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The manuscript is devoted to nonisentropic solutions of simple wave type of the gas dynamics
equations. For an isentropic flow these equations (in one-dimensional and steady two-dimensional
cases) are reduced to the equations written in the Riemann invariants. The system written in the
Riemann invariants is hyperbolic and homogeneous. It allows obtaining simple waves, which are also
called Riemann waves. For nonisentropic flows there are no Riemann invariants. The question is:
what solutions could substitute the Riemann waves? By the method of differential constraints such
types of solutions are found here. For these classes of solutions one can integrate the gas dynamics
equations: finite formulas with one parameter are obtained. These solutions have some properties
similar to simple Riemann waves. For example, they describe a nonisentropic rarefaction wave. The
rarefaction waves play the main role in many applications such as the problem of pulling a piston,
decay of arbitrary discontinuity and others.

Keywords: Differential constraints; compatibility conditions; Riemann (simple) waves; gas dynamics
equations.
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1. Introduction

The manuscript deals with applications of the method of differential constraints and the
group analysis method.

∗Corresponding author.
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1.1. Method of differential constraints

The method of differential constraints is one of the methods for constructing particular
exact solutions of partial differential equations. The idea of the method was proposed by
Yanenko [1]. A survey of the method can be found in [2, 3]. The method is based on the
following idea.

Consider a system of differential equations

Si(x, u, p) = 0, (i = 1, 2, . . . , s). (1.1)

Here x = (x1, x2, . . . , xn) are the independent variables, u = (u1, u2, . . . , um) are the depen-
dent variables, p = (pj

α) is the set of the derivatives pj
α = ∂|α|uj

∂xα , (j = 1, 2, . . . ,m; |α| ≤ q),
α = (α1, α2, . . . , αn), |α| = α1 + α2 + · · · + αn. Assume that a solution of system (1.1)
satisfies the additional system of differential equations

Φk(x, u, p) = 0, (k = 1, 2, . . . , q). (1.2)

The differential equations (1.2) are called differential constraints. A solution of system (1.1)
satisfying (1.2) is called the solution characterized by the differential constraints (1.2).

The obtained system (1.1), (1.2) is an overdetermined system. The method of differential
constraints requires that the overdetermined system (1.1), (1.2) is compatible. The form of
the differential constraints (the functions Φk) and a part of equations of the given system
(the functions Si) may not be known a priori.

The application of the method of differential constraints involves two stages. The first
stage is to find the set of differential constraints (1.2) under which the overdetermined
system is compatible. On this stage in the process of compatibility analysis (reducing the
system to an involutive form) the overdetermined system (1.1), (1.2) can be supplemented
by new equations. The second stage of the method is to construct solutions of the involu-
tive overdetermined system. Because the solution has to satisfy the differential constraints
(additional equations), it allows easier construction of particular solution of the given
system (1.1).

The requirement of compatibility of system (1.1), (1.2) is very general. Therefore the
method of differential constraints includes (almost) all known methods for constructing
exact solutions of partial differential equations: group–invariant solutions, nonclassical and
weak symmetries, partially invariant solutions, separation of variables, as well as many
others.

Increasing the number of requirements on the differential constraints narrows the gener-
ality of the method and makes it more suitable for finding exact particular solutions. In [4]
it was suggested to require involutiveness of the overdetermined system (1.1), (1.2). With
this refinement the method of differential constraints becomes a practical tool for obtain-
ing exact particular solutions. In this case the classification of differential constraints and
solutions characterized by them is carried out with respect to the functional arbitrariness of
solutions of the overdetermined system (1.1), (1.2) and order of highest derivatives, included
in the differential constraints (1.2). Involutive conditions are called DP -conditions.

The method of differential constraints was developed as a generalization of solutions
with degenerated hodograph. These solutions are characterized by finite relations between
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dependent functions. Well-known classes of such solutions are the simple and the double
waves.

The method of differential constraints was applied to the one-dimensional gas dynamics
equations written in Lagrangian coordinates in [2, 7, 8]. The two-dimensional steady gas
dynamics equations were studied by the method of differential constraints in [9], where
examples of generalized simple waves were also obtained. The solutions considered there
generalize the Prandtl–Meyer flows. In [14] the method of differential constraints was applied
to two models from continuum mechanics written in terms of Riemann invariants: namely
the traffic flow, and the rate-type models.

1.2. Partially invariant solutions

Another approach for generalizing the set of solutions with a degenerated hodograph was
given by Ovsiannikov [5].a He extended a set of invariant solutions by introducing the
notion of a partially invariant solution. If for an invariant solution all dependent variables
are expressed through invariants of an admitted Lie algebra, then in a representation of a
partially invariant solution only m− δ dependent variables are represented through the set
of invariants, and for the other δ > 0 dependent variables there are no requirements.

The algorithm for finding partially invariant solutions comprises of several steps. The
first step is similar to the first step for obtaining an invariant solution: one has to construct
a representation of a solution. After substituting the representation of a partially invariant
solution into the original system of equations (1.1), one obtains two systems of partial
differential equations: a system of equations which only relates the invariants, and another
system of equations is an overdetermined system of equations for δ functions, which are not
defined by the representation of a solution. The next step consists in studying consistency
of the overdetermined system of equations.

