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The paper is devoted to the Lie group analysis of a nonlinear equation arising in metallurgical
applications of Magnetohydrodynamics. Self-adjointness of the basic equations is investigated. The
analysis reveals two exceptional values of the exponent playing a significant role in the model.
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1. Introduction

High frequency external magnetic fields are used in metallurgy (e.g. in casting process in
the steel industry) in order to control a flow of liquid metals and to generate internal
stirring within the liquid phase. This allows one to reach homogeneity of solidifying metals
by eliminating blowholes caused by escaping gases. The process of internal stirring of liquid
metals by high frequency magnetic fields leads to “skin effects” in a thin surface layer of
liquid metals.

A mathematical model for describing this phenomenon has been suggested by H. K.
Moffatt [1]. He starts with the Prandtl boundary-layer equations

uux + vuy = νuyy − 1
ρ
px,

py = 0, ux + vy = 0
(1.1)

for a planar steady flow of liquid with a constant density ρ and a constant coefficient of the
kinematic viscosity ν. The flow is parallel to a flat plate and is directed along the x axis
in the Cartesian coordinates (x, y). Moffatt considers a thin surface layer of high Reynolds
number flows of liquid metals placed in a high frequency magnetic field and assumes that
px is negligible compare with the other terms in the first equation in (1.1). In other words,
he assumes that there is no pressure gradient outside the boundary layer. Then, upon
introducing the stream function ψ(x, y) defined by the equations

u = ψy, v = −ψx, (1.2)
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the third equation in (1.1) is satisfied identically, and the first equation in (1.1) yields the
following equation for the stream function:

ψyψxy − ψxψyy = νψyyy. (1.3)

Furthermore, using physical arguments, he obtains the boundary conditions

ψ = 0, ψy = Axm on y = 0, (1.4)

ψy → 0 as y → ∞. (1.5)

Here ν, A, m = const. The physical meaning of the constants A and m shows that the
following conditions hold:

A > 0 when m+ 1 > 0, (1.6)

A < 0 when m+ 1 < 0. (1.7)

Referring to “standard similarity arguments of boundary-layer theory” presented in [2],
Subsec. 5.9, Moffatt states that upon letting

ψ = (ν|A|xm+1)1/2f(λ) (1.8)

with

λ = (ν−1|A|xm+1)1/2y (1.9)

the partial differential equation (1.3) and the boundary conditions (1.4), (1.5) yield the
third-order ordinary differential equation

f ′′′ +
m+ 1

2
ff ′′ −mf ′2 = 0 (1.10)

together with the side conditions

f(0) = 0, f ′(∞) = 0 (1.11)

and

f ′(0) =

{
+1 in case (1.6),

−1 in case (1.7).
(1.12)

Moffatt’s formulae (1.8), (1.9) are repeated in the recent paper [3] dedicated to existence
of solutions of the problem (1.10)–(1.12).

However, one can verify [4] that the substitution of (1.8), (1.9) in Eqs. (1.3)–(1.5) leads
to the equation

xf ′′′ +
m+ 1

2
ff ′′ − (m+ 1)f ′2 = 0 (1.13)

instead of Eq. (1.10). According to [4], this is due to the fact that η defined by (1.9) is not
an invariant of the one-parameter group admitted by Eqs. (1.3)–(1.5). Upon replacing (1.9)
by the appropriate invariant one arrives at Eq. (1.10).
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In the papers [1,3], the value m = −1/2 of the exponent m appears as a “critical value”
of Eq. (1.10). One can find an interesting discussion of a physical significance of this critical
value of m in [1], page 186.

In the present paper we will study the symmetries and self-adjointness of Moffatt’s model
and derive Eqs. (1.10)–(1.12) from the invariance principle [6]. The Lie group analysis reveals
different conservation forms of Eq. (1.3) and provides two exceptional values, m = −1/2
and m = 3, of the exponent m for Eq. (1.10). Namely, Eq. (1.10) is self-adjoint if m = −1/2;
in this case a first integral is found for Eq. (1.10). The second exceptional case m = 3 singles
out the equation (1.10) having more symmetries than for all other values of m.

2. Symmetries

2.1. Prandtl equations

The Prandtl boundary-layer equations (1.1) admit the Lie algebra spanned by the following
operators [5]:

X1 = x
∂

∂x
+ u

∂

∂u
+ 2p

∂

∂p
, X2 = y

∂

∂y
− 2u

∂

∂u
− v

∂

∂v
− 4p

∂

∂p
,

X3 =
∂

∂x
, X4 =

∂

∂p
, X5 = h(x)

∂

∂y
+ uh′(x)

∂

∂v
,

(2.1)

where h(x) is an arbitrary function and h′(x) is its first derivative.

