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In this paper we propose a Bayesian scheme for the determination of the unfolding and refolding
kinetic rates of DNA hairpins under tension. This method is based on the hypothesis that the
unfolding-refolding dynamics is well described by a Markov Chain. The results from the Bayesian
method are contrasted to widely used techniques and good agreement is found. This work can be
seen as a validation of the standard techniques from a statistical point of view.

Keywords: Optical tweezers; Bayesian reasoning; DNA hairpins.

2000 Mathematics Subject Classification: 22E46, 53C35, 57S20

1. DNA Hairpins

The structure of nucleic acid filaments in solution is determined by the specific sequence
of nucleotides by which the filament is composed, also called “primary structure”, and by
ambient conditions such as temperature, pH and salt concentration. Given the ambient
conditions, a nucleic acid filament will often assume a specific three dimensional structure.
This structure is a compromise between the free energy gain from base pairing (hydrogen
bond formation between complementary bases) and base stacking (Wan Der Waals inter-
actions between nearest-neighbor bases) on one side and entropic costs on the other side.
In particular the pattern of base pairing in nucleic acid structures is often referred to as
secondary structure. A particular kind of secondary structure are DNA hairpins, formed by
palindromic single-stranded DNA sequences. Palindromic sequences are such that the first

397

http://dx.doi.org/10.1142/S1402925111001593


August 27, 2011 11:22 WSPC/1402-9251 259-JNMP S1402925111001593

398 M. Ribezzi-Crivellari, M. Wagner & F. Ritort

(a)

(b)

Fig. 1. Schematic decription of the DNA hairpin structure. (a) Unfolded and folded hairpin structure, the
red color denotes the complementary part of the hairpin, while blue denotes the loop region. (b) An example
of hairpin forming sequence together with its three-dimensional structure. Force is applied at the beginning
of the stem.

n bases near one end of the strand are complementary to the last n bases at the other end of
the strand taken in reverse order (see Fig. 1). If the strand is N bases long, this means that
the first base is complementary to the Nth, the second to the N−1th and so on. In this way
the single stranded filament can fold onto itself. The only exception are a few bases at the
center of the sequence. These bases form the loop region. If the ambient conditions do favor
base pairing, such single strand will assume the secondary structure shown in Fig. 1 which
maximizes the free energy gain from pairing and stacking interactions [1]. The hairpin is a
structural element that is present in DNA and RNA molecules in vivo as well as in vitro.
RNA hairpins in vivo are known to play a key role in biological functions such as regulation
of gene expression [2, 3]. But most importantly here, nucleic acid hairpins serve as model
systems for secondary structure formation in DNA and RNA [4–10] (see Fig. 1). In the case
of hairpins the two energetic factors involved in structure formation are the entropy cost for
loop formation and the free energy gain from base pairing and stacking. In particular the
formation of the loop can be considered as a nucleation step in the transition to the folded
state and it is the rate limiting step in the folding kinetics. The kinetics and energetics of
structure formation in DNA hairpins can be studied in detail by varying the sequence, the
loop length and ambient conditions. Nowadays the native or minimum free energy struc-
ture can be predicted using the large amount of data obtained in the last decades from
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bulk experiments and which were recently confirmed at the single molecule level by force
unfolding experiments [1].

2. Single Molecule Experiments on DNA Filaments

Single molecule techniques have arisen as a new tool in the analysis of biological systems.
In particular they have allowed to test for the effect of applied tensions on the structure of
biological polymers. Among the force spectroscopy techniques, optical trapping is particu-
larly fit to explore the properties of bio-molecules. As first proved by Ashkin in 1970 [11],
highly focused laser beams can be used to trap and displace micron-sized dielectric beads,
applying onto these objects forces in the range 1–100 pN. Moreover, by recollecting the
light of the laser beam after its interaction with the trapped object it is also possible to
accurately measure the applied force by linear momentum conservation [12]. Experimental
setups designed for optical trapping are often called Optical Tweezers (OT). Indeed using
OT it is possible to study the nonlinear elasticity of DNA filaments or unfold nucleic acid
structures into an extended single strand by applying mechanical force in different phys-
iological buffers and temperatures. In these experiments the nucleic acid sequence to be
studied is chemically anchored to two micron sized dielectric beads. One of these beads is
then captured in an optical trap formed by laser beams [1], while the other is trapped by air
suction on the tip of a micropipette Fig. 2(a). This setup can be used to perform different
kinds experiments.

