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In the present paper we investigate the rotational oscillations of the nitrous bases that form a
central base pair in a short DNA fragment consisting of three base pairs. For this purpose we use
a simple mechanical model of the DNA fragment where the bases are imitated by pendulums, and
the interactions between the bases are imitated by springs. It is suggested that the pendulums
of the central pair oscillate, and the pendulums of neighboring pairs located at the edges of the
fragment are immovable. The model takes into account the hydrogen bonds between the bases
in pairs, the stacking interactions between neighboring base pairs and the helicity of the DNA
structure. We derived the Lagrangian of the model system and the nonlinear equations of motions.
Parameters of the equations were considered in details. We found solutions of the equations in the
homogeneous case when the fragment contained only identical base pairs: Adenine-Thymine (AT)
or Guanine-Cytosine (GC). The trajectories of the model system in the configuration space were
also constructed in this approximation.

Keywords: DNA; mechanical model; two coupled pendulum oscillations.

1. Introduction

It is widely accepted that the DNA molecule is a complex dynamical system consisting
of many different oscillating structural elements: atoms, atomic groups (sugars, phosphate
groups, bases) and small fragments of polynucleotide chains. Among them rotational oscil-
lations of bases around the sugar-phosphate chains are of special interest. These oscillations
are directly connected with the process of opening of individual base pairs [6] and with
the formation of so-called open states that contain several neighboring base pairs [1] with
broken hydrogen bonds connecting complementary bases inside these pairs (Fig. 1). Usually
the DNA molecule contains some amount of open base pairs. This phenomenon is known as
“the breathing of DNA”. It is widely accepted that “the breathing” is an important element
of the DNA functioning.

In most of theoretical studies of rotational oscillations of bases and their role in the open-
ing of base pairs, the methods of molecular dynamics are used [3, 5, 8, 12, 15]. However,
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(a) (b) (c)

Fig. 1. Aschematic picture of different states of the double DNA chains: (a) closed state, (b) individual base
pair opening, (c) open state containing several open base pairs. L is the length of the open state. The helicity
of the DNA structure is not shown.

these methods are too cumbersome. A more simple approach has been proposed in the
work of Englander and co-authors [1], who suggested to use a mechanical analog of DNA
where the DNA bases were replaced with pendulums and the interactions between the bases
were replaced with springs. This approach was developed later in the works of Yomosa [14],
Takeno and Homma [9], Zhang [23]. The theme was continued in the works of Salerno [13],
Cuenda and Sanchez [4], Gaeta [2], Yakushevich [16, 19, 20, 22], who improved the mechan-
ical model by taking into account effects of asymmetry, helicity, dissipation and inhomo-
geneity of the molecule. These models were successfully applied to study the dynamics of
open states in infinitely long double DNA chains.

In this paper, we apply the approach of Englander and co-authors [1] to study rotational
oscillations of the bases forming a central pair in a short (L = 3 b.p.) DNA fragment. In
the next section, we present the detailed description of corresponding mechanical analog,
the model Lagrangian and the nonlinear equations of motions. In the Sec. 3, the parameters
of the equations are considered in details. Transformation of the model equation to a more
convenient form is shortly described in the Sec. 4. Results obtained in the frameworks of
the mechanical model are presented in the Secs. 5–7. Discussion of the results and possible
perspectives are presented in the final Sec. 8.

2. Model

Let us take a fragment of the DNA molecule (Fig. 2(a)) containing three base pairs. In
accordance with the idea of Englander and co-authors [1], let us model the bases by pen-
dulums and the interactions between the bases by springs (Fig. 2(b)). We suggest that the
bases of the central (n-th) pair oscillate and the bases of two neighboring pairs ((n − 1)-th
and (n + 1)-th) are immovable. To simplify calculations, it is suggested also that the bases
of the central pair oscillate in the horizontal plane that is perpendicular to the main axis
(z) of the molecule. To take into account the helicity of the DNA molecule, each of the
three planes shown in Fig. 2(b) is turned by the angle ϕ0 = (2π/10).
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(a) (b)

Fig. 2. Schematic picture of (a) the DNA double helix; (b) the mechanical model of the three coupled pairs
of pendulums: one central (n-th) pair and two neighboring pairs ((n − 1)-th and (n + 1)-th).

