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We study the class of the ordinary differential equations of the form ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ +
a0(t, x) = 0, that admit v = ∂x as λ-symmetry for some λ = α(t, x)ẋ + β(t, x). This class coincides
with the class of the second-order equations that have first integrals of the form C(t)+1/(A(t, x)ẋ+
B(t, x)). We provide a method to calculate the functions A, B and C that define the first integral.
Some relationships with the class of equations linearizable by local and a specific type of nonlocal
transformations are also presented.
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1. Introduction

In this paper we consider ordinary differential equations (ODEs) of the form

ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0, (1.1)

where t is the independent variable of the equation, x is the dependent variable and overdot
denotes derivation with respect to t.

This class of equations has been studied from several points of view: integrating factors,
first integrals, linearizing transformations, λ-symmetries, etc. There are many relationships
between the equations that admit some of these kinds of objects. In [10,11] it is shown that,
for general second-order equations, the knowledge of a λ-symmetry permits the determina-
tion of an integrating factor or a first integral.

In [12] there appears a characterization of second-order equations that admit first inte-
grals of the form A(t, x)ẋ + B(t, x). These equations are necessarily of the form (1.1). This
class of equations is the same than the class of equations of the form (1.1) that admit v = ∂x

as λ-symmetry for some λ = −a2(t, x)ẋ + β(t, x).
In this paper we complete the study of equations of the form (1.1) that admit v = ∂x as λ-

symmetry for some λ = α(t, x)ẋ+β(t, x). The main result of the paper is a characterization
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of that class of equations as the class of equations (1.1) that have first integrals of the form

I =
1

A(t, x)ẋ + B(t, x)
+ C(t). (1.2)

This characterization raises the problem of the determination of second-orden equations
that admit first integrals of the form

I =
1

A(t, x)ẋ + B(t, x)
+ C(t, x) =

A1(t, x)ẋ + B1(t, x)
A(t, x)ẋ + B(t, x)

(1.3)

where A1 = CA and B1 = 1 + CB. However, it can be checked that the class of equations
that admit (1.3) as first integral are necessarily of the form

ẍ + a3(t, x)ẋ3 + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0 (1.4)

and that a3 = 0 if and only Cx(t, x) = 0. The class of Eq. (1.4) is out of the scope of this
paper and these equations will be studied in a forthcoming paper.

This paper is organized as follows. In Sec. 2 we establish some notations and recall the
known results we need to complete the characterization of equations that admit v = ∂x as
λ-symmetry for some λ = α(t, x)ẋ + β(t, x).

In Sec. 3, and in order to simplify our study, we obtain a canonical reduction of the
equations under consideration. This lets us to obtain a characterization of these equations in
terms of first integrals of the form (1.2). In this section we also provide a method to obtain
the functions A(t, x), B(t, x) and C(t) that define the first integral (1.2). This method is
illustrated with an example.

In Sec. 4 we indicate the steps that could be used to determine whether or not a given
Eq. (1.1) is in the class under study. This method could also be used to obtain an intrinsic
characterization of the equations. However, a complete study of this intrinsic characteriza-
tion is rather involved and will be considered in a separate paper.

In Sec. 5 we relate the results in this paper with the problem of the linearization through
local and nonlocal transformations. In particular, it is shown that the equations that can
be linearized by some local transformations constitute a strict subclass of the equations
studied in this paper.

2. Preliminaries

If a second-order ordinary differential equation of the form

ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0 (2.1)

admits the vector field v = ∂x as λ-symmetry for some function λ of the form

λ(t, x, ẋ) = α(t, x)ẋ + β(t, x) (2.2)

then the functions α and β must satisfy the following system of determining equations:

αx + α2 + a2α + a2x = 0, (2.3)

βx + 2(a2 + α)β + a1x + αt = 0, (2.4)

βt + β2 + a1β − a0α + a0x = 0. (2.5)
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The equations of the form (1.1) for which the corresponding system (2.3)–(2.5) admits
some solution (α0, β0) such that α0 = −a2 have been studied in [12,14]. The class of these
equations was denoted by A in [12]. The coefficients of the equations in A must satisfy one
of the two following alternatives: S1 = 0 and S2 = 0 where

S1(t, x) = a1x − 2a2t,

S2(t, x) = (a0a2 + a0x)x + (a2t − a1x)t + (a2t − a1x)a1,
(2.6)

or, if S1 �= 0, S3 = 0 and S4 = 0, where

S3(t, x) =
(

S2

S1

)
x

− (a2t − a1x),

S4(t, x) =
(

S2

S1

)
t

+
(

S2

S1

)2

+ a1

(
S2

S1

)
+ a0a2 + a0x.