The process of studying compatibility consists in reducing the overdetermined system of
partial differential equations to an involutive system. During this process different subclasses
of H(σ, δ) of partially invariant solutions can be obtained. Some of these subclasses can be
H1(σ1, δ1)-solutions with the subalgebra H1 ⊂ H. In this case σ1 ≥ σ, δ1 ≤ δ [6]. The
study of compatibility of partially invariant solutions with the same rank σ1 = σ but with
a smaller defect δ1 < δ is simpler than studying the compatibility for an H(σ, δ)-solution.
In many applications there is a reduction of H(σ, δ)-solution to H ′(σ, 0). In this case the
H(σ, δ)-solution is called reducible to an invariant solution. The problem of reduction to an
invariant solution is important since invariant solutions are studied first. There are a few
general theorems [6] of reduction of partially invariant solutions to the invariant ones. One
of such theorems which is applied in the manuscript as follows.

Theorem 1.1 [6]. If during the process of consistency analysis of a partially invariant
H(σ, δ)-solution one can find all first-order derivatives of the dependent variables expressed
through the independent and the dependent variables, then this solution is an invariant
solution with the same rank σ of a subgroup H ′ ⊂ H.

A review of applications of partially invariant solutions to the gas dynamics equations
can be found in [10].

aA detailed theory of partially invariant solutions is given in [6].
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1.3. Problems studied in the paper

The paper is devoted to the study of one class of solutions of the one-dimensional gas
dynamics equations. This class of solutions is characterized by two differential constraints
of first-order. The main features of this class of solutions are the following. They generalize
rarefaction waves. The construction of them is reduced to integration a system of ordinary
differential equations along characteristics. Since this class of solutions has similar properties
to Riemann (simple) waves, in the manuscript these solutions are referred as generalized
simple waves.

In the present paper generalizations of Riemann waves of the gas dynamics equations
were obtained by two different methods: by the method of differential constraints and by
the group analysis method. The problem of relations between solutions obtained by the
method of differential constraints and partially invariant solutions was repeatedly raised up
by Ovsiannikov and Yanenko. In the manuscript we give an answer to this problem for a
particular class of solutions of the gas dynamics equations.

The manuscript is organized as follows. Section 2 gives general properties of generalized
simple waves. A class of generalized simple waves for one-dimensional gas dynamics equa-
tions is obtained in Sec. 3. Invariant and partially invariant solutions of the gas dynamics
equations in the hodograph space are considered in Sec. 4, and concluding remarks are given
in Sec. 5.

2. Differential Constraints of Systems with Two Independent Variables

Let us consider the quasilinear system of partial differential equations

∂u

∂t
+Q

∂u

∂x
− f = 0. (2.1)

Here Q = Q(x, t, u) is an m × m matrix, f = f(x, t, u) is a vector, Er is an r × r unity
matrix. One is looking for solutions characterized by the first-order differential constraintsb

Φk(x, t, u, ux) = 0, (k = 1, 2, . . . , q). (2.2)

It is assumed that the differential constraints satisfy the natural requirement

rank
(
∂Φk

∂ux

)
= q.

2.1. Involutive conditions

Without loss of generality one can rewrite the system of differential equations and the
differential constraints in the more suitable form

S ≡ Lut +ALux − Lf = 0, (2.3)

Φ = B1Lux + Ψ = 0. (2.4)

Here L = L(x, t, u) is a nonsingular m × m matrix, A = LQL−1, the function Ψ =
Ψ(x, t, u, y) depends on x, t, u and y = B2Lux, B1 and B2 are rectangular q × m and

bThe study of differential constraints of higher order of the system (S) can be reduced to the study of
differential constraints of first-order for the prolonged system.
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(m− q) ×m matrices with the elements

(B1)ij = δij , (1 ≤ i ≤ q, 1 ≤ j ≤ m),

(B2)kj = δq+k,j, (1 ≤ k ≤ m− q, 1 ≤ j ≤ m),

δij is the Kronecker’s symbol. The matrices B1 and B2 have the following properties:

B1B
′
1 = Eq, B2B

′
2 = Em−q, B′

1B1 +B′
2B2 = Em,

B1B
′
2 = 0, B2B

′
1 = 0.

Note that if the matrix A is a diagonal matrix, then the matrix BjABj is diagonal and
BiABj = 0 (i, j = 1, 2; i �= j). For a hyperbolic system (2.1) the matrix A can be chosen
diagonal.

For the overdetermined system (2.3), (2.4) in [11] the following is proven.

Theorem 2.1. The overdetermined system (2.3), (2.4) is involutive if and only if

(DtΦ + ZAB ′
1DxΦ − ZDxS)|(SΦ) = 0, (2.5)

ZA − ZAB ′
1Z = 0, (2.6)

where Z = B1 + ΨyB2 and (SΦ) denots the manifold

(SΦ) ≡ {(x, u, p)|S(x, u, p) = 0,Φ(x, u, p) = 0}.
Equation (2.6) means that the symbol of the overdetermined system is involutive. In

applications, Eq. (2.6) is checked first, although it is contained in (2.5). Equation (2.6)
means that there are no new equations after prolongation the system. Equations (2.5),
(2.6) are called DP -conditions.

It should be noted that Eq. (2.6) is equivalent to

B1AB
′
2 − ΨyB2AB

′
1Ψy + ΨyB2AB

′
2 −B1AB

′
1Ψy = 0.

If the matrix A is a diagonal matrix with the diagonal entries λi (i = 1, 2, . . . ,m), then
B1AB

′
2 = 0, B2AB

′
1 = 0, the matrices B1AB

′
1, B2AB

′
2 are diagonal, and equation (2.6)

becomes

(λi − λj)(Ψi)yj = 0, (i = 1, 2, . . . , q; j = 1, 2, . . . ,m− q).

This means that Ψi can only depend on yj such that (λi − λj) = 0. In particular, in the
case of strictly hyperbolic systems (λi − λj) �= 0 (i �= j), and Eq. (2.6) is reduced to [12]

Ψy = 0.

