
Journal of Nonlinear Mathematical 
Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251 
Journal Home Page: https://www.atlantis-press.com/journals/jnmp 

On the Non-Inheritance of Symmetries of Partial Differential 

Equations 

Keshlan S. Govinder, Barbara Abraham-Shrauner 

To cite this article: Keshlan S. Govinder, Barbara Abraham-Shrauner (2011) On the Non-

Inheritance of Symmetries of Partial Differential Equations, Journal of Nonlinear 

Mathematical Physics 18:Supplement 1, 135–142, DOI: 

https://doi.org/10.1142/S1402925111001325 

To link to this article: https://doi.org/10.1142/S1402925111001325 

Published online: 04 January 2021 

https://www.atlantis-press.com/journals/jnmp


June 1, 2011 14:58 WSPC/1402-9251 259-JNMP S1402925111001325

Article

Journal of Nonlinear Mathematical Physics, Vol. 18, Suppl. 1 (2011) 135–142

c© K. S. Govinder and B. Abraham-Shrauner
DOI: 10.1142/S1402925111001325

ON THE NON-INHERITANCE OF SYMMETRIES OF PARTIAL
DIFFERENTIAL EQUATIONS

KESHLAN S GOVINDER∗ and BARBARA ABRAHAM-SHRAUNER†
∗Astrophysics and Cosmology Research Unit, School of Mathematical Sciences

University of KwaZulu-Natal, Durban 4041, South Africa
govinder@ukzn.ac.za

†Department of Electrical and Systems Engineering
Washington University, St. Louis, MO, 63130, USA

bas@ese.wustl.edu

Received 12 October 2010
Accepted 3 November 2010

The inheritance of symmetries of partial differential equations occurs in a different manner from
that of ordinary differential equations. In particular, the Lie algebra of the symmetries of a partial
differential equation is not sufficient to predict the symmetries that will be inherited by a resulting
reduced partial (or ordinary) differential equation. We show how this suggests a possible source of
Type I hidden symmetries of partial differential equations as well as provide interesting consequences
for solutions of partial differential equations.
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1. Introduction

Nonlinear partial differential equations are notoriously difficult to solve. Indeed, no tech-
nique has been devised to find their general solution for most equations (beyond applications
of the the inverse scattering transform [10]). It is usual to try to find exact solutions using
a variety of methods. The most successful method is due to Lie — his method generates
(usually physically important [7]) solutions by exploiting the group invariant properties of
the equations [14, 5].

In the route to finding these group invariant solutions of partial differential equations
(pdes), one needs to reduce the original pde to a new pde (or ordinary differential equation
(ode)) using symmetries of the original equation. In order to solve the reduced equation,
it is useful to determine the symmetries of this equation. As a result, it is important to
understand the fate of symmetries of the original pde. Those symmetries (other than the one
used for the reduction variables) that are lost for the reduced pde are called Type I hidden
symmetries of the original pde. Any new symmetries that are gained are termed Type II
hidden symmetries of the reduced pde (See [1–3, 8] for examples of this phenomenon. It is
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nontrivial to determine the origins of symmetries (hidden or otherwise) in the reduction of
pdes to odes [12].)

We illustrate the phenomenon via the well–known shallow water wave (SWW) equa-
tion [6]

uxxxt + αuxuxt + βutuxx − uxt − uxx = 0 u = u(x, t) (1.1)

with the four Lie point symmetries

V1 = x∂x −
(

u − 2x
α

− t

β

)
∂u (1.2)

V2 = ∂x (1.3)

V3 = ∂u (1.4)

V4 = g(t)
(

∂t +
1
β

∂u

)
. (1.5)

If we reduce (1.1) via the combination

Va = V2 + V4, (1.6)

i.e.

z = x −
∫

1
g(t)

, w(z) = u − t

β
(1.7)

we obtain

wzzzz + (α + β)wzwzz − wzz = 0. (1.8)

This reduced equation has the symmetries

U1 = ∂z (1.9)

U2 = ∂w (1.10)

U3 = z∂z −
(

w − 2z
α + β

)
∂w. (1.11)

U3 is a Type II hidden symmetry as it does not arise from any of (1.2)–(1.4) and Va. Of note
here, is that, in addition to Va being “used up” in the reduction, V1 also has no relevance
to the reduced equation.

We can indicate one possible origin of this hidden symmetry (though others are possible
[13]). If we consider the equation

wzzzz + (α + β)wzwzz − wzz = 0, (1.12)

where we take w = w(z, y) then we find its symmetries are

X1 = f(y)∂z (1.13)

X2 = g(y)∂y (1.14)



June 1, 2011 14:58 WSPC/1402-9251 259-JNMP S1402925111001325

Non-Inheritance of Symmetries 137

X3 = h(y)∂w (1.15)

X4 = l(y)
(

z∂z −
(

w − 2z
α + β

)
∂w

)
. (1.16)

Setting all the arbitrary functions above to unity, we have that the Type II hidden symmetry
U3 could have arisen from X4 when we reduce (1.12) via X2.