(2.7)

Let us introduce the following notation:

Definition 2.1. We define A1 as the class of the equations of the form (1.1) whose coeffi-
cients satisfy S1 = S2 = 0 and A2 will denote the class of the equations of the form (1.1)
whose coefficients satisfy S1 �= 0 and S3 = S4 = 0.

We define B as the class of the equations of the form (1.1) for which system (2.3)–(2.5)
is compatible, i.e., the equations of the form (1.1) that admits v = ∂x as λ-symmetry for
some λ of the form (2.2).

It is clear that A1 ∩A2 = ∅, A = A1 ∪A2 and A ⊂ B, but there are equations in B that
are not in A. This is the case of the family of equations ([13])

ẍ +
b′(t)
2x

+
b(t)2

4x3
+ a(t)x = 0, b(t) �= 0. (2.8)

It can be checked that the equations in (2.8) with b′(t) �= 0 and(
b(t)
b′(t)

)′′′
+ 4 a(t)

(
b(t)
b′(t)

)′
+ 2a′(t)

(
b(t)
b′(t)

)
�= 0 (2.9)

do not have Lie point symmetries. When b′(t) = 0, Eq. (2.8) is the well-known Ermakov–
Pinney equation ([11]). It can be checked that

S1 = 0, S2 =
b′(t)x2 + 3b(t)2

x5
�= 0 (2.10)

and therefore the Eqs. (2.8) do not belong to class A. Since α = 1/x and β = b(t)/x2 solve
the corresponding system (2.3)–(2.5), the Eqs. (2.8) belong to class B.

Some properties and characterizations of the equations in A appear in [12]. For the
equations in A1 there are infinitely many solutions of system (2.3)–(2.5) of the form α0 =
−a2, β0 while for the equations in A2 system (2.3)–(2.5) has a unique solution of the form
α0 = −a2, β0. The equations in A are the only second-order equations that admit first
integrals of the form A(t, x)ẋ + B(t, x). Only the equations in the subclass A1 admit two
functionally independent first integrals of this form.

Several aspects on the linerization of the equations in A have been addressed in [14]. All
the equations in subclass A1 can be linearized by local transformations, i.e., they pass Lie’s
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test of linearization ([6–8]). On the contrary, none equation belonging to A2 passes Lie’s test
of linearization. Nevertheless, the equations in A2 have been characterized as the unique
second-order equations that can be linearized through special nonlocal transformations,
known in the literature as generalized Sundman transformations (see [1–5] and references
therein).

In what follows we address the study of properties of the equations in B, dealing with
the following topics:

• Characterization of the equations in B.

• Identification of first integrals of the equations in B and computational methods for them.
• Linearization by nonlocal and local transformations of the equations in B.

3. Order Reduction of Equations in B Through λ-symmetries

Let us assume that Eq. (1.1) admits the vector field v = ∂x as λ-symmetry for some function
λ of the form (2.2). Let A0 = A0(t, x) �= 0 and B0 = B0(t, x) be two functions such that

A0
x + αA0 = 0, B0

x + βA0 = 0. (3.1)

It is clear that w0(t, x, ẋ) = A0(t, x)ẋ + B0(t, x) is an invariant of v[λ,(1)] = ∂x + λ∂ẋ.