2.2. Moffat’s equation

We can convert the symmetries of the Prandtl equations (1.1) into symmetries of Mof-
fatt’s equation (1.3) by “integrating” the operators (2.1). Namely, we write the unknown
symmetries of Eq. (1.3) in the form

X̃ = ξ1
∂

∂x
+ ξ1

∂

∂y
+ η

∂

∂ψ
(2.2)

with an undetermined coefficient η = η(x, y, ψ) and with the coefficients ξ1, ξ2 taken from
the operators (2.1). Then we find η by using Eq. (1.2) and comparing the operators (2.1)
with the prolonged operator (2.2),

X̃ = ξ1
∂

∂x
+ ξ2

∂

∂y
+ η

∂

∂ψ
+ ζ1

∂

∂ψx
+ ζ2

∂

∂ψy
. (2.3)

Here ζ1 and ζ2 are obtained by the prolongation formulae

ζ1 = Dx(η) − ψxDx(ξ1) − ψyDx(ξ2),

ζ2 = Dy(η) − ψxDy(ξ1) − ψyDy(ξ2),
(2.4)

where

Dx =
∂

∂x
+ ψx

∂

∂ψ
, Dy =

∂

∂y
+ ψy

∂

∂ψ
.
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Let us take the operator (2.2) associated with the first operator from (2.1):

X̃1 = x
∂

∂x
+ η

∂

∂ψ
. (2.5)

Here ξ1 = x, ξ2 = 0, and the prolongation formulae (2.4) yield:

ζ1 = Dx(η) − ψxDx(x) = ηx + (ηψ − 1)ψx,

ζ2 = Dy(η) = ηy + ηψψy.
(2.6)

Hence, the prolongation (2.3) of the operator (2.5) is written

X̃1 = x
∂

∂x
+ η

∂

∂ψ
+ [ηx + (ηψ − 1)ψx]

∂

∂ψx
+ [ηy + ηψψy]

∂

∂ψy
. (2.7)

Now we write the operator X1 from (2.1) by omitting the term with ∂/∂p and using
Eq. (1.2):

X1 = x
∂

∂x
+ ψy

∂

∂ψy
. (2.8)

Comparing the coefficients of ∂/∂ψx, ∂/∂ψy in (2.8) and (2.7) we obtain:

ηx + (ηψ − 1)ψx = 0, ηy + ηψψy = ψy.

It follows that

ηx = ηy, ηψ = 1,

and hence, upon integrating,

η = ψ + C1, C1 = const.

Thus, the “integration” of X1 from (2.1) yields the following operator (2.2):

X̃1 = x
∂

∂x
+ (ψ + C1)

∂

∂ψ
. (2.9)

It is manifest that the operator (2.9) is admitted by Moffatt’s equation (1.3). Since the
constant C1 is arbitrary, the operator (2.9) provides two symmetries:

X̃ ′
1 = x

∂

∂x
+ ψ

∂

∂ψ
, X̃ ′′

1 =
∂

∂ψ
. (2.10)

Let us take the operator (2.2) associated with the second operator from (2.1):

X̃2 = y
∂

∂y
+ η

∂

∂ψ
. (2.11)

In this case ξ1 = 0, ξ2 = y, and the prolongation formulae (2.4) yield:

ζ1 = Dx(η) = ηx + ηψψx,

ζ2 = Dy(η) − ψyDy(y) = ηy + (ηψ − 1)ψy.
(2.12)
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Hence, the prolongation (2.3) of the operator (2.11) is written

X̃2 = y
∂

∂y
+ η

∂

∂ψ
+ [ηx + ηψψx]

∂

∂ψx
+ [ηy + (ηψ − 1)ψy]

∂

∂ψy
. (2.13)

As above, we compare (2.13) with the operator

X2 = y
∂

∂y
− 2ψy

∂

∂ψy
− ψx

∂

∂ψx

and obtain:

ηx + ηψψx = −ψx, ηy + (ηψ − 1)ψy = −2ψy,

whence

ηx = ηy, ηψ = −1.

These equations yield

η = −ψ + C2

with an arbitrary constants C2. Thus, the “integration” of X2 from (2.1) yields X ′′
1 from

(2.10) and the following new symmetry for Eq. (2.2):

X̃2 = y
∂

∂y
− ψ

∂

∂ψ
. (2.14)

One can readily verify that the application of the above procedure to the operator X3

from (2.1) yields η = C3, i.e. leads to X ′′
1 from (2.10) and to the operator X3 itself:

X̃3 =
∂

∂x
. (2.15)

The generator of translations in p, i.e. the operator X4 from (2.1) does not lead to any
symmetries of Eq. (1.3) since this equation does not contain p.

Finally, consider the operator (2.2) associated with X5 from (2.1):

X̃5 = h(x)
∂

∂y
+ η

∂

∂ψ
. (2.16)

Substituting ξ1 = 0, ξ2 = h(x) in (2.4) we obtain the prolonged operator (2.16):

X̃5 = h(x)
∂

∂y
+ η

∂

∂ψ
+ [ηx + ηψψx − h′(x)ψy]

∂

∂ψx
+ [ηy + ηψψy]

∂

∂ψy
. (2.17)

Comparing (2.17) with the operator

X5 = h(x)
∂

∂y
− h′(x)ψy

∂

∂ψx

we obtain:

ηx + ηψψx − h′(x)ψy = −h′(x)ψy, ηy + ηψψy = 0,

or

ηx + ηψψx = 0, ηy + ηψψy = 0,
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whence

ηx = ηy = ηψ = 0.

These equations yield

η = C5.

