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Lie point symmetry group classification of a scalar stochastic differential equation (SDE) with
one-dimensional Brownian motion is presented. First we prove that the admitted symmetry group
is at most three-dimensional. Then the classification is carried out with the help of Lie algebra
realizations by vector fields.
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1. Introduction

Lie group theory of differential equations is well understood [12, 18, 19]. It studies trans-
formations that take solutions of differential equations into other solutions of the same
equations. Today this theory is a very general and useful tool for finding analytical solu-
tions of large classes of differential equations.

The application of Lie group theory to stochastic differential equations (SDEs) is much
more recent. First, restricted cases of point transformations were considered [1, 10, 16, 17].
Then, the theory for general point transformations was developed [8, 9, 25–27]. In the latter
case the transformation of the Brownian motion needs to be more deeply specified. In [11]
there were introduced W -symmetries, which are fiber-preserving symmetries acting also
on Wiener processes. It can be of interest to extend symmetry framework to very general
transformations such as random diffeomorphisms of SDEs [3].

Lie point symmetry group classification of a scalar stochastic ODE with one-dimensional
Brownian motion was presented in [13]. To obtain this group classification a direct method
was used. First the SDE was simplified under the assumption that there exists one symmetry
admitted by the equation. Then all particular cases leading to the existence of additional
symmetries were identified.

In this paper the Lie group classification of a scalar SDE is obtained with the help of Lie
algebra realizations by vector fields. First we prove that the admitted symmetry group can
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be at most three-dimensional. The maximal dimension of the admitted symmetry group is
achieved, for example, by SDEs with constant drift and diffusion coefficients. It is also shown
that scalar SDEs cannot admit symmetry operators whose coefficients are proportional to
a nonconstant coefficient of proportionality. These results are then used to carry out the
Lie group classification.

Symmetries of SDEs can be used to find symmetries of Fokker–Planck (FP) equation [10,
26]. In the case of fiber-preserving symmetries a symmetry of SDEs can be extended to a
symmetry of the associated FP equation. The converse result holds only for operators
satisfying an additional condition. A scalar SDE corresponds to FP equation in one spatial
dimension. Symmetries of such PDEs are known. The complete group classification of the
linear (1 + 1)-dimensional homogeneous second-order parabolic equation was performed by
Sophus Lie [15]. A modern treatment can be found in [19] (see also [21]). A number of
papers are devoted specifically to symmetries of FP equation in one spatial dimension [4,
5, 22–24]. There are no general studies for higher dimensions. The existing results are
limited to a special case of Kramers’ equation for the diffusion matrix which is constant and
degenerate [23] and FP equation with a constant and positive definite diffusion matrix [7].
Both papers are restricted to FP equations in two spatial dimensions.

It should be noted that our paper deals with infinitesimal Lie group transformations
which preserve the form of SDEs. Reconstruction of finite transformations from infinitesimal
ones was discussed in [8, 9]. Generally, it is not guaranteed that the finite transformations,
which are recovered from infinitesimal transformations, transform solutions of SDEs into
another solutions.

2. Scalar SDEs and Symmetries

Let us consider Itô stochastic differential equation

dx = f(t, x)dt+ g(t, x)dW (t), g(t, x) �≡ 0, (2.1)

where f(t, x) is a drift, g(t, x) is a diffusion and W (t) is a standard Wiener process
[2, 28].

2.1. Determining equations

We are interested in infinitesimal group transformations (near identity changes of variables)

t̄ = t̄(t, x, a) ≈ t+ τ(t, x)a, x̄ = x̄(t, x, a) ≈ x+ ξ(t, x)a, (2.2)

which leave Eq. (2.1) and framework of Itô calculus invariant. Transformations (2.2) can be
represented by generating operators of the form

X = τ(t, x)
∂

∂t
+ ξ(t, x)

∂

∂x
. (2.3)

The determining equations for admitted symmetries [26] are

ξt + fξx − ξfx − τft − fτt − f2τx − 1
2
fg2τxx +

1
2
g2ξxx = 0, (2.4)
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gξx − ξgx − τgt − g

2

(
τt + fτx +

1
2
g2τxx

)
= 0, (2.5)

gτx = 0. (2.6)

It is interesting to note that the determining equations are deterministic even though they
describe symmetries of a stochastic differential equation.

In the general case, when functions f(t, x) and g(t, x) are arbitrary, the determining
equations (2.4)–(2.6) have no non-trivial solutions, i.e., there are no symmetries.