In pulling experiments, for example, force is raised at a constant rate during the exper-
iment. In this way it is possible to measure the elongation of a molecule as a function of
the applied force, giving the so called Force-Distance Curve (FDC). The FDC is the molec-
ular analogous of the volume pressure isotherm of classical thermodynamics. If the pulling
rate is slow enough, a reversible FEC can be obtained, which gives, by integration, the free
energy difference between the initial and final configuration. Nevertheless, in many practical
cases, reversibility is never attained and the free energy difference can only be recovered
from irreversible FECs by the use of nonequilibrium work relations such as the Jarzynski
or Crooks relations [13, 14].

When the kinetics of DNA unfolding is to be measured it is convenient to keep the
distance between the trap and the pipette fixed and to measure the lifetimes of the folded
and unfolded states, the so-called Passive Mode (PM) [6, 7] hopping setup. The transition
from the folded to the unfolded state will be detected as a drop in the applied force, since
the longer end to end distance of the tethered molecule in the unfolded state allows for the
bead to relax towards the center of the trap Fig. 2(a).

2.1. Hopping experiments on DNA hairpins

Some hairpins, when held at moderate tensions � 15pN , will jump back and forth in between
the folded and the unfolded states under the effect of thermal fluctuations. This allows a
precise measurement of the folding kinetics and thermodynamics of the hairpin. In addition
hopping experiments make possible the complete reconstruction of the folding free energy
landscape along the molecular extension both in DNA hairpins [9, 10] and in proteins [15].
In this article we will consider hopping experiments performed on a DNA hairpin with a
20 bp stem and a five bp loop (see Fig. 3). In such a short hairpin the transition between
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(a) (b)

Fig. 2. (a) Schematic representation of the Passive Mode (PM) hopping setup [6, 7]. The DNA hairpin is
linked to two dielectric beads. One bead is optically trapped, while the other is held by air sunction on
the tip of a micropipette. The distance between the micropipette and the bead is kept fixed. At moderate
tensions the hairpin can hop back and forth between the folded and the unfolded state under the effect of
thermal fluctuations. The transition from the folded to the unfolded state is detected as a drop in the applied
force, as the longer contour length of the molecule in the unfolded state allows for a relaxation of the bead in
the optical trap. (b) The force trace obtained from the DNA hairpin under tension. The molecule is folded
when the force takes the higher value and unfolded when it takes the lower value. Some unfolding/refolding
events are shown. The small circles show raw data, while the continuous line is a running average with 40
points window on the measured data. The continuous straight line is equal to f̄ , the median between the
force in the folded state and the force in the unfolded state. On the right panel the probability density of
the measured force is shown for the whole trace (�300 s), showing how no intermediate is detected and the
two states are perfectly resolved.

the folded and the unfolded state happens abruptly without detectable intermediates (see
Fig. 2(b)), all the stem unfolds at once.

The mean lifetime of the folded and the unfolded states are, in the case we will describe,
on the order of the second and the high instrumental stability of optical tweezers allows
for the measurement of hundreds of transitions. Each of these measurements leads to a
force vs. time trace (Fig. 2(b)) in which the two states are clearly distinguishable. This
is because the Signal to Noise Ratio (SNR), defined as the ratio between the force drop
in the unfolding transition and the amplitude of thermal noise, is large enough. The data
acquisition rate is finite, with a point being sampled every millisecond. The dots in Fig. 2(b)
show the collected raw data, while the solid line shows an average of the measured data.

