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An application of approximate transformation groups to study dynamics of a system with distinct
time scales is discussed. The utilization of the Krylov—Bogoliubov-Mitropolsky method of averaging
to find solutions of the Lie equations is considered. Physical illustrations from the plasma kinetic
theory demonstrate the potentialities of the suggested approach. Several examples of invariant
solutions for the system of the Vlasov-Maxwell equations for the two-component (electron-ion)
plasma are presented.
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1. Introduction

In analyzing various physical systems we frequently deal with situation when a complicated
dynamics of different systems appears as a superposition of “fast” and “slow” motions
with incommensurable characteristic scales, for example, slow evolution of “background”
system characteristics accompanied by fast oscillations in the vicinity of a background state.
This type of behavior seems typical for various linear and nonlinear problems (numerous
examples are found in [1,2]), e.g. for celestial mechanics in studies of a motion of planets,
for mechanics when treating oscillatory regimes of systems with slowly varying parameters,
for various nonlinear problems of multi-component plasma.

The availability of different scales (though the origin of these scales depends upon the
particular system of interest) allows to simplify the analysis of the complicated dynamics by
treating “fast” and “slow” motions separately. These ideas underlie an essence of asymptotic
analytical approaches, the method of averaging [3,4], the method of multiple scales [1], and
other asymptotic methods (see e.g., [1,2]).

As to relation of modern group analysis to nonlinear dynamics here we will point to an
interpenetration of ideas from both fields: on one hand the use of the Lie group theory in
asymptotic methods for integration of nonlinear differential equations gives (in combina-
tion with the Hausdorff formula) the theoretical basis for the method of averaging [3] and
provides a regular procedure for calculating the asymptotic series in this method [2,5, 6].
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On the other hand an introduction of multiple-scales approach to modern group analysis
[7] enhances the potentiality of approximate transformation groups [8].

The present paper uses the Krylov—Bogoliubov—Mitropolsky method (KBM-method) of
averaging in group analysis of the system of equations that describes the evolution of plasma
particles in multi-component plasma. The linearity of the group determining equations plays
the decisive role in separating fast and slow terms in coordinates of a group generator and
in successive use of the KBM-method for constructing the asymptotic solutions of the Lie
group equations.

The paper is organized as follows: in Sec. 2 we introduce the basic equations for evolution
of a two component plasma and introduce small parameters which give rise to different time
and spatial scales for distinct plasma components. In the next Sec. 3 we describe the solution
of determining equations, which define approximate Lie point symmetry group. The use of
KBM-method in finding solutions of the Lie group equations constitutes the basis of the
Sec. 4. Several examples of an application of the suggested approach are presented in Sec. 5
and Sec. 6. In the Conclusion we discuss the results obtained and the future application of
the KBM-method in modern group analysis.

2. Basic Equations: Electron-ion Plasma

We start with kinetic equations for distribution functions, f¢ and f,
Orfe 4+ 000, f¢ — (e/m)Edye f¢ =0, O f' +0'0uf' + (Ze/M)ED,i f* = 0. (2.1)

for both species of two-component plasma consisting of electrons and ions with mass m and
M and charges e¢ = —e and ¢! = Ze, where Z is a charge number, and equations for a
self-consistent electric field £

amE = 47T,O, atE = —47Tj, Pt +]m = 0. (22)

Here charge p and current j density are related to moments of the distribution functions
via nonlocal material relations:

p=e [Z/dvifi— /dvefe], j=e [Z/dmifi — /dv%ffe]. (2.3)

Equations (2.1)—(2.3) are known as a system of the Vlasov—-Maxwell equations for a collision-
less plasma. We are interested in the solution of the Cauchy problem for kinetic equations
(2.1) with the initial conditions

fe|t=0 - f(()z('rave)a fi‘t:O - fé(l’,’l}i), (24)