The last determining Eq. (2.6) can be solved as

τ = τ(t). (2.7)

Therefore, the symmetries admitted by Eq. (2.1) are fiber–preserving symmetries

X = τ(t)
∂

∂t
+ ξ(t, x)

∂

∂x
(2.8)

that substantially simplifies further considerations. In particular, we are restricted to equiv-
alence transformations

t̄ = t̄(t), x̄ = x̄(t, x), t̄t �= 0, x̄x �= 0, (2.9)

where the change of time is not random. According to the general result concerning random
time change in Brownian motion [28], the Brownian motion is transformed as

dW̄ (t̄) =

√
dt̄(t)
dt

dW (t). (2.10)

Remark 2.1. Because the symmetries admitted by Eq. (2.1) are fiber-preserving symme-
tries (2.8) they form a Lie algebra. It was shown in [26] that symmetries of Stratonovich
SDEs always form Lie algebras. In a particular case τ = τ(t) the determining equations for
corresponding Itô and Stratonovich SDEs are identical. Therefore, all results of this paper
established for Itô SDE (2.1) are also valid for the corresponding Stratonovich SDE

dx = h(t, x)dt + g(t, x) ◦ dW (t), h = f − 1
2
ggx. (2.11)

Let us illustrate symmetry properties by an example.

Example 2.1. The equation

dx = f(t)dt+ g(t)dW (t), g(t) > 0 (2.12)

admits symmetries (cf. [9])

X1 =
1
g2

∂

∂t
+
f

g2

∂

∂x
, X2 =

∂

∂x
,

X3 =
(

2
g2

∫
g2dt

)
∂

∂t
+

(
x+

2f
g2

∫
g2dt −

∫
fdt

)
∂

∂x
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with Lie algebra structure

[X1,X2] = 0, [X1,X3] = 2X1, [X2,X3] = X2.

Under the change of variables

t̄ =
∫
g2(t)dt, x̄ = x−

∫
f(t)dt

equation (2.12) is transformed into the equation of Brownian motion

dx̄ = dW̄ (t̄), (2.13)

which admits the symmetries

X̄1 =
∂

∂t̄
, X̄2 =

∂

∂x̄
, X̄3 = 2t̄

∂

∂t̄
+ x̄

∂

∂x̄
.

2.2. Symmetry properties

The considered SDE (2.1) has a bound on the dimension of the admitted symmetry group.
We assume that functions f(t, x) and g(t, x), describing the SDE, as well as the coefficients
τ(t) and ξ(t, x) of the symmetry operators, are analytic.

Theorem 2.1. A symmetry group admitted by SDE (2.1) is at most three-dimensional.

Proof. Let us write down a simplified version of the determining equations

ξt + fξx − ξfx − τft − fτt +
1
2
g2ξxx = 0, (2.14)

g

(
ξx − 1

2
τt

)
= ξgx + τgt, (2.15)

where τ(t) and ξ(t, x).
Equation (2.15) can be resolved as

ξx − 1
2
τt = ϕ, ϕ ∈ span(τ, ξ). (2.16)

By span(τ, ξ) we mean functions which are linear in τ and ξ with coefficients depending on
some functions of t and x.

From (2.16) we obtain

ξxx = χ, χ ∈ span(τ, τt, ξ). (2.17)

Substitution of (2.16) and (2.17) into Eq. (2.14) provides us with

ξt = ψ, ψ ∈ span(τ, τt, ξ). (2.18)

Finally, from (2.16) and (2.18) we conclude that all derivatives of τ and ξ are linear
homogeneous functions of τ , ξ and τt. The total number of unconstrained derivatives is at
most 3. Thus, the space of the solutions is at most three-dimensional. A detailed justification
of this reasoning can be found is Sec. 48 of [6].
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Let us show that SDE

dx = µdt+ σdW (t), σ �= 0 (2.19)

with constant drift and diffusion coefficients admits a symmetry group of maximal dimension
3. We recall that τ = τ(t). In the case of a constant diffusion coefficient equation (2.15)
takes the form

ξx =
1
2
τ ′(t)

and can be solved as

ξ =
1
2
τ ′(t)x+A(t),

where A(t) is an arbitrary function. Substitution into Eq. (2.14) leads to

1
2
τ ′′(t)x+A′(t) − 1

2
µτ ′(t) = 0.

The solution is

τ = αt+ β, ξ =
α

2
(x+ µt) + γ,

where α, β and γ are arbitrary constants. The symmetry group is given by the operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ (x+ µt)

∂

∂x
.

Let us note that these operators have the algebra structure

[X1,X2] = 0, [X1,X3] = 2X1 + µX2, [X2,X3] = X2.

By the change of the dependent variable x̄ = x − µt we can always remove the drift
term. We obtain the equation

dx̄ = σdW (t), (2.20)

which can be scaled to equation of Brownian motion (2.13).
Similarly, we can establish a bound on the dimension of the admitted symmetry group

acting in the space of the dependent variable.

