P2A2)/2, B3t =0,
SSx

2X; = (20, = 2003 = B2 A+ 200) = 202=, Ay = M,
3
S
3
2Byy = 208y(B3 + A2) + 2032 X + 203y 8 — 26832 + B2AXa,

B =254 Birt /2.
3
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Now let us show that the set of equatons satisfying these conditions is not empty. Assume
that S5 = 1. Then Ay = 0, and A = 0. Hence A\; = Ai(x). There exists a function ¢(z,y)
such that

B2 =2pz, B3=py
Hence, one finds that
B =ke?, p1=e’kt+ P,
where k is a constant and (19 = Bip(x,y) is a function satisfying the equation
Broy — PyB10 = Paz — ¥ + Par1 + 1. (6.5)
Therefore the following set of equations
i=M3 = 20,07 + @i + (ePkt + Bro)i”

can be linearized by the generalized Sundman transformation.
Let us demonstrate how to use the generalized Sundman transformation for obtaining
the general solution of the system of equations. For the sake of simplicity it is assumed that

A1:]~7 ()0:0, kZO

Equation (6.5) gives 819 = y + P(x). Assume also that P = 0. Thus the assumptions lead
to the following system of nonlinear equations

i=d% §=yi’ (6.6)

In this case for a particular solution of equations for the functions f*(¢,x,y), fY(¢t,z,y) and
g(t,z,y) one can choose the following:

I L

where ¢ = (1 ++/5)/2. The generalized Sundman transformation becomes

lnv, y= uv_Qqq;—l, (6.7)

€Tr =
2qg — 1

29
v2-1dr = dt.
Since the general solution of the system u” =0, " =01is
U=CT+C, UV=0C3T+Cy
then one needs to find 7 from the equation

2
/(037+C4)2‘7qld7' =1,

and substitute it into Eqs. (6.7). This provides the general solution of system (6.6).
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