Since v is a λ-symmetry of (1.1), in terms of {t, w0, ẇ0} Eq. (1.1) takes (locally) the form
ẇ0 = ∆(t, w0) (see [9] for details). Due to the form of Eq. (1.1), necessarily ∆(t, w0) =
H2(t)w2

0 + H1(t)w0 + H0(t). Let us prove that it is possible to choose suitable solutions A

and B of (3.1) for which ∆(t, w0) takes simpler forms.
Let k2 = k2(t) be such that k′

2 −H2k
2
2 −H1k2 −H0 = 0 and let k1 = k1(t) be a nonzero

function such that k′
1 − (2H2k2 + H1)k1 = 0. Since A = A0/k1 and B = (B0 − k2)/k1 are

also solutions of system (3.1), w = Aẋ + B is an invariant of v[λ,(1)]. It can be checked that
in terms of {t, w, ẇ} Eq. (1.1) becomes, locally,

ẇ + J(t)w2 = 0, (3.2)

where J = −H2k1. When in (3.2) w and ẇ are expressed in terms of {t, x, ẋ, ẍ}, the following
result is obtained:

Theorem 3.1. If Eq. (1.1) belongs to the class B then there exist some functions A =
A(t, x) �= 0 and B = B(t, x) and some function J = J(t) such that

a2 =
Ax

A
+ JA,

a1 =
At

A
+

Bx

A
+ 2BJ,

a0 =
Bt

A
+

B2

A
J.

(3.3)

In terms of {t, w, ẇ}, where w = A(t, x)ẋ + B(t, x), Eq. (1.1) becomes

ẇ + J(t)w2 = 0. (3.4)

Equation (1.1) belongs to A if and only if J(t) = 0.
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In order to check if a given second-order ODE of the form (1.1) belongs to B, the
analysis of the compatibility of corresponding system (2.3)–(2.5) can be done in a systematic
way. Equation (2.3) is a Riccati-type equation with respect to x with a known particular
solution α = −a2. Hence its general solution, depending on an arbitrary function ρ1(t), can
readily be obtained. After substitution, Eq. (2.4) becomes a linear first order ODE, where
t is considered as a parameter. Its general solution depends on a function ρ2(t). Finally,
Eq. (2.5) is used to set appropriated functions ρ1 and ρ2 in order to get solutions for α

and β. Next example illustrates this procedure and shows how to construct the associated
reduced Eq. (3.4).

Example 3.1. Let us consider the second-order equation

ẍ +
(

x +
1
x

)
ẋ2 +

(
t

(
2x +

1
x

)
− 1

t

)
ẋ + x t2 = 0. (3.5)

The corresponding Eq. (2.3) becomes

αx + α2 +
(

x +
1
x

)
α − 1

x2
+ 1 = 0. (3.6)

This is a Riccati-type equation and α = −a2 = −(x + 1/x) is a particular solution; its

general solution is given by α = −x/(e
x2

2 ρ1(t) + 1) − 1/x and α = −1/x is a singular
solution. For simplicity, we try to find solutions for α = −1/x. Then (2.4) becomes

βx + 2xβ + t

(
2 − 1

x2

)
= 0. (3.7)

The general solution of this linear equation is given by β(t, x) = e−x2
ρ2(t) − t/x. The

corresponding Eq. (2.5) becomes

txρ2(t)2 + ex2 (
2x2ρ2(t)t2 − ρ2(t)t2 + xρ′2(t)t − xρ2(t)

)
= 0. (3.8)

Equation (3.8) is satisfied for ρ2(t) = 0. Therefore α = −1/x and β = −t/x solve the
corresponding system (2.3)–(2.5), i.e., v = ∂x is a λ-symmetry of (3.5) for λ = −(ẋ + t)/x.

This proves that Eq. (3.5) belongs to B.

Now we choose any pair of particular solutions of the corresponding system (3.1):

A0
x − A0

x
= 0, B0

x − t

x
A0 = 0, (3.9)

for example A0 = x and B0 = tx, and define w0 = x (ẋ+ t). In terms of {t, w0, ẇ0} Eq. (3.5)
becomes ẇ0 = H2(t)w2

0 + H1(t)w0 + H0(t), where H2(t) = −1,H1(t) = 1/t,H0(t) = 0.
Since k2 = 2/t is a particular solution of k′