Hence, the “integration” of X5 from (2.1) yields X ′′
1 from (2.10) and the following new

symmetry for Eq. (2.2):

X̃5 = h(x)
∂

∂y
. (2.18)

Thus, we have converted the symmetries (2.1) of the Prandtl equations (1.1) into sym-
metries (2.10), (2.14), (2.15), (2.18) of Moffatt’s equation (1.3). Changing the notation we
write these symmetries of Eq. (1.3) as follows:

X1 = x
∂

∂x
+ ψ

∂

∂ψ
, X2 = y

∂

∂y
− ψ

∂

∂ψ

X3 =
∂

∂x
, X4 =

∂

∂ψ
, X5 = h(x)

∂

∂y
.

(2.19)

One can verify by solving the determining equations that the operators (2.19) span the
maximal Lie algebra of Lie point symmetries of Moffatt’s equation (1.3).

3. Application of the Invariance Principle

3.1. Formulation of the invariance principle

Let x = (x1, . . . , xn) and u = (u1, . . . , um) denote independent and dependent variables,
respectively. The first, second, . . . derivatives are denoted by

u(1) = {uαi }, u(2) = {uαij}, . . .
with

uαi = Di(uα), uαij = Di(uαj ) = DiDj(uα),

where Di is the total differentiation:

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · .

Differential equations of an order s are written

F (x, u, . . . , u(s)) = 0.

If F is a vector, we have a system of differential equations.
We will use a general principle for tackling boundary and/or initial value problems for

equations having certain symmetries. It was formulated in [6] (see also [7]) and called the
invariance principle.
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Consider an initial (boundary) value problem

F
(
x, u, . . . , u(s)

)
= 0, (3.1)

B(x, u, . . . , u(r))
∣∣
M

= 0, r < s, (3.2)

where M is called an initial (or boundary) manifold. We assume that the differential equa-
tion (3.1) admits a Lie algebra L, i.e. Eq. (3.1) is invariant under the group G with the Lie
algebra L. Let K ⊂ L be a subalgebra of L, and H be the subgroup H ⊂ G generated by
the subalgebra K.

Definition 3.1. We say that the problem (3.1)–(3.2) admits the subalgebra K if

(1) Manifold M is invariant under the subgroup H generated by K, (3.3)

(2) Eq. (3.2) admits K̂, (3.4)

where K̂ is obtained by restricting to the manifold M of the operator K upon its prolon-
gation to the derivatives involved in B(x, u, . . . , u(r)).

Invariance principle. If the initial (boundary) value problem (3.1)–(3.2) admits the sub-
algebra K, then one should seek the solution to the problem in question among the H-
invariant solutions of the differential equation (3.1).

3.2. Subalgebra admitted by the problem for liquid metal flows

We consider the boundary value problem (1.3)–(1.5):

ψyψxy − ψxψyy = νψyyy, (1.3)

ψ = 0, ψy = Axm on y = 0, (1.4)

ψy → 0 as y → ∞. (1.5)

Let us denote by L the Lie algebra spanned by the operators (2.19) and find its subalgebra
K ⊂ L admitted the boundary value problem (1.3)–(1.5).

Lemma 3.1. K is the one-dimensional subalgebra spanned by the operator

X = 2X1 + (1 −m)X2, (3.5)

or

X = 2x
∂

∂x
− (m− 1)y

∂

∂y
+ (m+ 1)ψ

∂

∂ψ
. (3.6)

Proof. Any operator X ∈ K is a linear combination of the operators (2.19):

X = αX1 + βX2 + γX3 + δX4 + εX5 (3.7)

≡ (αx+ γ)
∂

∂x
+ (βy + εh(x))

∂

∂y
+ [(α− β)ψ + δ]

∂

∂ψ
, (3.8)

where the constant coefficients α, . . . , ε are determined from the invariance of the side
conditions (1.4), (1.5). Let us begin with the boundary condition (1.4). In this case the



June 1, 2011 14:57 WSPC/1402-9251 259-JNMP S1402925111001337

150 N. H. Ibragimov

manifold M is given by the equation y = 0. Applying the condition (3.3) of Definition 3.1
to the operator (3.7) we obtain

X(y)
∣∣
y=0

= (βy + εh(x))
∣∣
y=0

= εh(x) = 0,

whence ε = 0. Thus, the operator (3.7) becomes

X = (αx+ γ)
∂

∂x
+ βy

∂

∂y
+ [(α− β)ψ + δ]

∂

∂ψ
. (3.8)

It is manifest that the operator (3.8) satisfies the invariance test

X(y)
∣∣
y=∞ = 0

for the manifold y = ∞ of the the boundary condition (1.5) as well. Indeed, setting y = 1/z
we rewrite the manifold y = ∞ in the form z = 0 and the operator (3.8) in the form

X ′ = (αx+ γ)
∂

∂x
− βz

∂

∂z
+ [(α− β)ψ + δ]

∂

∂ψ
. (3.8′)

Then the validity of the invariance test X ′(z)|z=0 = 0 is self-evident.
Now we turn to the condition (3.4) of Definition 3.1. The prolongation formula (2.3)

yields the following prolongation of the operator (3.8) to ψy :