3. The Free Energy Landscape

The mechanical folding and unfolding of nucleic acid hairpins is commonly described in
terms of a reaction coordinate and the corresponding free energy landscape. When subject
to force, the end-to-end distance of the molecule along the force axis is an adequate reaction
coordinate for the folding-unfolding reaction pathway. For a given applied force f it is
common to consider only a single kinetic pathway for the unfolding and folding reactions,
which is characterized by a single transition state (TS). The TS is the highest free energy
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(a)

(b)
(c)

Fig. 3. Schematics of the hairpin synthesis. The actual construct used in the experiments involves the hairpin
whose thermodynamics and kinetics are to be tested and two molecular “handles” which act as spacers to
keep the hairpin away from the dielectric beads. (a) The synthesis uses three different oligos. One “Handle
A” in the figure, encompasses the left handle and the first part of the hairpin sequence. The second oligo
contains the second part of the oligo and the right handle. The third oligo completes both handles, exploiting
their symmetry. (b) explicit sequence of the three oligos, the loop sequence is underlined. (c) The hairpin
sequence. This synthesis procedure is described in detail in [16].

state along the reaction coordinate and determines the kinetics of the folding-unfolding
reaction. In the following we shall denote by the variable σ the folding state of the hairpin,
with σ = 0 corresponding to the folded state and σ = 1 corresponding to the unfolded
state. The model we will use involves four parameters: the free energy difference between
the two states σ = 0 and σ = 1 at zero force, ∆G0 = G(0)−G(1), the height of the kinetic
barrier B, defined as the free energy difference at force f between the TS and the folded
σ = 0 state, and the distances X0 and X1 along the reaction coordinate that separates the
transition state from states σ = 0 and σ = 1 respectively. The total distance along the
reaction coordinate between σ = 0 and σ = 1 is defined as Xm = X0 + X1 (see Fig. 4).
Under an applied force the free energy landscape is tilted along the reaction coordinate,
changing the free energy difference ∆G and the barrier B. In a first approximation ∆G and
B change linearly with the force whereas X0 and X1 are taken as constant: under these
assumptions the reaction rates are given by:

k0→1(f) ≡ q(f) = k0e
−β(B−G(0)−X0f) = ez+xf (3.1)

k1→0 ≡ r(f) = k0e
−β(B−G(1)+X1f) = ew−yf , (3.2)

with β = 1/kBT and where x, y, z, w are force independent parameters. The free energy
difference at a given force is:

∆G(f) = −kBT log
(
q(f)
r(f)

)
= ∆G0 −Xmf. (3.3)
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Fig. 4. Schematic picture of the two-state model. The free energy landscape of the hairpin molecule along
the reaction coordinate axis at a given force has two minima corresponding to the two states Folded and
Unfolded. When mechanical force is applied to the ends of the molecule the free energy landscape is tilted
along x, decreasing the free energy of the Unfolded (1) state and the transition state (TS) relative to the
Folded (0).

with ∆G0 = G(0)−G(1). If the quantities z,w, x, y, entering in (3.1) and (3.2) are measured,
the free energy landscape parameters can then be extracted as:

X0 = β−1x, X1 = β−1y (3.4)

∆G0 = β−1(w − z). (3.5)

The standard method to extract such parameters is by measuring the kinetic rates, q(f), r(f)
at a given force as the inverse mean lifetimes of the corresponding states and then fitting
a linear relation between the logarithm of the rates and the applied tension [7]. According
to (3.1), (3.2) the slope and intercept of such fit should give estimates for z,w, x, y. We
shall refer to this method as “the standard method” or “the histogram method”.

4. Analysis of a Single Hopping Trace

In order to perform a Bayesian analysis leading to the measurement of the kinetic rates of
the hairpin, we map the force trace obtained from a PM hopping experiment to a dicotomic
noise.