The last equations mean that for strictly hyperbolic systems the differential constraints are
quasilinear.

If system (2.3), (2.4) is analytic, then its involutiveness provides an uniqueness and
existence of the Cauchy problem. There are more weak requirements on the smoothness
of system (2.3), (2.4) that are sufficient for the uniqueness and existence of the Cauchy
problem. The first proof for systems of the class C2 was done in [13]. For systems of the
class C1 the existence theorem was done in [11].
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Assume that

L ∈ C1(D), A ∈ C1(D), f ∈ C1(D), Ψ ∈ C1(D) (2.7)

in an open domain D ⊂ Rm ×R2.

Theorem 2.2. Let system (2.3) be a hyperbolic system with (2.7), and let Eqs. (2.5), (2.6)
be satisfied. Then there exists a unique solution u(x, t) ∈ C1 of the Cauchy problem for
system (2.3), (2.4) with the initial data u(x, 0) = ϕ(x) ∈ C1 satisfying the differential
constraints (2.4) at t = 0.

Similar statements are also valid for other types of systems [11].

2.2. Generalized simple waves

In this section one class of solutions, generalizing the class of simple waves is studied.
Let a system of quasilinear differential equations (S) admit q = m − 1 quasilinear

differential constraints

Φ = B1Lux + ΨyB2Lux + φ = 0, (2.8)

where Ψy = Ψy(u, x, t) is an (m− 1) ×m matrix, and φ = φ(u, x, t). Also assume that

B2AB
′
1 = 0.

A solution satisfying these differential constraints we call a generalized simple wave. A
justification for such name follows from the property that a simple wave is described by
such differential constraints with Ψy = 0 and φ = 0.

2.2.1. Compatibility conditions

For the sake of simplicity, compatibility conditions are presented here for the casec

∂A

∂x
= 0,

∂L

∂t
=
∂L

∂x
= 0,

∂f

∂x
= 0, Ψy = 0.

which is often applied in continuum mechanics. In this case, conditions (2.5), (2.6) become
B1AB

′
2 = 0 and

B1
∂L

∂u
〈f, L−1B′

2〉 +B1
∂L

∂u
〈L−1AB′

1φ,L
−1B′

2〉 + λB1
∂L

∂u
〈L−1B′

2, L
−1B′

1φ〉

+ (B1AB
′
1 − λEq)

∂φ

∂u
L−1B′

2 +B1
∂A

∂u
〈L−1B′

2, B
′
1φ〉 −B1

∂L

∂u
〈L−1B′

2, L
−1AB′

1φ〉

−λB1
∂L

∂u
〈L−1B′

1φ,L
−1B′

2〉 +B1L
∂f

∂u
L−1B′

2 = 0

∂φ

∂t
+B1AB

′
1

∂φ

∂x
+
∂φ

∂u
f −B1AB

′
1

∂φ

∂u
L−1B′

1φ+
∂φ

∂u
L−1AB′

1φ (2.9)

−B1
∂L

∂u
〈L−1AB′

1φ,L
−1B′

1φ〉 −B1
∂L

∂u
〈f, L−1B′

1φ〉 −B1
∂A

∂u
〈L−1B′

1φ,B
′
1φ〉

+B1
∂L

∂u
〈L−1B′

1φ,L
−1AB′

1φ〉 −B1L
∂f

∂u
L−1B′

1φ = 0.

cIn the general case these conditions can be found in [2, 3].
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For example, if φ = 0, then equations (2.9) are reduced to

B1
∂L

∂u
〈f, L−1B′

2〉 +B1L
∂f

∂u
L−1B′

2 = 0.

2.2.2. Integration method

A generalized simple wave satisfies the system of ordinary differential equations along the
curve dx

dt = λ:

B1L
du

dt
= B1(A− λEm)B′

1φ+B1Lf,

B2L
du

dt
= B2Lf,

dx
dt = λ,

(2.10)

This system of ordinary differential equations is a system of the relations along the charac-
teristic curve x′ = λ of the overdetermined system (SΦ).

Equations (2.10) gives an idea of how to use the method of characteristics for construct-
ing a solution of a Cauchy problem for the overdetermined system (SΦ). Let u0(x) ∈ C1

satisfy the differential constraints

(B1 + Ψy(u0(a), a, 0)B2)L(u0(a), a, 0)u′0(a) + φ(u0(a), a, 0) = 0.

There exists a unique solution (v(a, t), x(a, t)) of the Cauchy problem of the system of
ordinary differential equations (2.10) with the initial data at t = 0:

v = u0(a), x = a.

The dependence x = x(a, t) can be solved with respect to a = a(x, t) in some neighborhood
V of a point (x0, 0) ∈ V .

Exchanging the variables (x, t) with (a, t), one can prove [3] that u(x, t) = v(a(x, t), t)
satisfies the equations

B1(Lut +ALux) = B1Lf,

B2(Lut +ALux) = B2Lf,

which means that u(x, t) is a solution of the overdetermined system (SΦ) in the neighbor-
hood of the point (x0, 0) ∈ V .

2.2.3. Centered rarefaction waves

Here the method of differential constraints is applied to a problem where the initial data
are given on a characteristic curve. This problem plays a key role in the problem of the
decay of an arbitrary discontinuity in continuum mechanics.