which depend on a particular physical problem. In what follows we consider an evolu-
tion of localized plasma bunches and assume sufficiently smooth (e.g., Maxwellian) initial
distribution functions with electron 7, and ion T; temperatures and initial densities of elec-
trons n°(z) = [ dvef§ and ions n'(z) = [dv’f§ with the characteristic scale L. Below we
consider a typical situation when L is much greater than the Debye radius of electrons
rpe = \/ L./ (4mnie?). The difference in mass of plasma particles specifies two different time
scales, namely dimensionless time wr.t for “fast” electron motions and 7 = ut for “slow”
motions, u = +/Zm/M < 1. It is natural that electrons are involved in both fast and slow
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motions, hence the electron distribution function depends on both ¢ and 7. On the contrary,
we consider ions not involved in fast motions. It means that the ion distribution function
does not depend upon fast time ¢, but only upon slow time 7. It also means that averaging
upon fast time eliminates the fast component E of the electric field E = E + E in the
ion kinetic equation that contains only the slow electric field E. Then introducing dimen-
sionless variables, electron velocity u = v¢/Vpe, Ve = /Te/m, dimensionless ion velocity
w = v'/cs, cs = \/ZT. /M, dimensionless electric field p = e(eEL/T.), ¢ = rp./L < 1 and
dimensionless distribution functions f¢ = (n§/Vre)g, f' = (n&/(Zecs))f, ng(i) = n(0) we
come to the following system of basic equations in dimensionless variables

Org + 10-g + eudpg — pOyg = 0, O f + cwdyf + POy f = 0, (2.5)
Op= [ dwf~ [dug, O+ porp = [awers+ [ dug, (2.6)

From the group analysis point of view this system of equations should be supplemented by
the four additional equalities,

Owg =0, Of=0, Oup=0, 0up=0, (27)

which are evident from the physical point of view.

3. Lie Symmetry Group

The Lie point symmetry group admitted by the system (2.5), (2.6) and (2.7) is defined by
a symmetry group generator

X =10, + 20, + €30, + 20y + 90- + 10y + 0?0, + 130y (3.1)

To find coordinates &, 1 of the generator (3.1) for the system of local (2.5), (2.7) and
nonlocal (2.6) equations we use the approach developed in [9] (see also [15, Chapter 4]).
Following this technique we separate the determining equations for ¢ and 7' into local
determining equations which arise from invariance of (2.5), (2.7), and nonlocal determining
equations which follow from invariance conditions for (2.6). Solutions of local determining
equations give the so-called intermediate symmetry [9].

Two distinct moments should be taken into account here: first, in view of multi-scale
dynamics we outline in coordinates &', €2, €2 and 7?, entering local determining equations
the fast terms denoted by variables with tilde and slow terms denoted by variables with bar

g=+¢, i=123 =i +q (3.2)

Due to the fact that both local and nonlocal determining equations are linear in & and 7,
we thus can separate terms of different characteristic scales. Then omitting trivial tedious
computations we rewrite fast

W+ p(€) + pet — ) + & + ué + cup€l + cué = 0,

€8~ @2 2t cul() 4 et — )+ 2Pl =0, (3:3)
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and slow local determining equations,

7P+ (€ + e - &) — & — ewgd = 0,
7+ p(uE! = &) + &l + cupg) + =ugf = 0,
e€% — p€2 + cu(p€} — £2) + g} =0,
et — &2 +ew(&) — &) + el = 0.

(3.4)

Here, in (3.3) and (3.4) the dependencies of €, & and 7, 7" upon group variables are
given by

§=rna), @=8ma), E=8tmnu, 7 =Phno)
=8N re), =8, &=, M= (rauw), & =p', (35

=7 (r.z,p), n'=n'(9), 7 =nf).

Second, we shall take an advantage of small parameters in (2.5), (2.6) and, as is customary in
the approximate group analysis technique [8], express the coordinates of the group generator
as power series in € and pu,

gz _ Z €kul§i(k,l)7 Z gk l z(kl (36)

k,1=0 k,1=0

Collecting terms of the same order we come to the following infinite set of equations that
relate coordinates of different orders for the fast

PED " 41— g 0)ER A _ g3k)y 4 EM (14 0)E30I=1)
+up(l — 5k,0)éals(k_1’l) +u(l — 0k 0)&; 31D — 0, k1> 0,
_ ~t2(k,l) + (15, )53@:—1,1) (- 51’0)53(1@1_1)
(1 — 80) (6T 4 (1 — §,0) LR LT 201D
(1= 60)(1 = 651 )uELE=2D — ¢, (3.7)

and the slow terms

P00 4 p(@PD 4 (1= 60w — M)
_gﬁ(k,l) — (15, 0)w§4(k—l,l) -0,
70D 4 p((1 = 5,0)& MY = £1ED) + (1 5,0)&2