σi = Θ(f(i∆t) − f̄) (4.1)

where f(i∆t) is the force signal from a single hopping trace, sampled with finite acquisition
time ∆t, {

Θ(x) = 0, if x ≥ 0

Θ(x) = 1, if x < 0.
(4.2)

and f̄ is the median between the force in the folded state and the force in the unfolded state
(see Fig. 2). Since the force fluctuates in a PM hopping experiments we will consider the
rates as functions of f̄ , which does not depend on the folding state but only on the distance
between the trap and the pipette. The dicotomic trace is obtained in 4.1 takes only two
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values, 0, 1 with 0 corresponding to the folded state and 1 corresponding to the unfolded
state. The noise σi is then interpreted as a two-state Markov Chain, with a discrete time-
step ∆t corresponding to the data acquisition time (1 ms). The probability law associated
with such a two-state Markov chain is determined by the transition probability from state
j to state k, T (j, k), which gives the probability for the molecule to be in state k at step
i+ 1 when it was in state j at the previous time i:

P (σi+1 = k |σi = j) = T (j, k). (4.3)

When the kinetic rates are much smaller than the data acquisition rate, the transition
probability is well approximated by:

T (0, 0) = (1 − q∆t), T (0, 1) = q∆t, T (1, 1) = (1 − r∆t), T (1, 0) = r∆t, (4.4)

where q ≡ q(f̄) is the unfolding kinetic rate and r ≡ r(f̄) is the refolding kinetic rate. The
transition rates also determine the stationary probability µ:

µ(σ) = δσ,0
r

q + r
+ δσ,1

q

q + r
. (4.5)

The extraction of the kinetic rates of a DNA hairpin from a PM hopping experiment is
then equivalent to the determination of the transition probabilities of the two-state Markov
chain. Here we shall deal with this problem from a Bayesian viewpoint along the same
lines as in [17] but deepening the analytical study of the posterior probability distribution
and applying the techniques to real experimental data. In particular we will obtain explicit
formulas for the maximum likelihood vaule of the kinetic parameters. Bayesian reasoning
in data analysis [18] aims to the reconstruction of a posterior probability distribution for
the parameters to be estimated {θ} (r and q in our case) from the experimental outcome
{σ}. Using the definition of conditional probability we have:

P ({σ}|{θ})P0({θ}) = P ({θ}|{σ})Q0({σ}), (4.6)

or

P ({θ}|{σ}) =
P ({σ}|{θ})P0({θ})

Q0({σ}) . (4.7)

Here P0({θ}) is the prior distribution on the values of the parameters, P ({σ}|{θ}) is the
likelihood function and Q0({σ}) may be seen as a normalization constant [18]. The evalu-
ation of the likelihood function in the case of two-states Markov chains is straightforward,
the normalized probability of a sequence {σ}, i ∈ {0, N} is given by the probability of the
initial condition, times the probability of each transition:

P ({σ}|{θ}) = µ{θ}(σ0)
N−1∏
i=0

T{θ}(σi, σi+1). (4.8)

The likelihood is completely determined from the initial condition and the total number of
“bonds” nkj from state k to state j along the trace.

P ({σ}|{θ}) = µ{θ}(σ0)
∏

k=0,1

∏
j=0,1

(T{θ}(k, j))nkj . (4.9)
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We will write the likelihood in an exponential form:

P ({σ}|{θ}) = eNS(φkj)+log(µ{θ}(σ0)) � eNS(φkj). (4.10)

where S(φkj) =
∑

k=0,1

∑
j=0,1 φkj log(T{θ}(k, j)), N =

∑
nkj, φkj = nkj

N and the error
introduced in the last step is of the order of 1/N .

From the likelihood function (4.10) the posterior distribution can be obtained choosing
a prior. The prior will be used to enforce the reasonable contraints that the rates must
be positive and that they should be smaller than the data acquisition frequency ∆t−1.
The maximally uninformative prior enforcing the two constraints is the uniform probability
distribution on the set P : {(r, q) ∈ [0,∆t−1] ⊗ [0,∆t−1]}. With such prior the posterior
probability is proportional to the likelihood on P and zero outside of it:

P ({σ}|{θ}) ∝ P ({θ}|{σ}), ∀ (q, r) ∈ P (4.11)

and Eq. (4.10) can be also read as a probability for the jump rates given the experimental
outcome.