X̃ = (αx+ γ)
∂

∂x
+ βy

∂

∂y
+ [(α− β)ψ + δ]

∂

∂ψ
+ (α− 2β)ψy

∂

∂ψy
. (3.9)

Let us begin with the boundary condition (1.4). The restriction of the operator (3.9) to the
manifold y = 0 has the form

X̂ = (αx+ γ)
∂

∂x
+ [(α− β)ψ + δ]

∂

∂ψ
+ (α− 2β)ψy

∂

∂ψy
, (3.10)

and hence the invariance test for the data (1.4),

X̂(ψ)
∣∣
(1.4)

= 0, X̂(ψy −Axm)
∣∣
(1.4)

= 0,

provides the following equations:

[(α− β)ψ + δ]ψ=0 ≡ δ = 0, (3.11)

[(α − 2β)ψy −Am(αx+ γ)xm−1]ψy=Axm

≡ [(1 −m)α− 2β]Axm −mγ Axm−1 = 0.
(3.12)

Assuming that A �= 0, m �= 0, we obtain from Eqs. (3.11)–(3.12):

δ = 0, γ = 0, (1 −m)α− 2β = 0. (3.13)

Letting α = 2 we obtain β = 1 −m, and the operator (3.8) coincides with (3.5),

X = 2X1 + (1 −m)X2.
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Rewriting this operator in the form (3.8′), one can verify that it leaves invariant the bound-
ary condition (1.5) as well. This completes the proof of the lemma.

3.3. Derivation of Moffatt’s solution (1.10)

We find two functionally independent invariants of the subgroup H ⊂ G with the generator
(3.6) by computing two first integrals for the characteristic system

dx

2x
= − dy

(m− 1) y
=

dψ

(m+ 1)ψ

of the equation X(J) = 0. Writing the characteristic system in the form

dy

y
+
m− 1

2
dx

x
= 0,

dψ

ψ
− m+ 1

2
dx

x
= 0

we obtain two first integrals

y x(m−1)/2 = const., ψ x−(m+1)/2 = const.

The left-hand sides of these first integrals can be multiplied by any non-vanishing constants,
k, l−1, and provide two functionally independent invariants λ and J :

λ = ky x(m−1)/2, J = l−1ψ x−(m+1)/2. (3.14)

Letting J = f(λ) we obtain the following form for the invariant solutions:

ψ = l x(m+1)/2 f(λ). (3.15)

We begin by computing the derivatives of λ defined in (3.14):

λx =
k(m− 1)

2
y x(m−3)/2, λy = k x(m−1)/2.

The differentiations of (3.15) yield:

ψx =
l

2
x(m−1)/2

[
(m+ 1)f + (m− 1)λf ′

]
, ψy = kl xm f ′, (3.16)

ψxy = klxm−1

[
mf ′ +

m− 1
2

λf ′′
]
, ψyy = k2l x(3m−1)/2 f ′′, (3.17)

and

ψyyy = k3l x2m−1 f ′′′. (3.18)

Now we substitute the expressions (3.16)–(3.18) in Eq. (1.3) and obtain:

νψyyy + ψxψyy − ψyψxy = k2l2x2m−1

[
kν

l
f ′′′ +

m+ 1
2

ff ′′ −mf ′2
]
. (3.19)
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Since k and l are arbitrary constants, we will take

l = kν (3.20)

and reduce Eq. (1.3) to the ordinary differential equation (1.10):

f ′′′ +
m+ 1

2
ff ′′ −mf ′2 = 0. (3.21)

Let us turn now to the boundary conditions (1.4) and (1.5). Applying the first equation in
(1.4) and the condition (1.5)–(3.15) we obtain Eq. (1.11):

f(0) = 0, f ′(∞) = 0. (3.22)

Substituting the expression for ψy from (3.16) in the second equation (1.4) and invoking
(3.20) we obtain

k2ν xm f ′(0) = Axm.

This equation implies the equation

k2ν = |A| (3.23)

and Eq. (1.12):

f ′(0) =

{
+1 when m+ 1 > 0,

−1 when m+ 1 < 0.
(3.24)

Furthermore, Eqs. (3.23), (3.20) yield

k = (ν−1|A|)1/2, l = (ν|A|)1/2.
Finally, invoking (3.15) and (3.14), we arrive at the following result.

Theorem 3.1. The substitution

ψ = (ν|A|xm+1)1/2 f(λ) (3.25)

with

λ = (ν−1|A|xm−1)1/2 y (3.26)

reduces the problem on finding the solution of the partial differential equation (1.3) satisfy-
ing the boundary conditions (1.4), (1.5) to solution of the third-order ordinary differential
equation (3.21) with the boundary conditions (3.22), (3.24).