+ (1= 01,0)up€r 1 4 (1 — G 0)ugdFH0 = 0,
(1= 0k 0)é 3(k—1.0) 4 + (1= dk0)u ((1_5l0)§1(k 1L,I-1) _ Eg(k—l,l))

— (1= 61,0)E2H D (1= 61.0) (1 — 1 )u2E 2D = 0,
(1= ko) *10 — 2D 1 (1 — 5 ) (XK1 — 2
+ (1 = 8x.0)(1 — 81 )w?ed k=20 —

(3.8)
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Applying approximate intermediate symmetry, which follows from solutions of equations
(3.7)-(3.8), to non-local equations (2.6) we check the invariance conditions of the latter
and obtain the symmetry of the complete system (2.5), (2.6) and (2.7). In constructing the
solution of the b.v.p. (2.4)-(2.6) we need not the entire set of generators but rather such a
combinations of group generators that leaves invariant the perturbation theory solution in
powers of ¢t and 7, the so-called renormalization group symmetries [10]. Hence, we should
specify the initial particle distribution functions f° = Jit=0 ¢’ = gji—o- For concreteness,
we assume the initial velocity distribution functions to be maxwellian:

9° =nf(x) exp(—u?/2), [ =nj(z) exp(~w?/277), (3.9)

with the initial densities n§(x) and nj(x) and the initial zero average velocities. In account
of these initial distribution functions we have the following initial electric field

P(a) = (1/2) /0 " da(ni(z) — n(2). (3.10)

Perturbation expansion of the Cauchy problem solutions in powers of t and 7 gives terms
x O(t) and oc O(7) for the electron distribution function and < O(7) for the ion distribution
function, and o O(#?) and oc O(72) for the electric field. Invariance conditions for these
solutions specify the coordinates of the group generator (3.6). Leaving only terms that are
linear in € and p we write these coordinates as follows

l=1+er2¢, € =¢e((6/Q)sinQt + pré),
§3 = dcos Ot — epTuy, 54 = (€ — eTwé,),
n? = 0Qsin Wt — 3uetps,, & = uét, (3.11)

n'=n® =0, QQZ’I?,i(T,l‘)E/dwf.

The dependence of functions {(x) and §(z) upon z is expressed in terms of the initial
densities distributions ng"* and the initial electric field p°,

€ = —e((9unf/nf) +7*(Benp/ng)), 6 = —p" —e(@nf/ng), v = Vri/es. (3.12)

For arbitrary parameters ¢ and p and arbitrary initial density distributions ng’i formulas
(3.11) describe the approximate symmetry. However, in two limiting cases infinite series
(3.6) terminate and we get the exact symmetry group. The first case is referred to electron
plasma with neutralizing homogeneous ion background (¢ = 0, Q* = n}) = const) [11-13],
which gives the generator

X =0 +¢(0/9) sin Qt0, + 6 cos Qt0,, + 62 sin QL. (3.13)

The second case is referred to quasi-neutral approximation for electron-ion plasma with
zero current and charge densities j = p = 0 [14] that is realized for § = 0 and the initial
gaussian densities distribution, £ o« Sz

X = (14 Bem®)0r + efr20; + B(pux — eTu)dy + B(x — eTw) 0y — 32670, (3.14)

The additional term in & in (3.14) that refers to acceleration of electrons is omitted in
(3.11) as it is of the higher order O(x?) as compared to that included in (3.11).
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4. Lie Equations

To construct group invariant solution for the b.v.p. (2.4)—(2.6) we should find solutions of
the Lie equations for the group generator (3.1) with coordinates (3.6),

dt

— =1+4er’6%, tao =1,

da

dx ) ,

% = 8((5/9) sin Qt + ,U,TS), x‘a:O =T,

du ,

—— =0dcos QU —eputuy, Ug—g =,

da

dw _ (& —eTwéy;), w = (4.1)
da =p x)s la=0 — ) .
d

o = M(l + 572§$)a Tla=0 = 7-/7

da

d;

D _ 5QsinQt — 3ueTplss  Pla=o = P,

da

df dg

o= dg =Y Ga=0= 9 fla=o = f"

Solution of the b.v.p. (2.4)—(2.6) are expressed as usual in terms of invariants of the group
(3.1), (3.6) that result from solutions of (4.1) after excluding the group parameter a. Due to
a difference in characteristic time scales we can separate “fast” and “slow” group invariants,
applying the averaging procedure to Lie equations.