Using the explicit form for the transition probabilities of a two-state Markov chain
we get:

S(q, r) = φ00 log(1 − q∆t) + φ01 log(q∆t) + φ11 log(1 − r∆t) + φ1,0 log(r∆t), (4.12)

where S is now a function of (q, p) which has φik as parameters. The most probable values
for the parameters r and q, according to the posterior distribution, are found solving the
following equations:

∂qS(q, r) = − φ00

1 − q∆t
+
φ01

q∆t
= 0, (4.13)

∂rS(q, r) = − φ11

1 − r∆t
+
φ10

r∆t
= 0, (4.14)

which yields:

q̄ =
1

∆t
φ01

φ00 + φ01
r̄ =

1
∆t

φ10

φ11 + φ10
. (4.15)

This is exactly the same result as in the histogram method, as the ratio of the number of
transitions divided by the total number of points in one state is exactly the mean residence
time in that state. Expanding S around its maximum, given by (q̄, r̄) we get:

S(q, r) � S(q̄, r̄) − 1
2
σ2

q (q − q̄)2 − 1
2
σ2

r (r − r̄)2, (4.16)

with

σ2
q = (∆t)2(φ00 + φ01)2

(
1
φ00

+
1
φ01

)
� (∆t)2(φ00 + φ01)2

1
φ 01

(4.17)

σ2
r = (∆t)2(φ11 + φ10)2

(
1
φ11

+
1
φ10

)
� (∆t)2(φ11 + φ10)2

1
φ 10

(4.18)

where the last step follows from the fact that q∆t, r∆t� 1 so that φ00 	 φ01 and φ11 	 φ10.
Equations (4.16) and (4.17) show that the probability of a value of q such that q − q̄ = αq̄
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is exponentially suppressed with a factor:

exp (−α2N∆tq̄). (4.19)

The quantity N∆tq̄ is the ratio of the length of the trace (in seconds) to the mean lifetime
of the folded state (1/q̄) and can be seen as the number of expected transitions along the
trace. So that what it really matters in the steepness of the probability distribution is the
number of observed transitions. The posterior probability distribution is proportional to
the likelihood obtained from Eqs. (4.10) and (4.12):

P ({θ}|{σ}) ∝ (1 − q∆t)n00(q∆t)n01(1 − r∆t)n10(r∆t)n11 , (4.20)

and must be properly normalized. To obtain the normalization constant we integrate (4.20)
on P:

Z =
∫
P
dqdr(1 − q∆t)n00(q∆t)n01(1 − r∆t)n10(r∆t)n11

=
(

1
∆t

)2

β(n00 + 1, n01 + 1)β(n11 + 1, n10 + 1). (4.21)

Where

β(x, y) =
∫ 1

0
(1 − u)x−1uy−1.

The posterior probability distribution is thus the product of two beta distributions [18]:

P ({θ} | {σ})dpdq =
(1 − q∆t)n00(q∆t)n01(1 − r∆t)n10(r∆t)n11

Z
dpdq. (4.22)

In a Bayesian setting the best estimate for the model parameters are their averages with
respect to the posterior distribution. Let E(·) denote the such average. Using the special
properties of the beta distribution [18], the expected kinetic rates are:

E(q) =
1

∆t
φ01 + (1/N )

φ00 + φ01 + (2/N )
(4.23)

E(r) =
1

∆t
φ10 + (1/N )

φ11 + φ10 + 2/N . (4.24)

In any practical situation Nφ01,Nφ00 >> 1, so that in the case of a single trajectory the
most probable value of the transition rates is never very far from the mean value. Moreover
also the variance goes to 0 as the length of the trace grows, meaning that the posterior
probability distributions concentrates (see Fig. 5) around a point which is determined by the
inverse mean lifetimes of the two different states. In this situation the information conveyed
by the posterior distribution is the same as that obtained by the standard methods outlined
at the end of Sec. 3.