Fig. 3. Schematic picture of two coupled pendulums.

To obtain the function of Lagrange, let us begin with a simpler mechanical model con-
sisting of one pair of nonidentical pendulums shown in Fig. 3. The function of Lagrange of
this system has the form [18]

Lsingle pair = (1/2)[I1(dϕ1/dt)2 + I2(dϕ2/dt)2] − K1−2[r1(r1 + r2 + a)(1 − cos(ϕ1))

+ r2(r1 + r2 + a)(1 − cos(ϕ2)) − r1r2(1 − cos(ϕ1 + ϕ2)) + (a2/2)]. (2.1)

Here functions ϕ1(t) and ϕ2(t) are the angles of inclination of the 1-st and 2-nd pendu-
lums; I1 and I2 are their moments of inertia; K1−2 is the rigidity of the horizontal spring
coupling the pendulums; r1 and r2 are the lengths the pendulums; a is the distance between
masses of the pendulums when they are in the equilibrium state (ϕ1 = ϕ2 = 0).
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Let us generalize formula (2.1) to pass to the case of three coupled pendulums shown in
Fig. 2(b). For the purpose, let us (1) introduce two indexes, first index denoting the num-
ber of the chain, the other — the number of pair, and (2) add additional terms describing
vertical interactions between pairs. We should note here that in the general case, vertical
interactions between neighboring base pairs should include both stacking interactions and
covalent interactions through the sugar-phosphate backbone. However, we can leave in the
model only stacking interactions because covalent interactions are more rigid (see, for exam-
ple, Chap. 1 in [17]), and in the first approximation the sugar-phosphate backbone can be
considered as an absolutely rigid (nonmoveable) skeleton which only fixes the points P1,n,
P1,n−1, P1,n+1, P2,n, P2,n−1 and P2,n+1 shown in Fig. 2(b). So, the generalized formula for
Lagrangian takes the form

L = T − V (2.2)

with kinetic energy

T =
2∑

i=1

n+1∑
j=n−1

(1/2)Ii,j(dϕi,j/dt)2 (2.3)

and potential energy

V = Uhorizontal + Uvertical, (2.4)

where

Uhorizontal =
n+1∑

j=n−1

{U1,j(1 − cos(ϕ1,j)) + U2,j(1 − cos(ϕ2,j))

−U1−2,j(1 − cos(ϕ1,j + ϕ2,j))U0,j},
Uvertical = S1;n,n−1[(ϕ1,n + ϕ0) − ϕ1,n−1]2/2 + S1;n,n+1[(ϕ1,n+1 + ϕ0) − ϕ1,n]2/2

+ S2;n,n−1[(ϕ2,n + ϕ0) − ϕ2,n−1]2/2 + S2;n,n+1[(ϕ2,n+1 + ϕ0) − ϕ2,n]2/2.

Here ϕi,j(t) is the angular amplitude of the (i, j)-th pendulum; Ii,j is the moment
of inertia of the pendulum; U1,j = K1−2,jr1,j(r1,j + r2,j + aj);U2,j = K1−2,jr2,j(r1,j +
r2,j + aj);U1−2,j = K1−2,jr1,jr2,j ;U0,j = (K1−2,ja

2
j/2); ri,j is the length of the (i, j)-th pen-

dulum; K1−2,j is the rigidity of the horizontal spring imitating interaction between the
pendulums; aj is the distance between masses of the pendulums at the equilibrium state
(ϕi,j = 0);S1;n,n±1 = Q1;n,n±1(r1,n)2, S2;n,n±1 = Q2;n,n±1(r2,n)2. Qi;n,n±1 is the coefficient
of the rigidity of vertical springs connecting (i, n)-th and (i, n ± 1)-th pendulums; i = 1, 2.

