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1. Introduction

Orthogonal polynomials play an important role in mathematics and physics. Well-known
sequences of polynomials are attached to the names of Hermite (Brownian motion and
the Schrödinger wave equation with quadratic potentials), Laguerre (involved in solutions
to the wave equation of the hydrogen atom), Bernoulli (applications in number theory),
Abel (connected with geometric probability), among many others. These sequences can be
described in several ways, by generating functions, as solutions to differential equations, by
orthogonality or recurrence relations. One of the simplest classes of polynomial sequences,
yet large enough to include the mentioned above is the class of Sheffer sequences, a special
type being the Appell sequences.

The Umbral Calculus, a mathematical tool with many applications, can be described as
a study of the class of Sheffer sequences employing the simplest techniques of algebra. The
history of the Umbral Calculus goes back to the 17th century. However in the second half
of the 19th century appear for the first time the terms “umbrae” and “Umbral Calculus”
in relation to a set of rules of lowering and raising indices. Finally, in the second half of
the 20th century, Rota, Roman and collaborators developed the, so-called today, modern
classical “Umbral Calculus”. If n! is replaced by cn, where {cn} is a sequence of nonzero
constants, we talk of nonclassical umbral calculus [13].
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A method, using Umbral Calculus, to discretize linear differential equations while pre-
serving their point symmetries as well as generalized symmetries was presented in [5].
Applied to the continuous Schrödinger equation provides the first steps for obtaining a
discrete Quantum Mechanics [6]. In [5] the Umbral (discrete) equations are introduced;
the study of the discretized Schrödinger equation with different potentials [6, 7] leads to
the question of the convergence (pointwise) of certain series of basic polynomials pn(x),
associated with a ∆ operator.

In this paper we study bases of generalized Appell polynomials related to the Gelfond-
Leontev derivation operator (backward unilateral weighted shift operator) using methods
of nonclassical umbral calculus. Methods of umbral calculus, in a similar way, give results
about bases of Appell polynomials related to the usual derivation operator (the simplest
∆ operator). Although the classical and nonclassical umbral calculus are formal mathe-
matics, the problem considered here is an approximation problem involving, naturally, the
convergence of infinite series.

2. Basic Results

Given a matrix A = (ak
n), n, k = 0, 1, 2, . . . , ak

n > 0, ak
n ≤ ak+1

n , for all k, n, we denote by
λ1(A) the following sequence space (echelon Köthe space)

λ1(A) =
{

f(x) =
∞∑

n=0

ξnxn, ξn ∈ C, ‖f‖k =
∞∑

n=0

|ξn| ak
n < ∞, ∀ k = 0, 1, 2, . . .

}

endowed with its natural topology. Recall that (xn) is a canonical basis in λ1(A) [4].
Well-known echelon Köthe spaces are H(C), the space of entire functions on the complex

plane, H(D), the space of analytic functions on the unit disc and s, the space of rapidly
decreasing sequences.

To introduce the basic notions of Umbral Calculus let (γn) be an increasing sequence of
positive numbers with γ0 = 1 (if γn = n! we have the classical umbral calculus and in all
other cases the nonclassical one) and P the algebra de polynomials in the single variable x

over the field C. Each formal power series in the variable t over the field C, g(t) =
∑∞

n=0
bn
γn

tn

defines a linear mapping from P to C by

〈g(t)/xn〉 = bn, for all n ≥ 0

which can be extended to a continuous functional on λ1(A) if and only if

∃k ∈ N such that sup
n≥0

{ |bn|
ak

n

}
< ∞. (2.1)

If b0 
= 0, g(t) is called an invertible series as it has an formal inverse. A sequence of
polynomials (sn(x)) is called an Appell sequence for g(t) if it satisfies the orthogonality
condition 〈

g(t)tj/sn(x)
〉

= γn δn,j, ∀n, j ≥ 0. (2.2)

In classical Umbral Calculus, well-known classes of Appell polynomials are the Hermite,
Bernoulli and Euler polynomials.
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In Umbral Calculus (classical and nonclassical) the variable t is used to denote the
derivation operator but to avoid confusion we denote the Gelfond-Leontev derivation ope-
rator by Dγ , that is, for j ≥ 1

Dj
γ xn =




γn

γn−j
xn−j j ≤ n

0 j > n

which is continuous from λ1(A) to λ1(A) if and only if

∀ k, ∃ r = r(k) : sup
n≥0

{
γn

γn−j

ak
n−j

ar
n

}
< ∞.