4. Adjoint Equations

4.1. Adjoint equations and self-adjointness of nonlinear equations

We use the notation of Sec. 3.1 and consider systems of m differential equations

Fα(x, u, u(1), . . . , u(s)) = 0, α = 1, . . . ,m. (4.1)
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Definition 4.1. The adjoint equations to Eq. (4.1) are defined by (see [8])

F ∗
α

(
x, u, v, . . . , u(s), v(s)

)
= 0, α = 1, . . . ,m, (4.2)

with

F ∗
α

(
x, u, v, . . . , u(s), v(s)

)
=
δ(vβFβ)
δuα

, (4.3)

where

δ

δuα
=

∂

∂uα
+

∞∑
s=1

(−1)sDi1 · · ·Dis
∂

∂uαi1···is
, α = 1, . . . ,m, (4.4)

is the Euler–Lagrange operator, so that

δ(vβFβ)
δuα

=
∂(vβFβ)
∂uα

−Di

(
∂(vβFβ)
∂uαi

)
+DiDk

(
∂(vβFβ)
∂uαik

)
− · · · .

Here v = (v1, . . . , vm) are new dependent variables, v(1), . . . , v(s) are their derivatives, e.g.
v(1) = {vαi } with vαi = Di(vα). The quantity

L = vβFβ ≡
m∑
β=1

vβFβ (4.5)

is called the formal Lagrangian for Eq. (4.1). Since we have new dependent variables vα,
the total differentiation from Section 3.1 is modified as

Di =
∂

∂xi
+ uαi

∂

∂uα
+ vαi

∂

∂vα
+ uαij

∂

∂uαj
+ vαij

∂

∂vαj
+ · · · . (4.6)

In the case of one dependent variable u the following definition extends the classical
concept of the self-adjointness of linear operators to nonlinear equations.

Definition 4.2. Equation (4.1) with one dependent variable (m = 1) is said to be self-
adjoint [8] if the adjoint equation (4.2) becomes equivalent to Eq. (4.1) after the substitution
v = u. It means that the following equation holds with a certain (in general, variable)
coefficient σ :

F ∗(x, u, u, . . . , u(s), u(s)) = σ F (x, u, . . . , u(s)). (4.7)

In the general case, the following definition is useful.

Definition 4.3. We say that the system (4.1) is quasi-self-adjoint [9] if the adjoint system
(4.2) is satisfied, identically or on all solutions of the system (4.1), after a substitution

vα = V α(u), α = 1, . . . ,m, (4.8)

where not all V α(u) vanish identically. It means that

F ∗
α(x, u, V (u), . . . , u(s), V(s)(u)) = σβα Fβ(x, u, . . . , u(s)), α = 1, . . . ,m, (4.9)

with certain (in general, variable) coefficients σβα. Here

V(1)(u) = {Di(V α(u))}, V(2)(u) = {DiDj(V α(u))}, . . . .
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In order to apply these concepts to Eq. (3.21), let us formulate them for third-order
ordinary differential equations written in the form

f ′′′ + F (λ, f, f ′, f ′′) = 0, (4.10)

where f and λ are a dependent and independent variables, respectively, f ′ is the first
derivative of f with respect to λ, etc. The formal Lagrangian (4.5) is written

L = z
[
f ′′′ + F (λ, f, f ′, f ′′)

]
, (4.11)

where z is a new dependent variable. The adjoint equation (4.2) to Eq. (4.10) is

δL
δf

= 0. (4.12)

Here δ/δf is the variational derivative (4.4):

δ

δf
=

∂

∂f
−D

∂

∂f ′
+D2 ∂

∂f ′′
−D3 ∂

∂f ′′′
, (4.13)

where D is the total derivative (4.6):

D =
∂

∂λ
+ f ′

∂

∂f
+ z′

∂

∂z
+ f ′′

∂

∂f ′
+ z′′

∂

∂z′
+ · · · .

In particular, D3(z) = z′′′, and hence the left-hand side of Eq. (4.12) is written

δ

δf

{
z
[
f ′′′ + F (η, f, f ′, f ′′)

]}
= −z′′′ + z

∂F

∂f
−D

(
z
∂F

∂f ′

)
+D2

(
z
∂F

∂f ′′

)
. (4.14)

4.2. Quasi-self-adjointness of the Prandtl equations

We will write the formal Lagrangian (4.5) for Eqs. (1.1) in the form

L = U

[
uux + vuy +

1
ρ
px − νuyy

]
+ V py +W [ux + vy],

where U, V,W are new dependent variables. We have:

δL
δu

= −Dx(uU) + Uux −Dy(vU) −Wx − νUyy,

δL
δv

= Uuy −Wy,
δL
δp

= −1
ρ
Ux − Vy.

Hence, the adjoint system (4.2) for the Prandtl equations are written

uUx + vUy + Uvy +Wx + νUyy = 0,

Uuy −Wy = 0,
1
ρ
Ux + Vy = 0,

(4.15)

where the immaterial sign in the first and third equations has been changed.
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Let us test the Prandtl equations for the quasi-self-adjointness. We will write the equa-
tions (4.9) for quasi-self-adjointness in the form

uUx + vUy + Uvy +Wx + νUyy =α

[
uux + vuy +

1
ρ
px − νuyy

]
+ βpy + γ[ux + vy], (4.16)

Uuy −Wy = a

[
uux + vuy +

1
ρ
px−νuyy

]
+ bpy + c[ux + vy], (4.17)