Let us consider a system (S) which admits solutions of generalized simple wave type,
characterized by (2.8). The problem is to find a solution of the system (S), which takes the
values u(x0(t), t) = uλ(t) ∈ C1 on the characteristic curve x = x0(t) of the overdetermined
system (SΦ). Here x′0 = λ ≡ B2AB

′
2, x0(0) = 0 and the values x0(t) and uλ(t) satisfy the

relations along this characteristic. The existence of such a solution of system (S), satisfying
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these conditions can be established in the following way.d In a neighborhood of the point
x = 0 there is a differentiable function ϕ(x), which satisfies the differential constraints (Φ),
and ϕ(0) = uλ(0). According to the previous constructions there exists a solution of the
Cauchy problem of the overdetermined system (SΦ). This solution is obtained by integrating
the system of ordinary differential equations (2.10) with the initial values ϕ(x). Because
of the uniqueness of a solution of the Cauchy problem of system of ordinary differential
equations, the characteristic curve passing through the point (0, 0) coincides with the curve
x = x0(t) and u(x0(t), t) = uλ(t).

Similarly, one can construct a solution of a problem with the initial data on a char-
acteristic curve of the overdetermined system (SΦ) and with a singularity of the centered
rarefaction wave at the point (0, 0).

There exists a unique solution of the system (S) in some domain V ∈ R2 that satisfies
the following conditions.

(1) On the characteristic curve Π : x = x0(t) the value u(x0(t), t) = uλ(t) satisfies (2.10).
(2) The point (0, 0) ∈ Π ⊂ V is singular: the solution is multiply defined at this point. The

value u = u0(a) of the solution at this point depends on the parameter a, (u0(0) =
uλ(0)) and defines the curve in the space Rm satisfying the equations

(B1 + Ψy(u0(a), 0, 0)B2)L(u0(a), 0, 0)u′0(a) = 0,
∂λ

∂u
(u0(a), 0, 0)u′0(a) < 0, (0 ≤ a ≤ a0).

(2.11)

The solution of this problem generalizes the well-known centered rarefaction wave in gas
dynamics: Equations (2.11) define an analogue of the (p, u)-diagram.

3. Generalized Simple Waves of the One-Dimensional Gas Flow

For an isentropic flow the one-dimensional gas dynamics equations can be reduced to equa-
tions written in terms of Riemann invariants. A hyperbolic and homogeneous system written
in terms of Riemann invariants has simple wave solutions, which are also called Riemann
waves. For nonisentropic flows there are no Riemann invariants. In this case generalized
simple waves play similar role to the Riemann waves. This section is devoted to generalized
simple waves of the one-dimensional unsteady gas dynamics equations.e

An unsteady one-dimensional flow of a gas is described by the equations

ut + uux + τpx = 0,

τt + uτx − τux = 0, (3.1)

pt + upx +A(τ, p)ux = 0.

Here ρ is the density, u is the velocity, p is the pressure, η is the entropy, and c is the sound
speed (c2 = τA). For a polytropic gas A = γp, γ > 1, and η = g(pτγ). Without loss of
generality one can use η = pτγ .

dIf there exists a solution of a hyperbolic system (S) satisfying the differential constraints (Φ) on the
characteristic curve x = x0(t), where λ is not an eigenvalue of the matrix B1AB′

1, then the last theorem of
the previous section guarantees that this solution satisfies the differential constraints (Φ) in a neighborhood
of the curve x = x0(t).
eThe two-dimensional steady generalized simple waves were obtained in [9].
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System (3.1) can be rewritten in the matrix form

S ≡ Lut + ΛLux = 0,

with

u =



u

τ

p


, L =




0 c2τ−2 1

c 0 τ

−c 0 τ


 , Λ =



u 0 0

0 u+ c 0

0 0 u− c


 .

Since system (3.1) is strictly hyperbolic the differential constraints of first order for it
must be quasilinear. The well-known Riemann waves (or simple waves) are obtained by
assuming that u = u(τ), p = p(τ). It can be shown that the Riemann waves belong to the
class of solutions, which is characterized by the following differential constraints

px + c2τ−2τx = 0, τpx + αux = 0,

where α = ±c. Here the matrix B2 = (0, 1, 0) for α = c, and B2 = (0, 0, 1) for α = −c. The
first differential constraint leads to the property that the entropy in the Riemann waves is
constant. It is more convenient to rewrite the second differential constraint in the form

ux − (α/τ)τx = 0.

Let us study a more general class of solutions, which is characterized by the differential
constraints

px + (α/τ)2τx = ψ, ux − (α/τ)τx = φ, (3.2)

where ψ = ψ(t, x, u, τ, p) and φ = φ(t, x, u, τ, p). The involutive conditions (2.9) for this
class of solutions are

−ψpγp+ τψτ + ψuα+ ψ(γ + 1) = 0, (3.3)

ψt + uψx − ψu(τψ + αφ) = 0, (3.4)

−4φpαγp+ 4φτατ + 4φuα
2 − 3τψγ + φα(3 − γ) = 0, (3.5)

−τψpψ − τψuφ− τψx − φpψα+ φpφγp− τφτφ

−φt + τφuψ − φuφα− φx(α+ u) − φ2 = 0. (3.6)

If ψ = 0 (an isentropic flow), then φ can be different from zero only for γ = 3 and
γ = 5/3 (a one-atomic gas). But for an isentropic flow the one-dimensional gas dynamics
equations are transformed to the Darboux equation.f For γ = 3 or γ = 5/3 the general
solution of the Darboux equation is expressed through the D’Alambert solution [16]. In
what follows the case ψ �= 0 is studied.