Now let us take into account that only the bases of the central (n-th) pair oscillate and
the bases of the two neighboring pairs ((n − 1)-th and (n + 1)-th) are “frozen” (ϕ1,n−1 =
ϕ1,n+1 = ϕ2,n−1 = ϕ2,n+1 = 0). Then instead of Eqs. (2.2)–(2.4) we obtain the following
Lagrangian and equations of motions

Lcentral pair = (1/2)[I1(dϕ1/dt)2 + I2(dϕ2/dt)2] − [U1(1 − cos(ϕ1)) + U2(1 − cos(ϕ2))

−U1−2(1 − cos(ϕ1 + ϕ2)) + U0 + U
(+)
0 + U

(−)
0 + S

(−)
1 (ϕ1 + ϕ0)2/2

+ S
(+)
1 (ϕ1 − ϕ0)2/2 + S

(−)
2 (ϕ2 + ϕ0)2/2 + S

(+)
2 (ϕ2 − ϕ0)2/2], (2.5)
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I1(d2ϕ1/dt2) = −U1 sin(ϕ1) + U1−2 sin(ϕ1 + ϕ2) − (S(−)
1 + S

(+)
1 )(ϕ1) − β1(dϕ1/dt), (2.6)

I2(d2ϕ2/dt2) = −U2 sin(ϕ2) + U1−2 sin(ϕ1 + ϕ2) − (S(−)
2 + S

(+)
2 )(ϕ2) − β2(dϕ2/dt). (2.7)

For convenience, we omitted here repeating index “n”. At the same time we introduced
indexes “(+)” and “(−)” to denote (n + 1)-th and (n − 1)-th neighbors: U

(+)
0 = U0,n+1,

U
(−)
0 = U0,n−1, S

(+)
1 = S1;n,n+1, S

(+)
2 = S2;n,n+1, S

(−)
1 = S1;n,n−1, S

(−)
2 = S2;n,n−1. To

take into account effects of dissipation, we added terms, proportional to angular velocities
(dϕ1/dt), (dϕ2/dt). Coefficients of dissipation β1 and β2 are suggested to be constants.

3. Parameters of the Model

Parameters of Eqs. (2.5)–(2.7) can be divided into two groups. First group consists of
parameters I1, I2, U1, U2, U1−2, U0, β1 and β2, which do not depend on the sequence of
bases in the DNA fragment considered. The other group consists of parameters S

(−)
1 , S

(+)
1 ,

S
(−)
2 and S

(+)
2 , which depend on the sequence.

Let us consider the first group. The values of parameters I1, I2, β1 and β2 are known [21].
We present them in Table 1.

To estimate parameters U1, U2, U1−2 and U0, let us take into account that at the
equilibrium point (ϕ1 = ϕ2 = 0) the energy of interaction between Adenine and Thymine
is equal to U0,AT = 10kcal/mole = 6,95 × 10−20 J and the energy of interaction between
Guanine and Cytosine is equal to U0,GC = 15kcal/mole = 10,42 × 10−20 J. Taking into
account that KAT = U0,AT/aAT2 = 0,25 (J/m2) and KGC = U0,GC/aGC2 = 0,36 (J/m2), we
find that for AT pair

U1 = KAT rA(rA + rT + aAT) = 26,49 × 10−20(J),

U2 = KAT rT(rA + rT + aAT) = 21,92 × 10−20(J),

U1−2 = KAT, rArT = 7,06 × 10−20(J),

and for GC pair

U1 = KGC rG(rG + rC + aGC) = 37,03 × 10−20(J),

U2 = KGC rC(rG + rC + aGC) = 30,53 × 10−20(J),

U12 = KGC rGrC = 9,67 × 10−20(J).

Now let us estimate the other group of parameters (S(−)
1 , S

(+)
1 , S

(−)
2 and S

(+)
2 ). Because

the values of the parameters depend on the sequence of the bases in the DNA fragment

Table 1. Parameters of Eqs. (2.5)–(2.7).

Central I1 I2 U1 U2 U1−2 U0 β1 β2

base pair [10−44 kg · m2] [10−44 kg ·m2] [10−20 J] [10−20 J] [10−20 J] [10−20 J] [10−34 Js] [10−34 Js]

AT 7.610 4.86 26.49 21.92 7.06 6.95 4.25 3.52
GC 8.22 4.11 37.03 30.53 9.67 10.42 4.18 3.45
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considered we need to choose some sequence. As an example, let us consider two simple
cases when all pairs are identical

| − A = T − |
| − A = T − |
| − A = T − |

(3.1)

and

| − G ≡ C − |
| − G ≡ C − |
| − G ≡ C − |

(3.2)