1
ρ
Ux + Vy = A

[
uux + vuy +

1
ρ
px−νuyy

]
+Bpy + C[ux + vy] (4.18)

and make the substitution (4.8) written in the form

U = M(u, v, p), V = N(u, v, p), W = Q(u, v, p). (4.19)

Invoking that Ux = Dx(U), . . . , we obtain from (4.19):

Ux = Muux +Mvvx +Mppx, Uy = Muuy +Mvvy +Mppy,

Vx = Nuux +Nvvx +Nppx, Vy = Nuuy +Nvvy +Nppy,

Wx = Quux +Qvvx +Qppx, Wy = Quuy +Qvvy +Qppy,

Uyy = Muuyy +Mvvyy +Mppyy +Muuu
2
y +Mvvv

2
y +Mppv

2
p

+ 2Muvuyvy + 2Mupuypy + 2Mvpvypy.

(4.20)

Now we substitute the expressions (4.19) and (4.20) in Eqs. (4.16)–(4.18). We begin with
two simple equations, (4.17) and (4.18), and obtain:

Muy − (Quuy +Qvvy +Qppy)

= a

[
uux + vuy +

1
ρ
px − νuyy

]
+ bpy + c[ux + vy], (4.17′)

1
ρ
(Muux +Mvvx +Mppx) +Nuuy +Nvvy +Nppy

= A

[
uux + vuy +

1
ρ
px − νuyy

]
+Bpy + C[ux + vy]. (4.18′)

Equating the coefficients for uyy, ux, uy, vx, vy, px, py in both sides of (4.17′) and (4.18′) we
obtain the equations

a = 0, b = −Qp, c = 0, Qv = 0, M −Qu = 0 (4.21)

and

A = 0, B = Np, C = Nv, Mv = Mp = Nu = 0, Mu − ρNv = 0, (4.22)
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respectively. Integrating the differential equations for M,N,Q provided by Eqs. (4.21),
(4.22), one can easily see that

M = K1u+K2, N = K1
v

ρ
+ r(p), Q =

1
2
K1u

2 +K2u+ q(p), (4.23)

where K1,K2 are arbitrary constants, r(p) and q(p) are arbitrary functions. Now Eq. (4.16)
is written

K1(uux + vuy + νuyy) + (K1u+K2)(ux + vy) + q′(p)px

= α

[
uux + vuy +

1
ρ
px − νuyy

]
+ βpy + γ[ux + vy]. (4.16′)

Equating the coefficients for uyy, . . . , py in both sides of Eq. (4.16′) we obtain

K1 = 0, α = 0, β = 0, γ = K2, q′(p) = 0.

Inserting this information in (4.23) we obtain the following substitution (4.19):

U = K2, V = r(p), W = K2 u+K3, (4.24)

where r(p) is an arbitrary function, K2,K3 = const. After this substitution, the quasi-self-
adjointness conditions (4.16)–(4.18) hold in the following form:

uUx + vUy + Uvy +Wx + νUyy = K2(ux + vy),

Uuy −Wy = 0,
1
ρ
Ux + Vy = r′(p)py.

Hence, the system of the Prandtl equations (1.1) is quasi-self-adjoint.

4.3. Self-adjointness of Moffatt’s equation

The formal Lagrangian (4.5) for Eq. (1.3) is written

L = φ[ψyψxy − ψxψyy − νψyyy],

where φ is a new dependent variable. We have the adjoint equation:

δL
δψ

≡ DxDy(φψy) −Dy(φψxy) −D2
y(φψx) +Dx(φψyy) + νD3

y(φ)

≡ 2φxψyy − φyψxy − ψxφyy + νφyyy = 0.

It follows that Eq. (1.3) is self-adjoint because the condition (4.7) is satisfied:

δL
δψ

∣∣∣∣
φ=ψ

= −(ψyψxy − ψxψyy − νψyyy).
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4.4. Discussion of ODE (3.21)

The formal Lagrangian (4.11) for Eq. (3.21) is written

L = z

[
f ′′′ +

m+ 1
2

ff ′′ −mf ′2
]

(4.25)

and Eq. (4.14) yields the following adjoint equation:

δL
δf

≡ −z′′′ + (3m+ 1)zf ′′ +
m+ 1

2
fz′′ + (3m+ 1)z′f ′ = 0.

Since

δL
δf

∣∣∣∣
z=f

= −f ′′′ +
(

3m+ 1 +
m+ 1

2

)
ff ′′ + (3m+ 1)f ′2,

the self-adjointness condition (4.7) is written

−f ′′′ +
(

3m+ 1 +
m+ 1

2

)
ff ′′ + (3m+ 1)f ′2 = −

[
f ′′′ +

m+ 1
2

ff ′′ −mf ′2
]

and yields:

3m+ 1 +
m+ 1

2
= −m+ 1

2
, 3m+ 1 = m.

These two equations are identical and yield m = −1/2.
Thus, we have proved (see [4]) that Eq. (3.21) is self-adjoint if and only if

m = −1
2
. (4.26)

This statement reveals a new significant property of the critical value m = −1/2.
The reckoning shows that the substitution z = h(f) does not provide new cases. In other

words, there are no quasi-self-adjoint equations (3.21) except the self-adjoint case (4.26).