The general solution of Eq. (3.3) is

ψ = τ−(γ+1)Ψ(t, x, ξ, η)

fSee, for example, [16].
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with some function Ψ(t, x, ξ, η), where ξ = u+ 2α
γ−1 , η = pτγ . Substituting ψ into Eq. (3.5)

one finds the general solution of this equation:

φ = τ (γ−3)/4Φ(t, x, ξ, η) − 3ατ−(γ+1)

p(3γ − 1)
Ψ(t, x, ξ, η),

where the function Φ(t, x, ξ, η) is an arbitrary function. After substituting the representa-
tions of ψ and φ into (3.4), one obtains

Ψt +
(
ξ − 2α

γ − 1

)
Ψx +

(
τ−γ 1

3γ − 1
Ψ − ατ (γ−3)/4Φ

)
Ψξ = 0. (3.7)

Splitting this equation with respect to ρ1, where it is essentially used that γ > 1, one has

Ψt = 0, Ψx = 0, Ψξ = 0.

After substituting the representations of ψ and φ into (3.6), this equation becomes

a1ρ
5
1 + a2ρ

4+3γ
1 + a3ρ

3+6γ
1 + a4ρ

2+5γ
1 + a5ρ

2+γ
1 + a6ρ

3γ
1 = 0, (3.8)

where ρ1 = τ−1/4, the coefficients ai, (i = 1, 2, . . . , 6) are expressed through the functions
Φ and Ψ, and their derivatives.g Hence, they only depend on (t, x, ξ, η) and do not depend
on ρ1. Analysis of the linear functions (powers of ρ1) gives that for γ > 1, the degrees
4 + 3γ, 3 + 6γ and 2 + 5γ have different values and they differ from the degrees 5, 2 + γ,
and 3γ. Thus, splitting Eq. (3.8) with respect to ρ1 gives a2 = 0, a3 = 0, a4 = 0. The last
equalities lead to the equations

ηΨη =
3γ

3γ − 1
Ψ, ηΦη =

3(γ − 3)
3γ − 1

Φ, Φξ = 0. (3.9)

Due to Φξ = 0, Eq. (3.8) can also be split with respect to ξ, which gives

Φx = 0. (3.10)

The general solution of (3.9), (3.10) is

Ψ = kηβ , Φ = h(t)ηq ,

where β = 3γ
3γ−1 , q = 3(γ−3)

3γ−1 , and k is constant. After that Eq. (3.8) is reduced to the
equation

ρ3−γ
1 (γ + 1)ηqh2 + 4h′ = 0.

If γ �= 3, then further splitting of this equation with respect to τ gives h = 0. If γ = 3, then
q = 0 and h = (t+ k1)−1, where k1 is constant. The constant k1 is not essential, because of
the shift with respect to time.

gSince expressions of the coefficients are cumbersome, they are not presented here. All calculations are done
in REDUCE [17].
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Theorem 3.1. The general solution of the involutive conditions (2.9) for generalized simple
waves (3.2) (for nonisentropic flows ψ �= 0 and an arbitrary polytropic exponent γ > 1) is

ψ = kτ−β1pβ, φ = − 3γτ
(3γ − 1)α

ψ, (3.11)

β1 = 1 − γ

(3γ − 1)
, β = 1 +

1
(3γ − 1)

, k �= 0. (3.12)

Remark 3.1. It can be shown that the differential constraints

px = ϕ1, uxx − ατ−1τxx = ϕ2, (3.13)

where the functions ϕ1 and ϕ2 depend on t, x, u, ρ, p, ux, ρx, are admitted by the one-
dimensional gas dynamics equations (3.1) only if the functions ϕ1 and ϕ2 are as follows

ϕ1 = − p

3τ
τx + α

1 − 3γ
3γτ

ux, ϕ2 = −1
3
ατ−2τ2

x − 3γ + 1
6

α−1u2
x. (3.14)

Integration of these differential constraints (one time) leads to the differential constraints
(3.2) with (3.11) and (3.12). The constant k is a constant of the integration.

3.1. Integration along characteristics

Similar to simple waves, further analysis of generalized simple waves includes integration
along characteristics and constructing a centered rarefaction wave.

A generalized simple wave satisfies the system of ordinary differential equations (2.10)
along the characteristics

dx

dt
= u− α (3.15)

which have the representations

dp

dt
=

αψ

(3γ − 1)
,

du

dt
=

τψ

(3γ − 1)
,

dτ

dt
= − 3γτ2

(3γ − 1)
ψ

α
. (3.16)

Since

d

dt
(α+ γu) = 0,

d

dt
(pτ1/3) = 0,

one obtains that along characteristics τ = c31p
−3, and u = −γ−1α + c2, where the con-

stants c1 and c2 depend on a characteristic curve. The equation for the pressure along the
characteristic becomes

dp

dt
= qp2,

where q = k
γ1

√
γ

3γ−1 c
1/2−β1

1 . Here γ1 = ±√
γ and the sign in γ1 is defined by the sign of α:

α = γ1
√
pτ . The general solution of the last equation is

p = (c0 − qt)−1.
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Hence, u = c2 − γ+1√
γ γ1c1(c0 − qt), and the characteristic is the curve

x = xo +
(
c2 − γ + 1√

γ
γ1c1c0

)
t+

γ + 1
2
√
γ
γ1c1qt

2.

The constants of integration are defined by the initial values at t = 0:

uo(ξ) = u(0, ξ), τo(ξ) = τ(0, ξ), po(ξ) = p(0, ξ). (3.17)

The functions uo(ξ), τo(ξ), po(ξ) have to satisfy the differential constraints (3.2) with the
functions (3.12). Note that in the initial data one can choose one arbitrary function, and
the other functions are defined by the system of ordinary differential equations.