In fact, at small time ¢ > 0, 1/u > t > 1/Q, the “lon” terms that are o p can be
omitted and we come to simplified Lie equations (equations for group invariants f, g, 7, w
are omitted here),

dt dx .
i L, tjg—o = t; Tu e(6/Q)sinQt,  x)4—g = 2

J p (4.2)
L deosQt,  ug—g = u'; @ _ 0Qsin Qt,  pla—o = P,
da da
the solutions of which define invariants of “fast” motions at small time ¢t < 1/u:
Ji =p+dcosQt = —£(0:n§/nG)|r=a,
Jo = x4+ (£6/Q%) cos Ut = 2’ + (e6(x’) /92 ('), (43)

Js=u— (6/Q)sinQt =/,
Jy=g=4"0" ).

On the contrary, averaging the complete Lie equations on a large time scale T' > 1/u we
come to Lie equations defining “slow” motions (equations for group invariants are again
omitted),

d ~ dz ~ dp ~

_7- =1 + 57-2 T _x = 57'5, _p = _357-]555:7

da da da (4.4)

du = dw _ .
= —eTués, = ({ — eTwéz),

da
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with the corresponding “slow” invariants

L=f=f, Izzgzg', Iy = pEs = p'e”,
I _57-2 3 _ /2 mld 3 T L Fe ot
4—2§T2_ /5 5,2_ 2/57 5—£U:§U, (45)

Iﬁzf_w—\/%_g/jdy </ydz/§3>_1/2 fw ——/ dy (/ydz/§3>_1/2.

Here the “primed” variables are related to values at 7 — 0

f'=1sw"), ¢ =¢%(s,0), p' = —eps, s =2 + sgzi(( )) (4.6)

62903,:,3 + né(x) —e¥ =0, Yzle=0 = Pzlz—o00 =0, Ylz=0 = C < c0.

In the next section we use the fast and slow invariants to construct analytical solutions of
the Cauchy problem for the kinetic equations (2.4)-(2.6).

5. Slow Dynamics of Plasma Particles

Let we consider the slow dynamics of plasma particles under simplifying assumptions, small
value of pg < 1, and low ion temperature, v — 0. Then, following (4.5)—(4.6), s = 2’ and ¢
coincides with p’ = p|;—g, and we come to simplified expressions, which define dynamics of
plasma ions,

F=PEw) g=g @) b= ), et =2 [ aye
~1/2

a= €00+ == [ ([lae) . o=t

For completeness we also present global characteristics for plasma ions, their average velocity
density n', and temperature T*,

(5.1)

av?

) T -1/2 ) ) ‘ B
o= [ ([Lase) L wh =m0, T =T 62

These formulas are analyzed below for two distinct initial electric field and density
distributions.

5.1. Examples of slow plasma dynamics: gaussian density profile

We start with a specific situation when electron and ion densities balance each other, and
are described by gaussian curves,

n(z) = nl(z) = (1/V/7) exp(—a?), € = 21 +72). (5.3)
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Substituting expressions (5.3) in (5.1)—(5.2) we get formulas for finite group transformations
for “slow” variables

/

4 T=a'V14+027r2, 12 =22(1447),

p= (1 +v272)3/2°
/ s (5.4)
—— - v Yy

and formulas for ion average density, velocity and temperature

; 1 < 72 ) . T v ; T3
Ngpw = —"F7—7—"XP | 773235 Yw= 77 2937V T 14222
(1 + v272) 141272 e (1+0v272) (1 + v272)2