5. Conservation Laws Associated with Symmetries

5.1. Introduction

It is proved in [8] that every Lie point, Lie-Bäcklund or non-local symmetry

X = ξi(x, u, u(1), . . .)
∂

∂xi
+ ηα(x, u, u(1), . . .)

∂

∂uα
, (5.1)

of Eqs. (4.1) provides a conservation law for the system (4.1) considered together with its
adjoint system (4.2). The conserved vector is given by the formula

Ci = ξiL +Wα

[
∂L
∂uαi

−Dj

(
∂L
∂uαij

)
+DjDk

(
∂L
∂uαijk

)
− . . .

]

+Dj(Wα)

[
∂L
∂uαij

−Dk

(
∂L
∂uαijk

)
+ . . .

]
+DjDk(Wα)

[
∂L
∂uαijk

− . . .

]
, (5.2)
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where L is the formal Lagrangian (4.5) and Wα is given by

Wα = ηα − ξjuαj , α = 1, . . . ,m. (5.3)

The formal Lagrangian L and hence the quantities (5.2) contain the “non-physical” variables
vα. Therefore the conservation law

Di(Ci) = 0 (5.4)

is satisfied for the vector (5.2) if we consider it on the solutions of Eqs. (4.1)–(4.2). However,
if Eq. (4.1) are quasi-self-adjoint we can eliminate vα from (5.2) by using the substitution
(4.8) and obtain the vector satisfying the conservation equation (5.4) on the solutions of
Eq. (4.1), without involving Eq. (4.2).

Note that one can omit in (5.2) the term ξiL, when it is convenient, because L vanishes
together with its derivatives on the solutions of Eq. (4.1).

5.2. Calculation of a conserved vector for the Prandtl equations

We will apply the formula (5.2) to the Prandtl equations (1.1). We know from Subsec. 4.2
that the formal Lagrangian for Eq. (1.1) has the form

L = U [uux + vuy +
1
ρ
px − νuyy] + V py +W [ux + vy].

Let us find the conserved vector associated with the first symmetry from (2.1):

X1 = x
∂

∂x
+ u

∂

∂u
+ 2p

∂

∂p
.

We denote x = x1, y = x2, u = u1, v = u2, p = u3 and obtain from Eq. (5.3)

W 1 = u− xux, W 2 = −xvx, W 3 = 2p − xpx.

Substituting our L in Eq. (5.2), written without the term xL, we obtain:

C1 = W 1 ∂L
∂ux

+W 2 ∂L
∂vx

+W 3 ∂L
∂px

= (Uu+W )W 1 +
1
ρ
UW 3,

C2 = W 1

[
∂L
∂uy

−Dy

(
∂L
∂uyy

)]
+W 2 ∂L

∂vy
+W 3 ∂L

∂py
+Dy(W 1)

∂L
∂uyy

= [Uv +Dy(νU)]W 1 +WW 2 + V W 3 − νUDy(W 1),

whence

C1 = (Uu+W )W 1 +
1
ρ
UW 3,

C2 = [Uv +Dy(νU)]W 1 +WW 2 + VW 3 − νUDy(W 1).
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We insert here the above expressions for W 1,W 2,W 3, eliminate U, V,W by the substitution
(4.24) and obtain the following components of the conserved vector:

C1 = K2

[
2u2 − 2xuux +

2
ρ
p− x

ρ
px

]
+K3(u− xux), (5.5)

C2 = K2[uv − xvux − xuvx − νuy + νxuxy] −K3xvx + r(p)(2p − xpx).

The reckoning shows that

Dx(C1) +Dy(C2) = K2(1 − xDx)
(
uux + vuy +

1
ρ
px − νuyy

)
+ [K2(1 − xDx)u−K3xDx](ux + vy)

+ [r(p)(2 − xDx) + r′(p)(2p − xpx)]py.

It follows that the vector with the components (5.5) satisfies the conservation equation (5.4)
on the solutions of the Prandtl equations (1.1).

5.3. Calculation of conserved vectors for Moffatt’s equation

Let us find the conservation laws for Moffatt’s equation (1.3) associated with its symmetries
(2.19). We will apply the formula (5.2) to the formal Lagrangian (see Subsec. 4.3) written
in the symmetric form

L = φ

[
1
2
ψyψxy +

1
2
ψyψyx − ψxψyy − νψyyy

]
. (5.6)

We have here two independent variables x1 = x, x2 = y and one dependent variable u = ψ.

Accordingly, Eq. (5.3) becomes

W = η − ξ1ψx − ξ2ψy. (5.7)

In our case Eq. (5.2) are written as follows:

C1 = ξ1L +W

[
∂L
∂ψx

−Dy

(
∂L
∂ψxy

)]
+Dy(W )

∂L
∂ψxy

,

C2 = ξ2L +W

[
∂L
∂ψy

−Dx

(
∂L
∂ψyx

)
−Dy

(
∂L
∂ψyy

)
+D2

y

(
∂L
∂ψyyy

)]

+Dx(W )
∂L
∂ψyx

+Dy(W )
[
∂L
∂ψyy

−Dy

(
∂L
∂ψyyy

)]
+D2

y(W )
∂L
∂ψyyy

.