Theorem 2.2. Let us consider group transformations generated by the operators of the
form

X = ξ(t, x)
∂

∂x
. (2.21)

Such a symmetry group admitted by SDE (2.1) is at most one-dimensional.

To facilitate the Lie group classification we will show that SDE (2.1) cannot admit sym-
metry operators whose coefficients are proportional with a nonconstant coefficient of propor-
tionality. We recall that such symmetry operators are called linearly connected. For example,
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operators (2.3) and

X̃ = I(t, x)τ(t, x)
∂

∂t
+ I(t, x)ξ(t, x)

∂

∂x
, (2.22)

where I(t, x) is a non-constant function, are linearly connected.

Theorem 2.3. Scalar SDE (2.1) cannot admit linearly connected symmetries.

Proof. Let us assume that the SDE admits two linearly connected symmetries (2.3)
and (2.22). Then, from the last determining Eq. (2.6), we get τ = τ(t) and I = I(t).

From the other two determining equations, namely (2.4) and (2.5), we obtain

(ξ − fτ)It = 0, (2.23)

τIt = 0. (2.24)

If τ �= 0, we obtain that I is a constant function from Eq. (2.24). If τ = 0, we obtain that I
is constant from Eq. (2.23). In both cases we get that the proportionality coefficient between
the admitted operators is constant, i.e., the operators are not linearly connected.

In the next section we will construct a group classification using realizations of real
Lie algebras by non-vanishing vector fields. Theorem 2.3 will be very useful to discard
realizations which cannot be admitted as symmetries.

3. Group Classification

In this section we carry out the Lie point symmetry group classification of SDE (2.1).
We already know that such SDEs can admit only fiber-preserving symmetries (2.8), the
maximal dimension of the admitted symmetry group is 3 and equivalence transformations
have the form (2.9).

To obtain the group classification it is convenient to start from the Lie algebras. Given
their structure constants, we find non-vanishing vector fields satisfying the commutator
relations. Thus, we find all possible realizations of the Lie algebras. Two realizations of the
same Lie algebra are considered equivalent if there exist an equivalence transformation of
form (2.9) mapping one of the realizations into the other.

We will construct non-equivalent realizations of one-, two- and three-dimensional real
Lie algebras by non-vanishing vector fields (2.8). It is convenient to follow the description
of real Lie algebras given in [20]. To make the paper self-sufficient we provide the con-
struction of one- and two-dimensional realizations and comment on the construction of
three-dimensional realizations.

3.1. One-dimensional symmetry groups

A one-dimensional algebra is represented by operator (2.8). By the change of variables (2.9)
it can be brought to the form

X1 =
∂

∂t
if τ(t) �= 0 (3.1)

or

X1 =
∂

∂x
if τ(t) = 0. (3.2)



June 1, 2011 14:56 WSPC/1402-9251 259-JNMP S1402925111001350

On Lie Group Classification of a Scalar Stochastic Differential Equation 183

Table 1. Realizations of one- and two-dimensional real Lie algebras by
vector fields (2.8) up to equivalence transformations (2.9).

Algebra Rank of realization N Realization

A1 1 1 X1 =
∂

∂t

2 X1 =
∂

∂x

2A1 2 1 X1 =
∂

∂t
, X2 =

∂

∂x

[X1, X2] = 0 1 2 X1 =
∂

∂x
, X2 = t

∂

∂x

A2.1 2 1 X1 =
∂

∂t
, X2 = t

∂

∂t
+ x

∂

∂x

[X1, X2] = X1 2 X1 =
∂

∂x
, X2 = t

∂

∂t
+ x

∂

∂x

1 3 X1 =
∂

∂t
, X2 = t

∂

∂t

4 X1 =
∂

∂x
, X2 = x

∂

∂x

Table 2. Lie’s group classification of a scalar stochastic differential equation.

Group dimension Basis operators Equation

0 No symmetries dx = f(t, x)dt + dW (t)

1 X1 =
∂

∂t
dx = f(x)dt + dW (t)

2 X1 =
∂

∂t
, X2 = 2t

∂

∂t
+ x

∂

∂x
dx =

α

x
dt + dW (t), α �= 0

3 X1 =
∂

∂t
, X2 = 2t

∂

∂t
+ x

∂

∂x
, X3 =

∂

∂x
dx = dW (t)

We present these non-equivalent realizations in Table 1. The SDE invariant with respect to
the operator (3.1) has the form

dx = f(x)dt + g(x)dW (t), g(x) �≡ 0.