2 − H2k
2
2 − H1k2 − H0 = 0 and k1 = 1/t3

solves k′
1 − (2H2k2 + H1)k1 = 0, we finally get that

A =
A0

k1
= xt3, B =

(B0 − k2)
k1

= t4x − 2t2 and J = −H2k1 =
1
t3

(3.10)

solve system (3.3) for Eq. (3.5).
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The general solution of the corresponding reduced Eq. (3.4) is given by

w(t) =
2t2

2C1t2 − 1
, C1 ∈ R. (3.11)

Substituting w by Aẋ+B in (3.11), the general solution of Eq. (3.5) arises from the general
solution of the Abel equation of the second kind

x(ẋ + t) =
4C1t

2C1t2 − 1
(3.12)

and can be written in implicit form as

√
2ϕ (ρ(t, x, C1)) − 4C1

2C1t2 − 1
exp

(
ρ(t, x, C1)2

)
= C2, C2 ∈ R, (3.13)

where ρ(t, x, C1) =
√

2
8C1

(2C1t
2 − 1 + 4C1x) and ϕ′(a) = exp(a2).

3.1. First integrals of the equations in B
Let us assume, as above, that Eq. (1.1) is in B and let us denote by Z the linear operator
associated to Eq. (1.1), i.e., Z = ∂t + ẋ∂x − M(t, x, ẋ)∂ẋ where

M(t, x, ẋ) = a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x). (3.14)

By Theorem 3.1, such equation can be written as

ẇ + J(t)w2 = 0, (3.15)

where w = A(t, x)ẋ + B(t, x) and A, B and J satisfy system (3.3). Equation (3.15) can be
written as

Dt

(
1
w

+ C(t)
)

= 0, (3.16)

where C(t) is any primitive of −J(t). Therefore, by writing 1/w + C(t) in terms of the
original variables of the equation, we deduce that

I(t, x, ẋ) =
1

A(t, x)ẋ + B(t, x)
+ C(t) (3.17)

is a first integral of Z, the linear operator associated to Eq. (1.1). This can also be directly
proven by using system (3.3).

Conversely, if (3.17) is a first integral of (1.1) for some A = A(t, x), B = B(t, x) and
C = C(t) then

0 = Z(I) =
−AM + (At + Axẋ)ẋ + Bt + Bxẋ

(Aẋ + B)2
+ C ′ (3.18)

and therefore

M(t, x, ẋ) =
(A2 + Ax)ẋ2 + (At + Bx + 2ABC ′)ẋ + Bt + C ′B2

A
. (3.19)

Equations (3.14) and (3.19) imply that A,B and J = −C ′ solve system (3.3).
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The following result has been proven:

Theorem 3.2. If system (3.3) is satisfied for some functions A = A(t, x), B = B(t, x) and
J = J(t) and C = C(t) is any primitive of −J(t), then I = 1/(Aẋ + B) + C is a first
integral of (1.1). Conversely, if I = 1/(Aẋ + B) + C is a first integral of (1.1) for some
A = A(t, x), B = B(t, x) and C = C(t) then A,B and J(t) = −C ′(t) solve system (3.3).

Corollary 3.1. The equations in B are characterized as the second-order ordinary differen-
tial equations that admit first integrals of the form I = 1/(Aẋ + B)+ C, for some functions
A = A(t, x), B = B(t, x) and C = C(t).

Example 3.2. Theorem 3.2 can be used to calculate a first integral of Eq. (3.5) in Example
3.1: since A = xt3, B = t4x − 2t2 and J = 1/t3 solve system (3.3) for Eq. (3.5) and
C = 1/(2t2) is a primitive of −J, then I = 1/(2t2) + 1/(xt3ẋ + t4x − 2t2) is a first integral
of Eq. (3.5).

The study of the relationships between first integrals and λ-symmetries performed in
[11, 13, 10] lets us prove the converse of Theorem 3.1:

Theorem 3.3. If system (3.3) is satisfied for some A,B and J(t) then α = −Ax/A and
β = −Bx/A solve system (2.3)–(2.5) and, therefore, the vector field v = ∂x is a λ-symmetry
for λ = αẋ + β.