Therefore a series
∑∞

n=0
bn
γn

Dn
γ defines a continuous invariant-differentiation operator

from λ1(A) to λ1(A) if and only if

∀ k, ∃ r = r(k) : sup
n≥0




n∑
j=0

γn

γjγn−j
|bj|

ak
n−j

ar
n


 < ∞. (2.3)

To study the invariant-differentiation operators from λ1(A) to λ1(A) that are isomor-
phisms is very important to know the eigenvalues and eigenvectors of the differentiation
operator Dγ [1, 10–12].

3. Appell Polynomials Bases in Köthe Spaces

Given an invertible series g(t) =
∑∞

n=0
bn
γn

tn, its corresponding Appell sequence (sn(x)) and
a general Köthe space λ1(A), we have

Theorem 3.1. If the invariant differentiation operator T =
∑∞

n=0
bn
γn

Dn
γ satisfies condition

(2.3), then the Appell sequence (sn(x)) is a basis in λ1(A) if and only if the operator T is
an isomorphism from λ1(A) to λ1(A).

Proof. If T is and isomorphism, T−1 =
∑∞

n=0
cn
γn

Dn
γ where the coefficients cn are given by

the series g(t)−1.

As T−1xn = sn(x) [13, Theorem 2.5.5] it follows that (sn(x)) is a basis in λ1(A).
Conversely if (sn(x)) is a basis in λ1(A), as T is continuous by (2.3) and Tsn(x) = xn,

then T is an isomorphism.

For the operator Dγ we have the following

Proposition 3.1. Assume that Dγ is continuous on λ1(A). Call

Mk = lim
n→∞

n

√
ak

n

γn
, k = 0, 1, 2, . . .

Then

(1) If Mk = 0, ∀ k, then every λ ∈ C is an eigenvalue of Dγ.
(2) If sup{Mk} = M < ∞ and λ ∈ C, |λ| < 1

M , then λ is an eigenvalue of Dγ .
(3) If supk{Mk} = ∞, then the only eigenvalue of Dγ is the zero.
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Theorem 3.2. Let λ1(A) be a Köthe space such that

Mk = lim sup
n→∞

n

√
ak

n

γn
= 0, ∀ k (3.1)

and let Lk and L be

Lk = lim sup
n→∞

log(nn)

log
(

γn

ar
n

) , k ∈ N, L = sup
k
{Lk}.

Assume that g(t) =
∑∞

n=0
bn
γn

tn is a formal invertible series verifying (2.3), T its corres-
ponding invariant-differentiation operator and {sn(x)} is the generalized Appell sequence
for the series g(t). Then

(1) If 0 ≤ L ≤ 1, {sn(x)} is an basis in λ1(A) if and only if the formal series g(t) is of the
form g(t) = ea+bt, a, b ∈ C.

(2) If 1 < L < ∞, {sn(x)} is an basis in λ1(A) if and only if the formal series g(t) is
g(t) = eP (t), where P (t) is a polynomial such that deg(P (t)) ≤ [L].

(3) If L = ∞ and {sn(x)} is an basis in λ1(A) then the formal series g(t) is g(t) = ef(t),

f(t) an entire function.

Proof. By (2.3) the operator T =
∑∞

n=0
bn
γn

Dn
γ given by the series g(t) is continuous and

commutes with Dγ . Then for all k ∈ N there exist r = r(k) ∈ N and C > 0 such that

γn

γjγn−j
|bj |

ak
n−j

ar
n

≤ C, ∀n ∈ N, 0 ≤ j ≤ n. (3.2)

Taking j = n in (3.2) we obtain

lim sup
n→∞

n

√
|bn|
γn

≤ lim sup
n→∞

n

√
Car

n

γnak
0

= lim sup
n→∞

n

√
ar

n

γn
= Mr = 0. (3.3)

Therefore by (3.1), (3.3) and the Proposition 3.1, the function given by the series g(t)
is an entire function with no zeros in C. Then g(t) = ef(t), where f(t) is an entire function
[8]. As the order of g(t) verifies

ρ = lim sup
n→∞

log(n)

log
(

n

√
γn

|bn|
) ≤ lim sup

n→∞
log(nn)

log
(

γn

ar
n

) = Lk ≤ L

then

(1) If 0 ≤ L ≤ 1, ρ ≤ 1. Then g(t) = eP (t), with P (t) a polynomial of degree less or equal
than 1, that is g(t) = ea+bt, a, b ∈ C [8].