In both cases, we have S
(−)
1 = S

(+)
1 , S

(−)
2 = S

(+)
2 . Taking into account that the values

of stacking energy between the base pairs are equal to [11]

Estack

(
A T

A T

)
= 3.73 × 10−20(J) and E stack

(
G C

G C

)
= 5.74 × 10−20(J)

we easily find

(S(−)
1 + S

(−)
2 )AT = (S(+)

1 + S
(+)
2 )AT = 2Estack

(
A T

A T

)
(2π/10)−2 = 18,92 × 10−20(J),

(S(−)
1 + S

(−)
2 )GC = (S(+)

1 + S
+)
2 )GC = 2Estack

(
G C

G C

)
(2π/10)−2 = 29,10 × 10−20(J),

and hence the coefficients of rigidity of vertical springs are equal to

KAT = 0,33 (J/m2), KGC = 0,53 (J/m2).

As a result we find that

(S(−)
1 )AT = (S(+)

1 )AT = KAT(rA)2 = 11,23 × 10−20(J),

(S(−)
2 )AT = (S(+)

2 )AT = KAT(rT)2 = 7,69 × 10−20(J),

(S(−)
1 )GC = (S(+)

1 )GC = KGC(rG)2 = 17,32 × 10−20(J),

(S(−)
2 )GC = (S(+)

2 )GC = KGC(rC)2 = 11,78 × 10−20(J).

4. Transformation

To simplify further calculations, let us make transformation

t = ητ, η = 10−12. (4.1)

Then Eqs. (2.6)–(2.7) take the form

I1(d
2ϕ1/dτ2) = −U1 sin(ϕ1) + U1−2 sin(ϕ1 + ϕ2) − (S(−)

1 + S
(+)
1 )(ϕ1) − β

1
(dϕ1/dτ), (4.2)

I2(d
2ϕ2/dτ2) = −U2 sin(ϕ2) + U1−2 sin(ϕ1 + ϕ2) − (S(−)

2 + S
(+)
2 )(ϕ2) − β

2
(dϕ2/dτ). (4.3)
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Table 2. Parameters of Eqs. (4.2)–(4.3).

Central I1,n I2,n U1,n U2,n U1−2,n U0,n β
2,n

β
1,n

β
1,n

S2,n

base pair [kg · m2] [kg · m2] [J ] [J ] [J ] [J ] [Js] [Js] [J ] [J ]

AT 7.60700 4.8623 26.4863 21.9197 7.0630 6.9477 0.0425 0.0352 11.2290 7.6916
GC 8.2174 4.1069 37.0283 30.5321 9.6685 10.4216 0.0418 0.0345 17.3237 11.7799

Recalculated parameters of model Eqs. (4.2)–(4.3) are presented in Table 2.

5. Potential Energy Surface

According to (2.5) potential energy of the model system is equal to

Vcentral pair = U1(1 − cos(ϕ1)) + U2(1 − cos(ϕ2)) − U1−2(1 − cos(ϕ1 + ϕ2))

+ U0 + U
(+)
0 + U

(−)
0 + S

(−)
1 (ϕ1 + ϕ0)2/2 + S

(+)
1 (ϕ1 − ϕ0)2/2

+ S
(−)
2 (ϕ2 + ϕ0)2/2 + S

(+)
2 (ϕ2 − ϕ0)2/2. (5.1)

After transformation (4.1) formula (5.1) takes the form

Vcentral pair (ϕ1, ϕ2) = V (ϕ1, ϕ2) × 10−20, (5.2)

where

V (ϕ1, ϕ2) = U1(1 − cos(ϕ1)) + U2(1 − cos(ϕ2)) − U1−2(1 − cos(ϕ1 + ϕ2))

+ U0 + U
(+)
0 + U

(−)
0 + S

(−)
1 (ϕ1 + ϕ0)2/2 + S

(+)
1 (ϕ1 − ϕ0)2/2

+ S
(−)
2 (ϕ2 + ϕ0)2/2 + S

(+)
2 (ϕ2 − ϕ0)2/2. (5.3)

Results of calculations of the function V (ϕ1, ϕ2) obtained with the help of the Program
MAPLE and parameters presented in Table 2 are shown in Fig. 4.