One could argue for a most systematic approach to finding possible origins of hidden
symmetries. However, such an approach is difficult to determine due to some surprising
observations (some of which were first indicated in [12]). In the next section we indicate
exactly what the complications are and the implications thereof.

2. Loss of Symmetry

The reduction of order of odes is governed by the Lie algebra of the equation under analysis.
If the Lie bracket relationship of two symmetries of the ode, say U1 and U2, is given by

[U1, U2] = λU1, (2.1)

where λ is a nonzero constant, it is well–known that reduction of order of the ode by U1

will result in U2 (transformed) being a point symmetry of the reduced equation [14]. In the
case of pdes, this is not the case, as has been implicitly pointed out in [11].

Consider the Lie algebra of symmetries [17]

G1 = ∂y (2.2)

G2 = y∂y + t∂t (2.3)

G3 = ∂w (2.4)

G4 = t∂y, (2.5)

where w = w(y, t), which was a (failed) candidate to determine the origin of symmetries
of a pde obtained from a reduction of the Korteweg–de Vries equation [12]. As the Lie
brackets of G1 and G4 are

[G1, G4] = 0 (2.6)

one would expect that reduction via either G1 or G4 would result in the other symmetry
being a symmetry (suitably transformed) of the new equation. However, the reduction
variables defined by G1 are simply t and w. Since G4 only has the ∂y operator, it has no
relevance to the new equation. Thus two symmetries are unexpectedly (based on the Lie
algebra) ‘used up’ in the reduction. As a result, we could not utilise this Lie algebra of
symmetries to construct an appropriate pde that had a common reduced equation with the
Korteweg–de Vries equation.

To take a more general case, we define U1 and U2 via

U1 = ∂x (2.7)

U2 = [f(t, u) + λx]∂x + g(t, u)∂t + h(t, u)∂u, (2.8)

where u = u(t, x), and so (2.1) holds. The reduction variables defined by U1, viz.

p = t, q = u (2.9)
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ensure that U2 transforms to

Ū2 = [f(p, q) + λx]∂x + g(p, q)∂p + h(p, q)∂q. (2.10)

Since the reduced equation must be in the variables p and q, the first part of the generator
is not relevant and we have that

Ū2 = g(p, q)∂p + h(p, q)∂q . (2.11)

However, what this result hides is the fact that, if g = h = 0, then U2 in (2.11) does not
manifest itself as a point symmetry of the reduced equation as it is now zero. Thus, if we
have

U1 = ∂x (2.12)

U2 = [f(t, u) + λx]∂x (2.13)

then (2.1) holds, but we lose both symmetries after reducing the number of variables in the
pde via U1.

While the above example is instructive, it does, by its simplicity, obscure the true depen-
dence of U1 and U2 for this result to hold. Consider now the symmetry

X1 = ∂x + t∂u, (2.14)

where u = u(t, x). In order for (2.1) to hold, we require that X2 must take the form

X2 = [λx + f(u − xt, t)]∂x + g(u − xt, t)∂t + [x(g(u − xt, t) + λt) + h(u − xt, t)]∂u. (2.15)

The reduction variables defined by (2.14) are

p = u − xt, q = t. (2.16)

Using these variables, X2 transforms to

X̄2 = [−qf(p, q) + h(p, q)]∂p + g(p, q)∂q (2.17)

which is a point symmetry of the reduced pde. In the event that

h = qf, g = 0 (2.18)

X̄2 is annihilated, ie. when

X2 = [f(u − xt, t) + λx]∂x + t[f(u − xt, t) + λx]∂u (2.19)

and X1 is given by (2.14) then reduction via (2.16) will cause X2 to be lost for the reduced
equation in spite of (2.1) holding.
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We observe that X2 in (2.19) can be written as

X2 = [f(u − xt, t) + λx]X1, (2.20)

a result that was not immediately apparent in (2.13). The following proposition then holds:

Proposition 2.1. Define two Lie point symmetries as

Y1 = ξ∂x + τ∂t + η∂u (2.21)

and

Y2 = [f(p, q) + λg]Y1, (2.22)

where p and q are reduction variables (in the original variables) defined by (equivalently
zeroth order invariants of) Y1 and g is given by any one of the following three (equivalent)
functions: ∫

1
ξ(p, q, x)

dx;
∫

1
τ(p, q, t)

dt;
∫

1
η(p, q, u)

du. (2.23)

These symmetries satisfy

[Y1, Y2] = λY1 (2.24)

but Y2 will not be a symmetry of the reduced equation in the new variables p and q.

This is in contrast to the case of odes where (2.24) ensures that Y2 (transformed) will
always be a point symmetry of the reduced ode. (Note that, in (2.23) the integrals must only
be evaluated after substituting for the non-integration variables via the reduction variables.
After evaluating the integral, a back substitution must be effected to obtain g in the original
variables.)