Conversely, if T = ea+bDγ is continuous then T−1 = e−(a+bDγ ) is continuous too and
by Theorem 3.1 {sn(x)} is a basis in λ1(A).

(2) If 1 < L < ∞, ρ ≤ [L] and g(t) = eP (t), where P (t) is a polynomial of degree deg(P (t)) ≤
[L] [8].

Conversely, if eP (Dγ) is continuous so it is e−P (Dγ) [11]. Then T is an isomorphism
and {sn(x)} is a basis in λ1(A) (Theorem 3.1).
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(3) If L = ∞, the formal series g(t) is of the form g(t) = ef(t) with f(t) an entire
function [8].

Theorem 3.3. Let λ1(A) be a Köthe space such that

Mk = lim sup
n→∞

n

√
ak

n

γn
y M = sup{Mk} < ∞. (3.4)

If the invariant-differentiation operator T corresponding to the invertible series g(t) =∑∞
n=0

bn
γn

tn is an isomorphism, then g(z) is a holomorphic function with no zeros in a disc
of center zero and radius R > 1

M .

Proof. If T is continuous for all k ∈ N there exist r = r(k) ∈ N and C > 0 such that

γn

γjγn−j
|bj |

ak
n−j

ar
n

≤ C, ∀n ∈ N, 0 ≤ j ≤ n. (3.5)

Then by (3.5) (j = n) and (3.4),

lim sup
n→∞

n

√
|bn|
γn

≤ Mr ≤ M.

Therefore g(z) is holomorphic in a disc DR, R ≥ 1
M .

The continuity of the operator T−1 implies that 1
g(z) is an holomorphic function in DR,

that is g(z) has no zeros in DR.

Theorem 3.4. Let λ1(A) be a Köthe space such that

Nk = sup
n∈N

{
γn+1 ak

n

γnak
n+1

}
and N = sup

k
{Nk}, 0 < N < ∞ (3.6)

and let g(t) =
∑∞

n=0
bn
γn

tn be an invertible formal series.
If the function g(z) is holomorphic and has no zeros in a disc DR, R > N, then the

operator T corresponding to the series g(t) is an isomorphism. Therefore the generalized
Appell sequence for g(t), {sn(x)}, is a basis in λ1(A).

Proof. If g(z) is an holomorphic function in DR, from Cauchy’s inequalities we obtain

|bn|
γn

≤ C

ρn
, ∀n, C = max

|z|=ρ
{|g(z)|}, N < ρ < R

and by (3.6) we have

γn ak
n−j

γn−j ak
n

=
γn−j+1 ak

n−j

γn−ja
k
n−j+1

. . .
γn−1 ak

n−2

γn−2a
k
n−1

γn ak
n−1

γn−1ak
n

≤ N j
k < N j.

Then by (2.3) and from
n∑

j=0

γn

γjγn−j
|bj |

ak
n−j

ak
n

≤ C

n∑
j=0

N j

ρj
≤ C

∞∑
j=0

(
N

ρ

)j

< ∞, ∀ k ∈ N,

it follows that T is continuous.
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As g(z) is holomorphic without zeros in DR, so it is 1
g(z) . Then T−1 is continuous and

T is an isomorphism.

Example 3.1. Take γn = n!, that is Dγ = D. Let H(C) be the space of entire functions.
As the operator corresponding to the series g(t) = eat+b is continuous for all b ∈ C, then
the Appell sequence sn(x) = e−a(x − b)n is a basis in H(C). Note that Mk = 0 and
Lk = 1, ∀ k.

Example 3.2. Take γn = n! and let H(D) be the space of analytic functions on the unit
disc. As the operator corresponding to the series g(t) = eat+b is not continuous for b 
= 0,
then the only basis Appell sequence is {xn}. As in example 3.1, Mk = 0 and Lk = 1, ∀ k.

Example 3.3. Consider γn = n! and λ1(A) the Köthe space given by the matrix ak
n = nnek.

Assume that the operator T =
∑∞

n=0
bn
n! D

n
γ is an isomorphism. As Mk = M = e, then the

function g(z) =
∑∞

n=0
bn
n! z

n is holomorphic and has no zeros in a disc DR, R > 1
e . Conversely,

let g(z) be an holomorphic function with no zeros in a disc DR, R > 1
e ; as Nk = N = 1

e , the
operator T = g(Dγ) is an isomorphism and the Appell sequence for g(t) is a basis in λ1(A).
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