By equivalence transformations it can be simplified to the SDE presented in Table 2. The
SDE invariant with respect to the symmetry (3.2) has the form (2.12) and actually admits
three symmetries (see Example 2.1). Thus, we obtain only one case of SDE which admits a
one-dimensional symmetry group.

3.2. Two-dimensional symmetry groups

Given a realization of a two-dimensional Lie algebra by two vector fields (2.8), we can
transform one of these vector fields to the form (3.1) or (3.2).

Let us start with the case when X1 is the operator (3.1). The possible equivalence
transformations are restricted to

t̄ = t+ α, x̄ = x̄(x), x̄x �= 0, (3.3)
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where α is an arbitrary constant. There are two possibilities for the second operator X2 of
the two-dimensional Lie algebra.

(1) [X1,X2] = 0
In this case the most general form of the second operator is

X2 = C1
∂

∂t
+ ξ(x)

∂

∂x
,

where ξ(x) is an arbitrary function. The constant C1 can be removed by changing the
second operator X2 → X2 − C1X1. By the change of variables (3.3) this operator can
be simplified as

X2 =
∂

∂x
.

(2) [X1,X2] = X1

In this case we get

X2 = (t+ C1)
∂

∂t
+ ξ(x)

∂

∂x
.

An arbitrary constant C1 can be discarded. Then the operator can be brought to the
form

X2 = t
∂

∂t
if ξ(x) = 0

or

X2 = t
∂

∂t
+ x

∂

∂x
if ξ(x) �= 0.

We repeat this procedure for the other realization X1, which is given by operator (3.2).
It is preserved by the equivalence transformations

t̄ = t̄(t), x̄ = x+ h(t), t̄t �= 0. (3.4)

(1) For [X1,X2] = 0 we get

X2 = τ(t)
∂

∂t
+ ξ(t)

∂

∂x
,

which can be simplified to the form

X2 =
∂

∂t
if τ(t) �= 0

or

X2 = t
∂

∂x
if τ(t) = 0.

(2) For [X1,X2] = X1 the operator X2 has the form

X2 = τ(t)
∂

∂t
+ (x+ ξ(t))

∂

∂x
.
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It can be transformed to a simpler form

X2 = t
∂

∂t
+ x

∂

∂x
if τ(t) �= 0

or

X2 = x
∂

∂x
if τ(t) = 0.

The non-equivalent realizations so obtained are summarized in Table 1. It follows from
Theorem 2.3 that linearly connected operators cannot be admitted by SDE (2.1). This
excludes 3 out of 6 realizations of two-dimensional Lie algebras. Among the 3 remaining
cases there are 2 realizations which contain the operator (3.2). As noted in the end of
point 3.1, the corresponding SDEs admit three-dimensional symmetry groups. The only
remaining realization, namely the first (N = 1) realization of algebra A2.1, possesses the
invariant SDE

dx = µdt+ σ
√
xdW (t),

where µ �= σ2/4 and σ �= 0 are constants. A modified form of this case, where the equation
is further simplified by an equivalence transformation, is given in Table 2. For µ = σ2/4
this SDE admits three symmetries.

3.3. Three-dimensional symmetry groups

The three-dimensional Lie algebras can be split into solvable and unsolvable algebras. The
solvable algebras and algebra

sl(2,R) : [X1,X2] = X1, [X2,X3] = X3, [X1,X3] = 2X2

contain two-dimensional subalgebras. Their realizations can be constructed with the help of
the realizations of two-dimensional algebras. This procedure is similar to that outlined in the
previous part, where realizations of two-dimensional algebras were obtained with the help of
realizations of one-dimensional algebra. It turns out that there are many realizations which
cannot be symmetries of SDE (2.1). The only one (up to equivalence) which is admitted by
a scalar SDE is given in Table 2.

The other unsolvable three-dimensional algebra

so(3) : [X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2

has no realization by vector fields (2.8).
The results of this section can be summarized in the following theorem:

Theorem 3.1. Let SDE (2.1) be invariant under the Lie group G of local point transforma-
tions with Lie algebra realized by vector fields X1, . . . ,Xk of the form (2.8). Then k = 0, 1, 2,
or 3 and

rank(X1, . . . ,Xk) = min(k, 2).
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4. Conclusion

In this paper we illustrated how one can carry out the Lie point symmetry group classifica-
tion of scalar stochastic differential equations using Lie algebra realizations by vector fields.
Although a direct method can be used to obtain this Lie group classification, it is no longer
practical for more complicated cases such as systems of SDEs [14] due to the complexity of
the determining equations. Applications of symmetries for integration of scalar stochastic
differential equations can be found in [13].
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