Proof. By Theorem 3.2, I = C + 1/(Aẋ + B) is a first integral of (1.1), where C = C(t) is
any primitive of −J(t). By Theorem 1 in [11], the vector field v = ∂x is a λ-symmetry of
the equation for λ = −Ix/Iẋ. Since Ix/Iẋ = (Axẋ + Bx)/A, system (2.3)–(2.5) is satisfied
for α = −Ax/A and β = −Bx/A.

4. Intrinsic Characterization

Corollary 3.1 gives us a characterization of the equations in B: they are equations of the
form (1.1) that admit first integrals of the form (3.17). Therefore, for these equations, the
system (3.3) is compatible. Equations in the subclass A correspond to the case C(t) =
0. An intrinsic characterization of these equations, i.e., a characterization of class A in
terms of the coefficients ai, 0 ≤ i ≤ 2, appear in [12] (Sec. 3). To obtain an intrinsic
characterization of equations in B \ A is a rather involving task: the functions A,B and J

and their derivatives must be expressed in terms of ai, 0 ≤ ai ≤ 2 and their derivatives. We
now show a procedure to obtain such characterization, that could be applied to any given
equation of the form (1.1).

For J �= 0, system (3.3) implies that functions A,B and J have to satisfy the following
system

Ax = a2A − JA, (4.1)

Bx = a1A − At − 2ABJ, (4.2)

Bt = a0A − JB2. (4.3)

By using Eqs. (4.2) and (4.3), the compatibility condition (Bx)t = (Bt)x leads to

B2 + M2B + M1 = 0, (4.4)
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where

M1 = −(a1At − A(a0(a2 + AJ) + a0x − a1t) − Att)/(2AJ2), (4.5)

M2 = −(2A(a1J − J ′) − 4JAt)/(2AJ2). (4.6)

Equation (4.4) reveals the dependence of B on A, J and the coefficients ai, 0 ≤ i ≤ 2. To
eliminate quadratic dependencies, both members of (4.4) can be derived twice with respect
to x and, by using (4.4), we get

R2B + R1 = 0, (4.7)

where

R2 = a2S1 − S1x, (4.8)

for S1 defined in (2.6) and R1 is an expression that depends on A,At, J and the coefficients
of the equation and their derivatives. If R2 �= 0, Eq. (4.7) determines B in terms of A, J

and the coefficients ai, 2 ≤ i ≤ 2. By using (4.7) and (4.2) we obtain

T2At + T1 = 0, (4.9)

where

T2 =
(
3a2

2S2
1 − 2a2S1xS1 + 4(S1xx − a2xS1)S1 − 5S1

2
x

)
/(3(a2S1 − S1x)) (4.10)

and T1 is an expression depending on A,A2, J, the coefficients of the equation and their
derivatives. If T2 �= 0 Eq. (4.9) can actually be written in the form

At = U1A
2 + U2A + U3, (4.11)

where U1, U2 and U3 do only depend on J and the coefficients ai, 0 ≤ i ≤ 2. Equations (4.1)
and (4.11) and the compatibility condition (At)x = (Ax)t lead to an expression of the form

Y3A
2 + Y2A + Y1 = 0, (4.12)

where Y1, Y2 and Y3 are given by

Y1 = a2U1 − U1x,

Y2 = −2JU1 − U2x + a2t,

Y3 = −JU2 − a2U3 − J ′ − U3x.

(4.13)

If Y3 �= 0, by derivation of (4.12) with respect to x, we get

Z2A + Z1 = 0, (4.14)

where Z1 and Z2 are defined by

Z1 = −2a2Y1 − Y3xY1/Y3 − JY2Y1/Y3 + Y1x,

Z2 = −JY2
2/Y3 − a2Y2 − Y3xY2/Y3 + 2JY1 + Y2x.

(4.15)

If Z2 �= 0, Eq. (4.14) determines A in terms of J and the coefficients of the equation.
Through (4.1), J can be calculated in terms of the coefficients ai, 0 ≤ i ≤ 2. An analogous
expression is obtained for B by using (4.7). When these expressions are substituted in
(4.1)–(4.3), compatibility conditions on the coefficients of the equation are obtained.
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The special cases where R2, T2, Y3 or Z2 are null must be studied separately. However
a complete study of these cases is rather involved and will be considered in a forthcoming
paper.