(5.5)
These formulas demonstrate the self-similar dependence of the ion density — the Gaussian-
type density distribution is preserved though the spatial scale of this distribution as well as
the maximum of the ion density varies. The spatial dependence of the average ion velocity
is linear, and the ion temperature is uniform in space and monotonically decreases with the
growth of time 7, as it was demonstrated in [14]. In case, when the initial ion density varies
from the electron density, i.e. for n(z) = (b/ Ve 7 b~ 1, the above formulas are still
valid, provided 1 + ~? is replaced by 1 + b?~2. The difference between the initial densities
distributions of particles leads to nonzero values of p?,

i(Erf(bx) — BErf(z)), &g =2ex(1+b%97), 6% =—p), + 2ez. (5.6)

0 _
pgs_ 26

however for b close to unity the values of p® are small as compared to &. Figure 1 (left
panel) illustrates this fact, while the right panel shows the spatial distribution of the “slow”
electric field p at different nonzero time moments.

As for the spatial dependencies of the average ion density and velocity at the same time
moments they are presented on Fig. 2. It follows from (5.6) that the oscillating electric
field is of the order of the average electric field that accelerates ions. In the next section
we consider the opposite situation when the initial electric field practically concise with the
initial “slow” electric field p and the amplitude of the “fast” electric field is small.

o _
Pgs> Sus
0.8l 0.7¢
0.6}
0.6f 0.5}
0.4}
0.4 0.3t
0.2} 0.2}
0.1
T—— : = x X
1 2 3 4 1 2 3 4
Fig. 1. Distribution of electric field pgs (blue line) and £gs (red line) for 7 =0 (left), and “slow” electric field
P (right) for 7 = 2(blue line), 7 = 8(red line), 7 = (yellow line), 7 = 18(green line), and for b = 1.01,

e=0.1, u = 1/1/2000 and v = 0.1.
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2.5¢
2.0
1.5¢
1.0¢

0.5¢

x . . . L x
1 2 3 4

Fig. 2. Averaged density and velocity distributions of ions for 7 = 0 (light-blue line), 7 = 2 (dark-blue line),

7 = 8 (red line), 7 = 12 (yellow line), 7 = 18 (green line), and b = 1.01, ¢ = 0.1, p = /1/2000, and v = 0.1.

5.2. Examples of slow plasma dynamics: Lorentz density profile

Turn now to the case when there is very slight difference between p° and ¢ that is realized,
for example, for the Lorentz-type initial density distribution,

nd(z) = 1/r(1 +2%), ndx) = (/r(1+b*z?), |b—1]<1. (5.7)

Substitution of (5.7) into (3.10) gives the following formulas for the spatial distribution of
the initial electric field and the function &,

0( ) = 1( tan b tanx), & =2 ! + i (5.8)
= —(ar —ar = . .
p (T 6aca r — arctan ), l T 1 5 T 2.2

The left panel of Fig. 3 demonstrates the difference between p? and &;, and the right panel

shows the spatial distribution of the “slow” electric field p at different moments of time 7.
As for the average ion density, temperature and velocity they are given by the formulas

. b ¢ ‘ (e 2 ‘ 1 z Yy 5 -1/2 (59)
nZv = T o oo T =Ty | = ) Uzzzv =z d / dz ) ) ’
(14 b22'%) & 0 (51) &v2e Ju Y < o /e

and are plotted on the Fig. 4.

p?! él ﬁ
05}
010}
0.4}
0.08}
0.06 0.3t
0.04 0.2¢
0.02 0.1}
ey 0.0 : ' : L x
2 4 6 8 10 12 14 0 2 4 6 8

Fig. 3. Plots of p) (blue line) and & (red line) at 7 = 0 (left), and “slow” electric field p (right) at 7 = 4

(blue line), 7 = 10 (yellow line), 7 = 18 (red line), for a = 1.0, b = 1.0661, ¢ = 0.1, p = 4/1/2000 and
v = 0.001.
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Vav

4+

3F

20

1}
L L T X 0 L L T —1 x
2 4 6 8 0 2 4 6 8

Fig. 4. Density and velocity distributions for ions at 7 = 0 (green line), 7 = 4 (blue line), 7 = 10 (red line),
7 = 18 (yellow line), for b = 1.0661, ¢ = 0.1, u = /1/2000 and ~ = 0.001.