3. Discussion

An important consequence of Proposition 2.1 is that, when one seeks to obtain a pde which
admits a symmetry of the form Y1 by increasing the number of variables, then Y2 also arises
as a symmetry of this new pde. This is one source of Type I hidden symmetries of pdes.

Let us examine some equations which admit symmetries of the form given in Proposi-
tion 2.1. We begin with the simplest commuting case, i.e.

[U1, U2] = 0 (3.1)

with

U1 = ∂x (3.2)

U2 = f(t, u)∂x (3.3)

and u = u(t, x). The invariants of U1 are calculated with little effort and yield

F (t, u, ut, ux, uxx, uxt, utt, . . .) = 0 (3.4)

which is the general form of the pde invariant under U1.
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We now impose U2 suitably extended. We find (using SYM [9]) that F is now restricted
further to

G(t, u, k1, k2, k3, k4, . . .) = 0, (3.5)

where

k1 =
ux

fuut + ft
(3.6)

k2 =
fuuux

2 + fuuxx

fu(fuut + ft)3
(3.7)

k3 =
fu

2uxutx − fu
2utuxx − ftfuuxx − fuufuutux

2 + fuux
2ftu − 2ftfuuux

2

fu
2ux(fuut + ft)2

(3.8)

k4 =
(

uxx (fuut + ft) 2

fu
2ux

2
− 2 (fuut + ft)utx

fuux
+

3ft
2fuu

fu
3

+
2ftfuuut

fu
2

− 4ftftu

fu
2

− 2utftu

fu
+

ftt

fu
+ utt

)/
(fuut + ft) (3.9)

If we set the first two invariants to zero, we essentially have odes. However, in the case
of k3 we can construct a proper pde via

k3 = 0, (3.10)

i.e. (when we set f(t, u) = u)

utuxx − uxuxt = 0. (3.11)

Interestingly, reducing (3.11) utilising U1 results in the identity

0 = 0. (3.12)

Thus any function of the invariants of U1 will satisfy (3.11). Indeed, given the form of (3.5)
we believe that any function of the invariants of U1 will satisfy the equation.

As another example, let us consider a case where the equation admits more than just
two symmetries. Thus we first impose

U1 = ∂x (3.13)

U2 = f(t, u)∂x (3.14)

in order to have the Lie bracket relationship (3.1) and satisfy the requirements of Proposition
2.1. We now choose the third symmetry as

U3 = ∂t (3.15)

(both for simplicity and to allow the equation to admit travelling wave solutions). Taking
the Lie bracket of U2 and U3 we obtain

[U3, U2] = ft∂x. (3.16)
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Requiring the Lie algebra to close requires f(t, u) to take on one of the following forms:

f(u); f(u) + t; etf(u) (3.17)

so that the Lie algebra formed is Abelian, the solvable Lie algebra A1 ⊕A2 or the nilpotent
algebra A3,1 which is the algebra of the Weyl group [15, 16] respectively. We take the third
form to illustrate our example. Imposing U1 and U2 yields an equation of the form

F (u, ut, ux, uxx, uxt, utt, . . .) = 0. (3.18)

Imposing U3 next results in

G(u, k1, k2, k3, k4, . . .) = 0, (3.19)

where

k1 =
ux

utf ′ + f
(3.20)

k2 =
u2

xf ′′ + uxxf
′

f ′(utf ′ + f)3
(3.21)

k3 =
−u2

xff ′′ + (u2
x + utxux − uxxut)f ′2 − u2

xutf
′f ′′

uxf ′2(utf ′ + f)2
(3.22)

k4 =
u2

xf2f ′′ + ((utt − 2ut)u2
x − 2ututxux + uxxu

2
t )f

′3 + u2
xff ′(utf

′′ − f ′)
u2

xf ′3(utf ′ + f)
. (3.23)

Again, it seems clear that any function of the invariants of U1 will satisfy (3.19).
This leads us to the following conjecture:

Conjecture 3.1. Let a pde admit two symmetries satisfying the requirements of Proposi-
tion 2.1. Then any function of the invariants of symmetry Y1 will satisfy the pde identically.

As a final observation, we note that hidden symmetries in pdes, notwithstanding the
common origins indicated with odes, are indeed different objects. This is clearly illustrated
in the following equation:

uxx + utf(·) = 0, u = u(x, t) (3.24)

where f(·) is an arbitrary function of dependent and independent variables and all deriva-
tives of the dependent variable. As a result (3.24) cannot admit any point symmetries. If
we now look for steady state solutions of this equation (ie. independent of t) then the pde

reduces to the ode

uxx = 0, u = u(x) (3.25)

which has eight Lie point symmetries, all of which are Type II hidden symmetries. Such
examples are easy to generate and we have given in [2] a different reduction to (3.25) as well
as a source of these hidden symmetries. Thus it would seem that Type II hidden symmetries
proliferate in the study of pdes. We are able to find symmetries via reductions of equations
that do not admit any Lie point symmetries. This is not entirely surprising as nonclassical
symmetries [4] exhibit exactly this behaviour. However, the origin of transformations that
generate these Type II hidden symmetries is still unclear.
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