5. On the Linearization of Equations in B
5.1. Linearization through local transformations

If a second-order ODE (1.1) is linearizable to equation XTT = 0 by means of a local
transformation

X = R(t, x), T = S(t, x) (5.1)

then (1.1) has the form

ẍ + a3(t, x)ẋ3 + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0, (5.2)

where the coefficients ai(t, x), 0 ≤ i ≤ 3, can be expressed in terms of R,S and their
derivatives ([6]) as

a3(t, x) =
SxRxx − SxxRx

StRx − SxRt
, (5.3)

a2(t, x) =
StRxx − RtSxx + 2(SxRtx − RxStx)

StRx − SxRt
, (5.4)

a1(t, x) =
SxRtt − RxStt + 2(StRtx − RtStx)

StRx − SxRt
, (5.5)

a0(t, x) =
StRtt − RtStt

StRx − SxRt
. (5.6)

Let us introduce the following notation

Definition 5.1. We denote by L the set of the equations of the form (1.1) that are lin-
earizable to equation XTT = 0 by means of a local transformation (5.1).

In this section we prove that L ⊂ B, and more precisely, that L ⊂ B \A2. Since a3 = 0,
three possibilities must be considered:

Case (a): Sx = 0.
Case (b): Rx = 0.
Case (c): Sx �= 0, Rx �= 0, SxRxx − SxxRx = 0.

In Cases (a) and (b) it has been proven ([14]) that the coefficients of the equation must
satisfy S1 = S2 = 0. Therefore, the equation belongs to subclass A1 and hence to B. In
Case (c), the condition SxRxx − SxxRx = 0 implies that

R(t, x) = g(t)S(t, x) + h(t), (5.7)

for some functions g = g(t) and h = h(t). It has been proven ([14]) that in this case the
equation belongs to subclass A if and only if h = c1g + c2 for some constants c1, c2 ∈ R and
that the coefficients of the equation must satisfy S1 = S2 = 0. These results implies that
A1 ⊂ L and A2 ∩ L = ∅. A proof of these statements appears in ([14], Theorem 6).
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Let us prove that if h �= c1g + c2, then the equation belongs to B \ A2. It is clear that
XT = DtR(t, x)/DtS(t, x) is a first integral of the equation. By (5.7),

XT =
g′S + h′

St + ẋSx
+ g, (5.8)

and this is a first integral of the form (3.17) for

A =
Sx

g′S + h′ , B =
St

g′S + h′ , C(t) = g(t). (5.9)

By Theorem 3.3 the equation belongs to B. Thus we have proven the following result:

Theorem 5.1. If a given equation belongs to L then the equation belongs to subclass B\A2.

Example 5.1. The second-order equation

ẍ +
2

t − x
ẋ2 +

2
t − x

= 0 (5.10)

was proposed in [14] as an example of an equation in L that does not belong to A, because
S1 = 6/(t − x)2 �= 0 and S3 = 4/(t − x)2 �= 0. By Theorem 5.1, Eq. (5.10) must belong to
B. This can also be directly proven because, for example, α = β = 1/(x − t) are particular
solutions of the corresponding system (2.3)–(2.5).

Next example shows that B\A is strictly wider than L :

Example 5.2. In Sec. 2 it has been proven that the equations

ẍ +
b′(t)
2x

+
b(t)2

4x3
+ a(t)x = 0, b′(t) �= 0. (5.11)

belong to the subclass B\A. If (2.9) is satisfied, these equations do not have Lie point
symmetries and hence they do not belong to L. This fact can also be proven by using Lie’s
test of linearization.

5.2. Linearization through nonlocal transformations

Since there are equations in B\A that cannot be linearized by local transformations (5.1), it
raises the question if such equations could be linearized through transformations involving
nonlocal terms. The simplest transformations of this type have been named in [5] generalized
Sundman transformations (GST) and are of the form

X = F (t, x), dT = G(t, x)dt. (5.12)

The equations of the form (1.1) that can be linearized through (5.12) have been identified
in [14] as the equations in subclass A and constructive methods to calculate such trans-
formations have been derived (Theorems 2 and 3 in [14]). Hence, in order to linearize the
equations of B\A, we need to consider more general types of nonlocal transformations.