The surfaces have minimum in the vicinity of the equilibrium point {ϕ1 = 0; ϕ2 = 0},
the white surface being deeper than the gray one. This means that it is easier to activate
oscillations in the fragment with sequence (3.1) than with sequence (3.2).

6. Particular Case: Analytical Solutions in the Linear
(Harmonic) Approximation

Let us suggest that the angular amplitudes ϕ1(t), ϕ2(t) are small. Then Eqs. (4.2)–(4.3) can
be linearized

I1(d
2ϕ1/dτ2) = −[U1 + 2(S(−)

1 + S
(+)
1 )](ϕ1) + U12(ϕ1 + ϕ2) − β

1
(dϕ1/dτ), (6.1)

I2(d
2ϕ2/dτ2) = −[U2 + 2(S(−)

2 + S
(+)
2 )](ϕ2) + U12(ϕ1 + ϕ2) − β

2
(dϕ2/dτ). (6.2)
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(a) (b)

Fig. 4. Two potential energy surfaces: white surface corresponds to AT oscillating central pair and gray
surface — to GC oscillating central pair. View from the side (a), and view from below (b).

Analytical solutions of Eqs. (6.1)–(6.2) can be easily found with the help of standard theory
of oscillations [10]. The results of calculations can be written as

ϕ1(ητ) = A(−)I
−1/2
1 exp(−δ1τ) cos(w(−)τ − α(−))

+ A(+)I
−1/2
1 exp(−δ1τ) cos(w(+)τ − α(+)),

ϕ2(ητ ) = A(−)I
−1/2
2 p(−)exp(−δ2τ) cos(w(−)τ − α(−))

+ A(+)I
−1/2
2 p(+)exp(−δ2τ) cos(w(+)τ − α(+)),

(6.3)

where δ1 = β
1
/2I1; δ2 = β

2
/2I2; p(−) = (w(−)

2−a(1))/c; p(+) = (w2
(+)−a(2))/c; a(1) = A1−

δ2
1; a(2) = A2−δ2

2; A1 = [U1+2(S(−)
1 +S

(+)
1 )−U1−2]/I1; A2 = [U2+2(S(−)

2 +S
(+)
2 )−U1−2]/I2;

c = −U1−2/(I1I2)1/2; the amplitudes A(−), A(+) and phases α(−), α(+) are constants that
are determined by initial conditions, whereas the frequencies w(−), w(+) are determined by
formula

w(±) = {(a(1) + a(2))/2 ± [(1/4)(a(1) − a(2))
2 + c2]1/2}1/2. (6.4)

The data presented in Tables 3–5 show that the including of the stacking interactions
into the model leads to the substantial increasing of the values of the frequencies. At the
same time, the including of the helicity does not change the frequencies.

Table 3. Frequencies calculated in the general case.

General case w(+) w(−)

AT 3.00 2.98
GC 3.77 3.76
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Table 4. Frequencies calculated without stacking.

Without stacking w(+) w(−)

AT 1.69 1.66
GC 2.06 2.04

Table 5. Frequencies calculated without stacking
and helicity.

Without stacking and helicity w(+) w(−)

AT 1.69 1.66
GC 2.06 2.04

7. General Case: Numerical Solutions and Trajectories
in the Configuration Space

To find solutions in the general (nonlinear) case, it is convenient to rewrite the initial two
partial differential equations as the following four ordinary differential equations

dϕ1/dτ = γ1,

dϕ2/dτ = γ2,

dγ1/dτ = −a1 sin ϕ1 + d1 sin(ϕ2 + ϕ1) − s1(ϕ1) − b1γ1,

dγ2/dτ = −a2 sin ϕ2 + d2 sin(ϕ2 + ϕ1) − s2(ϕ2) − b2γ2,

(7.1)

and then to solve them numerically [7]. Here a1 = (U1/Ii); a2 = (U2/I2); d1 =
(U 1−2/I i); d2 = (U 1−2/I2); b1 = (β

1
/I1); b2 = (β

2
/I2); s1 = 2(S(−)

1 + S
(+)
1 )/I1; s2 =

2(S(−)
2 + S

(+)
2 )/I2. Reestimated coefficients of Eqs. (7.1) are presented in Table 6.