6. Fast Dynamics of Particles

In this section we use slow invariants to restore the complete dynamics of fast particles,
electrons. For clarity’s sake we consider the case of small values of e < 1, which means
that x is identical to Z, and rewrite the Lie equations (4.1) in a simplified form

d(§u) d(&p)

1+ er2&,, da 0& cos Qt, I

it _
da

= 603 cos Q. (6.1)

According to the procedure of averaging [3] we can write the solutions of Eq. (6.1) by
integrating over fast time t and taking into account the dependence upon slow time by
including the dependence upon Z and 7 into 6 and &. However, the enhanced precision is
achieved by direct integration of the Lie equations (6.1) in account of the slow dependence
of 7 upon z as given by slow motion invariants

_ &Lt 808 o
p= 5—3]) + 5—3 /x’ d (@) sin(Q2t(z")), o
6/7 1 xT 5 _ ( ’ )

Electron distribution function g = ¢’ = ¢°(2’,4/) is the invariant of group transformations.
Thus substituting # = # and u’ from (6.2) in ¢° and integrating over the velocity u gives
the integral characteristic, the average electron velocity and average electron density

xT

_ 1 5 _

oy = @)D, = g [ e’ s cos(@a”), (63)
To illustrate these formulas we employ results of the previous section and consider the
Lorentz-type initial densities profiles (5.7) with the function £ = & defined by (5.8). Sub-
stituting & in (6.2)-(6.3) we obtain the formulas for the spatial distribution of the electric
field and the average electron velocity that are presented on the figures below for three
different time moments. Figure 5 corresponds to moderate values of 7 = 4, when the ion
density is concentrated mainly in the center of the bunch thus leading to small-scale spatial
oscillations primarily in this region. As the bunch spreads with growth of 7 the small-scale
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Fig. 5. Electric field and average electron velocity distributions at 7 = 4 for a = 1.0, b = 1.0661, ¢ = 0.1,

u=+/1/2000 and ~ = 0.001.
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0.10

0.051

0.00

8

- X

e

v,

0.006 [
0.004 |
0.002 |
0.000
-0.002

-0.004 1

—-0.006 -

av

Fig. 6. Electric field and average electron velocity distributions at 7 = 10 for a = 1.0, b = 1.0661, ¢ = 0.1,

u = +/1/2000 and ~ = 0.001.

0.5f
0.41
0.3
0.2

0.1

0.0
0

0.0021

0.000

—-0.002

—-0.004

- X

Fig. 7. Electric field and average electron velocity distributions at 7 = 18 for a = 1.0, b = 1.0661, ¢ = 0.1,

u = +/1/2000 and ~ = 0.001.

spatial oscillations moves outward as shown on Fig. 6 for 7 = 10, and on Fig. 7 for 7 = 18.
The figures also show that the “complete” electric field p in this case oscillates with the
same spatial period as the mean electron velocity and only slightly differs from the average

electric field p (compare with Fig. 3).
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7. Conclusion

In the above analysis of a particular physical problem, expansion of a plasma bunch, a
new promising tool for analyzing nonlinear multi-scale systems was considered. The main
idea consists in employing the Krylov-Bogoliubov-Mitropolskii procedure of averaging to
construct solutions of Lie equations. The procedure of separating “fast” and “slow” terms
in coordinates of group generator naturally occurs in determining equations while con-
structing the symmetry for nonlinear equations that describe multi-scale behavior of any
physical system. In our consideration we use the averaging procedure in combination with
a perturbation technique of group analysis [8] that gives approximate symmetries for the
analyzed problem and helps to construct approximate RG-invariant solution for arbitrary
initial distribution functions of particles.

The use of the averaging procedure in modern group analysis naturally separates invari-
ant manifolds, related to slow and fast Lie equations into slow and fast invariant manifolds.
This separation is in the root of the theorem of invariant representation [16, 18]: averaging
the fast invariant solution that appears as an oscillating “curve” on fast manifold yields a
smooth curve on the slow invariant manifold as shown in the previous section (compare to
the method of slow invariant manifold for describing kinetics of dissipative systems [17]).
The merits of the approach with different scales that simplifies both the procedure of finding
the admitted group and construction of the group invariant solutions point to the quest for
future potential applications.
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