In this section we characterize the equations in B as the second-order equations of the
form (1.1) that can be transformed into XTT = 0 through a nonlocal transformation of type

X = F (t, x), dT = (G1(t, x)ẋ + G2(t, x))dt, (5.13)



June 1, 2011 14:54 WSPC/1402-9251 259-JNMP S1402925111001398

First Integrals of the Form C(t) + 1/(A(t, x)ẋ + B(t, x)) 247

where G1 �= 0. Second-order equations that can be linearized through (5.13) have been
studied by Chandrasekar et al in [1]. The authors prove that these equations have to be
of the form (1.4) where the coefficients ai(t, x), 0 ≤ i ≤ 3, can be expressed in terms of
F,G1, G2 and their derivatives (see Eq. (15) in [1]). In particular,

a3(t, x) =
G2

1

∆

(
Fx

G1

)
x

, (5.14)

where ∆ = FxG2 − FtG1 �= 0. The first integral I1 = XT of XTT = 0 provides, by using
(5.13), a first integral of the nonlinear ODE

Ĩ1 =
Fxẋ + Ft

G1ẋ + G2
=

Fx

G1
− ∆/G1

G1ẋ + G2
. (5.15)

If the equation is of the form (1.1), i.e. if a3 = 0, then, by (5.14), the funtion Fx/G1 only
depends on t and hence the first integral (5.15) is of the form (1.2). By Corollary 3.1 we
deduce that the equations of the form (1.1) that can be linearized by (5.13) are in B.

Conversely, let us prove that any equation in B can be linearized through a nonlocal
transformation of type (5.13). An equation in B is of the form (1.1) and, by Theorem
3.1, its coefficients satisfy system (3.3) for some functions A,B and J. By Theorem 3.2,
I = C + 1/(Aẋ + B) is a first integral of the equation where C ′ = −J. By using system
(3.3), it can be checked that

DtI = − A

(Aẋ + B)2
(ẍ + a2ẋ

2 + a1ẋ + a0). (5.16)

We construct a family of linearizing transformations of the form (5.13) in terms of a nonzero
function M = M(t, x) for which the system

Ft = (CB + 1)M,Fx = CAM (5.17)

is compatible. The compatibility condition (Ft)x = (Fx)t implies that M = M(t, x) is a
solution of the first order linear partial differential equation

(CB + 1)Mx − CAMt + ((Bx − At)C − AC ′)M = 0. (5.18)

Once a nontrivial particular solution M of (5.18) has been chosen, we define F = F (t, x)
as any particular solution of system (5.17) and G1(t, x) = MA,G2(t, x) = MB. It is clear
that

XT =
DtX

DtT
=

DtF

G1ẋ + G2
=

M(CAẋ + CB + 1)
M(Aẋ + B)

= I, (5.19)

and, by (5.16),

XTT =
DtI

G1ẋ + G2
= − A

(G1ẋ + G2)(Aẋ + B)2
(ẍ + a2ẋ

2 + a1ẋ + a0). (5.20)

This proves that F,G1 and G2 define a nonlocal transformation of type (5.13) that linearizes
the equation in B. We have proven the following result:

Theorem 5.2. A second-order equation of the form (1.1) can be linearized through a non-
local transformation of the form (5.13) if and only if the equation is in class B.
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It should be noted that there can exist other second-order ODEs linearizable by (5.13)
that are not in B, but they must be of the form (1.4) with a3 �= 0 and will be studied in a
forthcoming paper.

A disadvantage of the linearization through transformations (5.12) or (5.13) compared
to the linearization through local transformations (5.1) is that the general solution of the
nonlinear ODE can not be obtained straightforwardly by the two independent integrals of
XTT = 0