The constants c0, c1, c2 and x0 are

x0 = ξ, c0 = p−1
o (ξ), c1 = τo(ξ)p−3

o (ξ), c2 = uo(ξ) + γ−1αo(ξ).

According to the theorem of existence, there exists a unique local solution for t > 0 of
the overdetermined system (3.1), (3.2) with the initial data (3.17). This solution exists up to
appearing a gradient catastrophe. Intersection of characteristics requires a special analysis.

3.2. Rarefaction generalized simple waves

A generalized simple waves can be applied to obtaining a nonisentropic centered rarefaction
wave. These solutions are constructed by integrating (3.15), (3.16) with singular initial data,
which satisfy the equations

pa + (α/τ)2τa = 0, ua − (α/τ)τa = 0.

These equations are Eqs. (2.11) for the overdetermined system (3.1), (3.2), (3.12). In the gas
dynamics a solution of these equations is called (p, u)-diagram. Note that the (p, u)-diagram
for nonisentropic case is the same as for isentropic centered rarefaction waves.

4. Group Invariant Solutions of the Gas Dynamics Equations
in the Hodograph Plane

Let us consider solutions of (3.1) which are defined by the differential constraints

τx = ϕτ (τ, p), px = ϕp(τ, p), ux = ϕu(τ, p). (4.1)

The functions ϕτ (τ, p), ϕp(τ, p), ϕu(τ, p) have to satisfy the equations

ϕu
(γp
τ
ϕτ

p − ϕτ
τ

)
+ ϕu

pϕ
p + ϕu

τϕ
τ = 0,

τϕu
(
ϕu

p

γp

τ
− ϕu

τ

)
− τ

(
ϕpϕp

p + ϕτϕp
τ

)
= ϕu2 + ϕpϕτ , (4.2)

τϕu
(
ϕp

p

γp

τ
− ϕp

τ

)
− γp

(
ϕpϕu

p + ϕτϕu
τ

)
= (γ + 1)ϕpϕu.

Notice that if ∆ = τxpt − τtpx = −τϕu(ϕp + γp
τ ϕ

τ ) �= 0, then from the relations
τ = τ(t, x) and p = p(t, x) one can find t = t(τ, p), x = x(τ, p). Substituting them into
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the values for the derivatives τx(t, x), px(t, x), ux(t, x), one finds that all solutions of the
gas dynamics equations with ∆ �= 0 can be described by the differential constraints (4.1).
If the functions ϕτ (τ, p), ϕp(τ, p), ϕu(τ, p) are found, then a solution of the gas dynamics
equations (3.1) is recovered by quadratures. Thus, for finding exact solutions of the gas
dynamics equations one can use solutions of system (4.2).

We exclude from the study the degenerated case ϕτϕpϕu = 0.

4.1. One class of solutions of (4.2)

The differential constraints (3.2) with (3.11) become

ϕp = −(α/τ)2(ϕτ − g), ϕu = (α/τ)(ϕτ − βg), (4.3)

where g = k(pτγ)β−1/γ. For such solutions ∆ = γpτ−2gϕu.
Substituting (4.3) into Eq. (4.2), one obtains

6τQτ − 2pQp = ((γ + 1)Q− (3γ + 1))(Q − 3), (4.4)

where the function Q(τ, p) is introduced by the formula

ϕτ =
γ

3γ − 1
gQ. (4.5)

The functions ϕp and ϕu are

ϕp = −γ(p/τ)g
(
Q

γ

3γ − 1
− 1

)
, ϕu =

(α/τ)γ
3γ − 1

g(Q− 3). (4.6)

Particular solutions of Eq. (4.4) are Q = 3 and Q = (3γ+ 1)/(γ + 1). If Q �= 3, then the
general solution of Eq. (4.4) is

Q− 3γ+1
γ+1

Q− 3
= τ−1/3H(pτ1/3), (4.7)

where H is an arbitrary function of a single argument.

4.2. Admitted Lie algebra of (4.4)

Equations (4.2) admit the Lie algebra with the generators

X1 = τ∂τ + p∂p, X2 = ϕτ∂ϕτ + ϕp∂ϕp + ϕu∂ϕu ,

X3 = τ∂τ − p∂p + ϕτ∂ϕτ − ϕp∂ϕp .

The generators X2 and X3 are inherited by the operators admitted by the one-
dimensional gas dynamics equations of a polytropic gas (3.1):

Y1 = t∂t + x∂x, Y2 = τ∂τ − p∂p,

respectively. The generator X1 is not inherited by the Lie group admitted by (3.1).
The algebra {X1,X2,X3} is Abelian. An optimal system of admitted subalgebras con-

sists of the subalgebras

{X1 + k2X2 + k3X3}, {X2 + k3X3}, {X3}, {X1 + k1X3,X2 + k2X3},
{X1 + k1X2,X3}, {X2,X3}, {X1,X2,X3}.
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4.3. Invariant solutions with respect to X1 + k2X2 + k3X3

In this paper we consider only the classes of invariant and partially invariant solutions
related to the subalgebra:

X1 + k2X2 + k3X3

= (1 + k3)τ∂τ + (1 − k3)p∂p + (k2 + k3)ϕτ∂ϕτ + (k2 − k3)ϕp∂ϕp + k2ϕ
u∂ϕu .

Invariants of the subalgebra depend on the constant k3. If k3 + 1 �= 0, then invariants
of this subalgebra are

pτ2q2+1, ϕτ τ q1, ϕpτ q1+2q2+2, ϕuτ q1+q2+1, (4.8)

where

q1 = −k2 + k3

1 + k3
, q2 = − 1

1 + k3
.