We substitute here the formal Lagrangian (5.6), replace φ by ψ because Eq. (1.3) is self-
adjoint, and obtain:

C1 = ξ1L −W

[
3
2
ψψyy +

1
2
ψ2
y

]
+

1
2
ψψyDy(W ),

C2 = ξ2L +W

[
3
2
ψψxy +

1
2
ψxψy − νψyy

]
+

1
2
ψψyDx(W )

+ [νψy − ψψx]Dy(W ) − νψD2
y(W ).

(5.8)
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I will provide here detailed calculations for the first operator from (2.19):

X1 = x
∂

∂x
+ ψ

∂

∂ψ
.

We find from Eq. (5.7) W = ψ − xψx and substitute it in Eqs. (5.8) to obtain:

C1 = −3
2
ψ2ψyy +

x

2
[ψψxψyy + ψψyψxy + ψxψ

2
y − 2νψψyyy ],

C2 =
3
2
ψ2ψxy − 1

2
ψψxψy − 2νψψyy + νψ2

y

− x

2
[
ψψxψxy + ψψyψxx + ψyψ

2
x − 2νψψxyy − 2νψxψyy + 2νψyψxy

]
.

The term with x in C1 can be written as a total derivative in y, namely

x

2
[ψψxψyy + ψψyψxy + ψxψ

2
y − 2νψψyyy ] = Dy

(x
2
[ψψxψy − 2νψψyy + νψ2

y ]
)
.

Therefore we can transfer this term to C2 due to the identity

Dx

(
C̃1 +Dy(T )

)
+Dy

(
C2
)

= Dx

(
C̃1
)

+Dy

(
C̃2
)
, C̃2 = C2 +Dx(T ). (5.9)

In our example T = x
2 [ψψxψy − 2νψψyy + νψ2

y ], and hence

Dx(T ) =
1
2
(ψψxψy + νψ2

y) − νψψyy

+
x

2
[
ψψxψxy + ψψyψxx + ψyψ

2
x − 2νψψxyy − 2νψxψyy + 2νψyψxy

]
.

Adding Dx(T ) to our C2 and omitting the tilde and the coefficient 3 we obtain

C1 = −1
2
ψ2ψyy, C2 =

1
2
ψ2ψxy +

1
2
νψ2

y − νψψyy.

We can simplify this vector further by representing the first term in C2 as

1
2
ψ2ψxy = Dx(ψ2ψy) − ψψxψy

and use the identity similar to (5.9) with x↔ y, C1 ↔ C2. Then we obtain

C1 = ψψ2
y , C2 = −(ψψxψy + νψψyy) +

1
2
νψ2

y . (5.10)

The reckoning shows that the vector (5.10) satisfies the identity

Dx(C1) +Dy(C2) = ψ[ψyψxy − ψxψyy − νψyyy]

and hence obeys the conservation equation (5.4) on the solutions of Eq. (1.3).
The operator X2 from (2.19) leads to the same conserved vector (5.10).
The operators X3 and X5 lead to the trivial conserved vector C1 = C2 = 0.
The operator X4 = ∂/∂ψ provides the conserved vector

C1 = ψ2
y , C2 = −ψxψy − νψyy. (5.11)
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5.4. Ordinary differential equation (3.21)

It has been shown [4] by inspecting the determining equations that every equation (3.21)
with m �= 3 admits L2 spanned by

X1 =
∂

∂λ
, X2 = f

∂

∂f
− λ

∂

∂λ
(5.12)

and that Eq. (3.21) with m = 3,

f ′′′ + 2ff ′′ − 3f ′2 = 0, (5.13)

has the additional symmetry

X3 = λ2 ∂

∂λ
+ (6 − 2λf)

∂

∂f
. (5.14)

The symmetry (5.14) leads to the invariant solution

f =
6
λ

+
K

λ2
, K = const. (5.15)

We know (Subsec. 4.4) that Eq. (3.21) is self-adjoint if m = −1/2. Accordingly, we will
calculate the conserved quantities associated with the symmetries (5.12) of the self-adjoint
equation

f ′′′ +
1
4
ff ′′ +

1
2
f ′2 = 0. (5.16)

The conserved quantities (5.2) associated with symmetries

X = ξ(λ, f)
∂

∂λ
+ η(λ, f)

∂

∂f

of third-order ordinary differential equations (4.10) are written

C = ξL +W

[
∂L
∂f ′

−D

(
∂L
∂f ′′

)
+D2

(
∂L
∂f ′′′

)]
+D(W )

[
∂L
∂f ′′

−D

(
∂L
∂f ′′′

)]
+D2(W )

∂L
∂f ′′′

, W = η − ξf ′. (5.17)

The reckoning shows that application of the formula (5.17) to the translation generator
X1 provides the trivial C = 0. One can readily verify that the application of the formula
(5.17) to the operator X2 provides the non-trivial conserved quantity (first integral)

4ff ′′ + f2f ′ − 2f ′2 = C. (5.18)

Thus, the Lie group analysis reveals two critical values of the exponent m, namely,
m = −1/2 and m = 3.
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