The graphs of the solutions of Eqs. (7.1) calculated with the Program Maple are shown
in Fig. 5. Trajectories in configuration space are shown in Fig. 6. In both cases, initial
conditions are suggested to be ϕ1(0) = 0, 1;ϕ2(0) = 0; γ1(0) = γ1(0) = 0.

Note that the forms of the solutions and of the trajectories calculated for two different
homogeneous sequences ((3.1) and (3.2)) differ from one another. So, we can state that the
dynamics of the model proposed is really sensitive to the sequence of bases.

To understand the role of stacking interactions, we present Figs. 7 and 8 with solutions
and the trajectories calculated in the absence of stacking interactions.

Comparison of the graphs calculated with and without stacking interactions shows that
the solutions and the trajectories obtained in these two cases are quite different. So, this
confirms once more that the including into the model of the stacking interactions is necessary
and important.

Table 6. Coefficients of Eqs. (7.1).

Central base pair a1 a2 d1 d2 b1 b2 s1 s2

AT 3,48 4,51 0,93 1,45 0,0056 0,0072 5,90 6,33
GC 4,51 7,43 1,18 2,35 0,0051 0,0084 8,43 17,3
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(a) (b)

Fig. 5. Solutions of Eqs. (7.1) obtained for (a) AT and (b) GC central pairs. Solid line is used to show
oscillations of Adenine, dash-dotted — Thymine, dashed — Guanine, dotted — Cytosine.

(a) (b)

Fig. 6. Trajectories in configuration space {ϕ1(t), ϕ2(t)} obtained for (a) AT and (b) GC central pairs.
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(a) (b)

Fig. 7. Solutions of Eqs. (7.1) obtained under condition S
(−)
1 = S

(+)
1 = S

(−)
2 = S

(+)
2 = 0 for (a) AT and

(b) GC central pairs. Solid line is used to show oscillations of Adenine, dash-dotted — Thymine, dashed —
Guanine, dotted — Cytosine.

(a) (b)

Fig. 8. Trajectories in configuration space {ϕ1(t), ϕ2(t)} obtained under condition S
(−)
1 = S

(+)
1 = S

(−)
2 =

S
(+)
2 = 0 for (a) AT and (b) GC central pairs.
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8. Discussion and Conclusions

In this paper, rotational oscillations of the nitrous bases forming a central base pair in a short
(L = 3 b.p.) DNA fragment have been investigated. For this purpose, the mechanical model
has been constructed. The model takes into account (1) hydrogen interactions between
bases in pairs, (2) stacking interactions between neighboring base pairs, and (3) helicity of
the DNA. At the same time, the model does not take into account oscillations of the bases
in the base pairs located at the edges of the DNA fragment.

We applied the mechanical model to obtain the function of Lagrange, to derive equa-
tions of motions, to find analytical solutions in the harmonic approximation and numerical
solutions in the general (nonlinear) case, to construct the potential energy surface and to
obtain the trajectories of the dynamical system in configuration space.

We compared the solutions and trajectories calculated for two particular cases:

(1) for the model fragment consists of only AT base pairs and
(2) for the model fragment consists of only GC base pairs.

We found that the solutions and trajectories noticeably differ. This result confirms quanti-
tatively that the rotational dynamics of the DNA bases does depend on the composition of
the DNA fragment.

From the analysis of the potential energy surfaces obtained for these two particular cases
we can conclude that it easier to activate rotational oscillations of the bases in the DNA
fragment consisting of AT base pairs than in the DNA fragment consisting of only GC base
pairs.

Comparing the graphs that we obtained from calculations made with and without stack-
ing interactions, shows a noticeable difference. So, we confirm quantitatively that the stack-
ing interactions play an important role in the rotational dynamics of bases, and they should
be included into mechanical model of DNA.

At the same time, comparing the results that we obtained with and without helicity,
shows that the helicity does not play an important role and can be omitted. May be situation
will be different in the case of nonidentical base pairs.

The approach proposed has good perspectives. It can be applied to study rotational
oscillations of the bases in the DNA fragments consisting of more than three base pairs.
Moreover, the approach can be generalized to apply to DNA fragments with nonidentical
base pairs. One can expect that comparing the dynamical properties of the DNA fragments
having different sequences of bases will permit to find the relations between rotational base
dynamics and functional properties of the DNA fragments.
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