In the case k3 = −1 the invariants are

τ, ϕτpq, ϕppq−1, ϕupq−1/2, (k2 = 1 − 2q). (4.9)

4.3.1. Invariant solutions with k3 �= −1

Substituting the representation of an invariant solution

ϕτ = τ−q1ϕτ
0(y), ϕp = τ−(q1+2q2+2)ϕp

0(y),

ϕu = τ−(q1+q2+1)ϕu
0 (y),

(4.10)

where y = pτ2q2+1, into (4.2), one obtains

ϕτ
0yϕ

u
0y(γ − 2q2 − 1) + ϕu

0y(ϕ
p
0 + ϕτ

0y(2q2 + 1)) − ϕτ
0ϕ

u
0 (q2 + 1) = 0, (4.11)

ϕp
0y(−ϕp

0 − ϕτ
0y(2q2 + 1)) + ϕu

0yϕ
u
0y(γ − 2q2 − 1)

+ϕp
0ϕ

τ
0(q1 + 2q2 + 1) + ϕu

0
2(q1 + q2) = 0, (4.12)

ϕp
0yϕ

u
0y(γ − 2q2 − 1) + ϕu

0yγy(−ϕp
0 − ϕτ

0y(2q2 + 1))

+ϕu
0(ϕp

0(−γ + q1 + 2q2 + 1) + γϕτ
0y(q1 + q2 + 1) = 0.

(4.13)

This is a system of ordinary differential equations which is a linear algebraic system with
respect to the derivatives. The determinant of this algebraic system is

∆ = µϕu
0(γ2(ϕp

0 + (2q2 + 1)ϕτ
0y)

2 − 4(µα1ϕ
u
0)2),

where q2 = (γ − 1)/2 + µ and α2
1 = γy. If the determinant is not equal to zero, then all

first-order derivatives of the functions ϕu
0 , ϕ

p
0, ϕ

τ
0 can be found.h Here we study the case

∆ = 0.

hBecause of the cumbersomeness these equations are not presented here.
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Let µ �= 0. From the equation ∆ = 0 one finds

γϕp
0 = −γ(2µ+ γ)yϕτ

0 + 2µα1ϕ
u
0 .

Equations (4.11)–(4.13) become

2ϕτ
0

2γy(γ + 2µ+ q1)(γ + 2µ) + ϕτ
0ϕ

u
0α1(γ2 − 4γµ+ γ − 12µ2 − 4µq1 + 2µ)

−ϕu
0

2(γ2 + 2γµ+ 2γq1 − γ − 4µ2) = 0,

ϕτ
0α1µy(γ + 2µ+ 2q1 + 1) − 2ϕu

0µy(µ+ q1) = 0,

4γµyϕτ
0y − 4µα1ϕ

u
0y + γ(γ + 2µ+ 1)ϕτ

0 = 0.

These equations give (1 + 2k)(γ(γ − 1) + µ(2γ − 1)) �= 0, and

ϕu
0 =

(γ + 2µ+ 4kµ+ 1)
2µ(1 + 2k)

α1ϕ
τ
0 , ϕp

0 = −(2kγ − 1)
(1 + 2k)

yϕτ
0 , ϕτ

0 = Cyk,

q1 = −γ(γ + 2µ)2 − 4µ(γ + 2µ) − γ

4(γ(γ − 1) + µ(2γ − 1))
,

where k = q1/(2µ), and C is a constant of integration.
Another case where ∆ = 0 corresponds to µ = 0. Assuming that the flow is nonisentropic,

equations (4.11)–(4.13) give q1 = 0, and

ϕu
0y =

(γ + 1)
2

ψϕu
0 , ((ϕp

0)
2)y − 2γψ(ϕp

0)
2 = (γ − 1)(1 − ψγy)(ϕu

0 ) 2, (4.14)

where

ψ =
ϕτ

0

ϕp
0 + ϕτ

0γy
.

Setting the function ϕu
0 (y), one defines the function ψ(y) from the first equation of (4.14).

The second equation of (4.14) is a linear nonhomogeneous ordinary differential equation for
the function ϕp2

0 ; after solving this equation one defines

ϕτ
0 =

ϕp
0

1 − γyψ
.

It is interesting to note that this invariant solution has functional arbitrariness.

4.3.2. Invariant solutions with k3 = −1

Substituting the representation of an invariant solution

ϕτ = p−qϕτ
0(τ), ϕp = p1−qϕp

0(τ), ϕ
u = p−q+1/2ϕu

0 (τ), (4.15)

into (4.2), one obtains

−2ϕτ
0τϕ

u
0τ + 2ϕu

0τϕ
τ
0τ + ϕu

0 (ϕp
0τ(1 − 2q) − 2γqϕτ

0) = 0, (4.16)

−2ϕp
0τϕ

τ
0τ − 2ϕu

0τϕ
u
0τ + 2ϕp2

0 τ(q − 1) − 2ϕp
0ϕ

τ
0 + ϕu2

0 (γ(1 − 2q) − 2) = 0, (4.17)

2ϕp
0τϕ

u
0τ + 2ϕu

0τϕ
τ
0γ + ϕp

0ϕ
u
0(γ + 2) = 0. (4.18)
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If γϕτ2
0 − τϕu2

0 �= 0, then one can solve the last system of ordinary differential equations
with respect to the first-order derivatives:

2(ϕτ2
0 γ − ϕu2

0 τ)ϕu
0τ = 2ϕp2

0 ϕ
u
0τ(1 − q) − ϕp

0ϕ
τ
0ϕ

u
0γ + ϕu3

0 (2γq − γ + 2),

2τ(ϕτ2
0 γ − ϕu2

0 τ)ϕp
0τ = 2ϕp2

0 ϕ
τ
0γτ(q − 1) − 2ϕp

0ϕ
τ2
0 γ + ϕp

0ϕ
u2
0 τ(γ + 2)

+ϕτ
0ϕ

u2
0 γ(−2γq + γ − 2),

2τ(ϕτ2
0 γ − ϕu2

0 τ)ϕτ
0τ = 2ϕp2

0 ϕ
τ
0τ

2(−q + 1) − 2ϕp
0ϕ

τ2
0 γqτ + ϕp

0ϕ
u2
0 τ2(2q − 1)

− 2ϕτ3
0 γ

2q + ϕτ
0ϕ

u2
0 τ(4γq − γ + 2).

Equations (4.16)–(4.18) cannot be solved with respect to the first-order derivatives of
the functions ϕτ

0 , ϕ
p
0, ϕ

u
0 if ϕu

0 = α2ϕ
τ
0 , where α2

2 = γ/τ . In this case then Eqs. (4.16)–(4.18)
give q = (γ − 2)/(2(2γ − 1)) and

ϕp
0 = −2γq + 1

2q − 1
ϕτ

0

τ
, ϕτ

0τ = −γqϕ
τ
0

τ
.

4.4. Partially invariant solutions

Substituting the representation of a partially invariant solutioni

ϕp = τ−q1−2−2q2Hp(ϕ, y), ϕu = τ−q2−q1−1Hu(ϕ, y), (4.19)

into (4.2) one obtains three partial differential equations for the function ϕτ (τ, p). Here
ϕ = ϕτ τ q1, y = pτ2q2+1. These equations are linear with respect to the derivatives ϕτ

τ and
ϕτ

p. According to the Ovsiannikov theorem, if one can find all first order derivatives of the
function ϕτ , then the partially invariant solution is reduced to an invariant solution. This
condition gives

(Hp
ϕ)2 − (Hu

ϕ)2γy = 0, (Hp
ϕ + γy)Hu

ϕ = 0, Hp
ϕ + (Hu

ϕ)2 = 0.

Since the case Hu
ϕ = 0 leads to an invariant solution, from the last two equations one

obtains

Hp = −γy(ϕτ τ q1 +Hp
1 ), Hu = α1(ϕτ τ q1 +Hu

1 ),

where α2
1 = γy, Hp

1 (y) and Hu
1 (y) are arbitrary functions of the integration. Equations (4.2)

become

2γy2ϕτ
yτ

q1(−2γHp
1 + (γ − 2q2 − 1)Hu

1 ) − 2γHu
1 yτϕ

τ
ττ

q1 − γy(γ + 1)(ϕτ τ q1)2

+ γyϕττ q1(2(2q2 + 1 − γ)yHu
1y − (γ + 2q1 + 1)Hu

1 )
+ γ2Hp

1y(−2Hu
1yy −Hu

1 ) = 0
(4.20)

ϕτ τ q1(4Hu
1yy(γ − 2q2 − 1) − 3γHp

1 +Hu
1 (3γ + 4q1 − 1)) − 2Hp

1yγH
p
1y

− 2γ(Hp
1 )2 + 2Hu

1yy(γH
p
1 +Hu

1 (γ − 2q2 − 1))
+ γHp

1H
u
1 + (Hu

1 )2(γ + 2q1 − 1) = 0
(4.21)

Hp
1yy(−γ + 2q2 + 1) −Hp

1q1 = 0. (4.22)

iHere only the result for k3 �= −1 is presented. The case k3 = −1 leads to the same result.
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If the coefficient with respect to ϕτ in Eq. (4.21) is not equal to zero, then it leads to
the invariant solution (4.10). Hence,

4Hu
1yy(γ − 2q2 − 1) − 3γHp

1 +Hu
1 (3γ + 4q1 − 1) = 0. (4.23)

From Eqs. (4.21)–(4.23), one finds

Hp
1y =

1
3γ − 1

Hp
1

y
, Hu

1 =
3γ

3γ − 1
Hp

1 , q1 =
2q2 + 1 − γ

3γ − 1
. (4.24)

Integrating the first equation of (4.24), one obtains

Hp
1 = ko(pτγ)1/(3γ−1)τ q1,

where ko is a constant of the integration. Equation (4.20) becomes

2pQp − 6τQτ = (3γ + 1 + (γ + 1)Q)(Q+ 3) = 0,

where

ϕτ = ko
γ

3γ − 1
(pτγ)1/(3γ−1)Q.

Remark 4.1. Prohibition on reduction to an invariant solution (Ovsiannikov’s theorem)
played a key role in obtaining a partially invariant solution (4.19). This property is closely
related with functional arbitrariness: prohibition on reduction is the necessary condition for
existence of functional arbitrariness in a solution.

A solution of the gas dynamics equations corresponding to the particular invariant
solution (4.19) coincides with the the generalized simple wave solution which was obtained
by the method of differential constraints.

5. Conclusion

A new class of solutions of the one-dimensional unsteady gas dynamics equations was
obtained by two different methods. For this class of solutions one can integrate the gas
dynamics equations: finite formulae with a single parameter are obtained. These solutions
have some similar properties with simple Riemann waves. For example, they describe a non-
isentropic rarefaction wave. This class of solutions gives a particular answer for the question
set up by Ovsiannikov and Yanenko: there are indirect relations between partially invariant
solutions and solutions characterized by differential constraints.
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