I1 = XT and I2 = X − TXT , (5.21)

due to the nonlocal nature of (5.12) or (5.13) and hence of I2. It should be pointed out
that the linearization of a given ODE through nonlocal transformations (5.12) or (5.13)
does not guarantee the integrability of the equation. Euler and Euler presented in [4] an
interesting example of a Chazy-type equation which shows that, in general, a generalized
Sundman transformation does not preserve the Painlevè property nor does it preserve the
Lie symmetry structure of the equations. Another examples of this type with second-order
equations of the form (1.1) appear in [14] (example 11). Nevertheless, the first integral
I1 = XT provides, by using (5.13), the first integral (5.15) that could be used to obtain
the general solution of the nonlinear ODE by solving (if possible) the first order ODE
corresponding to Ĩ1 = C1, C1 ∈ R. By (5.19), such first order ODE can be expressed in
terms of the functions A,B and C in the form

A(t, x)ẋ + B(t, x) =
1

C1 − C(t)
. (5.22)

An alternative method to overcome the problem of the nonlocal nature of the transformation
(5.13) to obtain the general solution or a second independent first integral of the nonlinear
ODE appears in [1].

Example 5.3. For Eq. (3.5) the corresponding system (3.3) is satisfied for A = xt3, B =
t4x − 2t2 and J = 1/t3 (see Example 3.1). A primitive of −J is C = 1/(2t2). It can
be checked that M(t, x) = ϕ

(
t2

2 + x
)
/(tx) is the general solution of the corresponding

Eq. (5.18), where ϕ = ϕ(a) is an arbitrary function of one variable. The general solution of
corresponding system (5.17) becomes

F (t, x) = ϕ̃

(
t2

2
+ x

)
(5.23)

where ϕ̃ is any primitive of ϕ/2, i.e., ϕ̃′(a) = ϕ(a)/2, a ∈ R. Therefore

X = ϕ̃

(
t2

2
+ x

)
, dT = 2ϕ̃′

(
t2

2
+ x

)(
t2ẋ + t3 − 2t

x

)
dt (5.24)

is a family of nonlocal transformations of the form (5.13) that linearize Eq. (3.5). We note
that Eq. (3.5) cannot be linearized by local transformations, i.e., it does not pass the Lie
test of linearization.

The first order ODE corresponding to (5.22) is Eq. (3.11), which has been used in
Example 3.1 to derive the general solution of Eq. (3.5).
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Closely related to the concept of a generalized Sundman transformation is the notion
of an associated Sundman symmetry. This was introduced by Euler and Euler in [4] who
studied the Sundman symmetries of a large class of second-order and third-order nonlinear
ODEs. These symmetries can be calculated systematically and can be used to find first inte-
grals of the equations. Hence it would be interesting and tempting to consider symmetries
related to the nonlocal transformations (5.12) or (5.13) for the classification of ODEs in
terms of their first integrals. It is currently not clear to us what are the connections between
Sundman symmetries and λ-symmetries.

6. Conclusions

We have presented some properties and characterizations of the equations in class B con-
stituted by ODEs (1.1) that admit the vector field v = ∂x as λ-symmetry for some
λ = α(t, x)ẋ + β(t, x). This study completes and extends some of the results presented
in [12,14] for the subclass A, that considered the particular case α = −a2.

The equations in class B can be characterized as the Eqs. (1.1) that admit first integrals
of the type (1.2). A method to calculate the functions A(t, x), B(t, x) and C(t) that define
such first integrals has been presented. These results complete the study of the second-order
equations of the form (1.1) that admit first integrals of the form (1.3). Although there are
other second-order equations with first integrals of the type (1.3), they must be of the form
(1.4) with a3 �= 0 and will be studied in a forthcoming paper.

The equations in subclass A can be characterized in terms of their coefficients ai, 0 ≤ i ≤
2, in a useful and compact form through expressions (2.6) and (2.7). To obtain an intrinsic
characterization of the equations in B\A is a much more complicated task. Some guidelines
to deal with this problem have been indicated and a complete study will be considered in
a separate paper.

Some aspects on the linearization of the equations in B have also been considered.
Although there are second-order Eqs. (1.1) linearizable by some local transformations that
are not in A, it has been proven that all of them are included in B. This is a strict inclusion,
because there are equations in B that do not pass the Lie test of linearization. Nevertheless
we have proven, by a constructive method, that such equations can always be linearized
through nonlocal transformations of type (5.13) and conversely: the equations in B are the
only second-order equations of the form (1.1) that are linearizable by this type of nonlocal
transformations.
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