5. Putting Different Traces Together

The theory introduced in the case of one single trace can be easily generalized to include
different traces, measured at different forces, fj, and from different molecules. All the force
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Fig. 5. The plot shows the evolution of the posterior probability distribution as the length of the force trace
is increased. The posterior distribution has been plotted using one fourth, half, three fourths or the whole
of a 280 s PM hopping trace. The different posterior distributions are normalized setting their maximum
value to one. As the length of the trace increases the expected value of the transition rate fluctuates and
then stabilizes. It is also possible to see how the measure assigned by the probability distribution gets more
and more concentrated around the maximum. A third effect is the progressive disappearance of the initial
asymmetry in the posterior distribution as the length of the trace is increased.

traces will be mapped to dicotomic noises as shown at the beginning of the last section.
Since the different observations are to be considered independent, the probability of the
whole collection of traces will be simply given by the product of the probability of each
trace:

P (σ1
i , . . . , σ

n
i | (q1, r1), . . . (qn, rn)) = P (σ1

i |q1, r1) . . . P (σn
i |qn, rn), (5.1)

where qj ≡ q(fj) and rj ≡ r(fj) so that, using (4.10) we obtain:

P (σ1
i , . . . , σ

n
i |(q1, r1), . . . (qn, rn)) = eN

P
j Sj(qj ,rj), (5.2)

where N is now the total number of points in the collection of traces and

Sj(qj , rj) =
∑
k,l

ψj
klT

j(k, l), ψj
kl =

nj
kl

N . (5.3)

According to the discussion in Sec. 3 the transition rates at different forces should be of the
form:

qj = ez+xfj , rj = ew−yfj (5.4)

so that by Bayes theorem we can transform the probability distribution for the traces (5.2)
into a probability distribution for the parameters z, x,w, y. As already noted in the previous
section the folding and unfolding rate are independent random variables, we shall only
discuss the case of the unfolding rate. Identical results do hold in the other case. The
independence of the rates is due to the fact that the rate function

∑
j S

j(qj, rj) can be
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Fig. 6. Force traces obtained from hopping experiments on a single molecule at different forces (13.4 pN
for the lower trace and 14.1 pN for the upper trace). The probability of the different states is different for
different median force: in the lower trace, at a lower median force the folded state (higher force) is more
probable than the unfolded state. At higher tension, upper curve, the unfolded state (lower force) is favoured.
Force and time scales as shown in the plot. The low frequency oscillations of the force signal are due to
instrumental drift effects.

written as a sum of two contributions, one depending only on the qjs and the other only on
the rjs: ∑

j

Sj(qj, rj) =
∑

j

∑
k=0,1

ψj
0,kT

j(0, k) +
∑

j

∑
k=0,1

ψj
1,kT

j(1, k). (5.5)

Since T j(0, k) does only depend on qj (see (4.12)) and thus on z, x (5.4) and T j(1, k) does
only depend on rj and thus on w, y we can write:

∑
j

Sj(qj, rj) = S0(z, x) + S1(w, y), (5.6)

with

S0(z, x) =
∑

j

nj
00 log(1 − ez+xfj) + nj

01(z + xfj) �
∑

j

−nj
00e

z+xfj + nj
01(z + xfj)

S1(w, y) =
∑

j

nj
11 log(1 − ew+yfj) + nj

10(w + yfj) �
∑

j

−nj
11e

w+yfj + nj
10(w + yfj).

In the following we shall restrict our analysis to the rate function S0(z, x). The equations
for the maximum of the rate function (5.3) are:

∂zS0 =
∑

j

nj
01 − nj

00e
z+xfj = 0 (5.7)

∂xS0 =
∑

j

fjn
j
01 − fjn

j
00e

z+xfj = 0, (5.8)
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whose solution is implicitly given by:∑
j fjn

j
00e

xfj∑
j n

j
00e

xfj
=

∑
j fjn

j
01∑

j n
j
01

(5.9)

z = log

( ∑
j n

j
01∑

j n
j
00e

xfj

)
. (5.10)

Note that rate function is convex, as it is a sum of convex functions, so that any maximum
is a global maximum. Moreover it is easy to show that (5.9) does always have a solution for
x ∈ [−∞,∞]: the two sides of the equation have the formal aspect of the “average” of fj

for different j with respect to the probability distributions Pl(j),Pr(j):

Pl(j) =
nj

00e
xfj∑

j n
j
00e

xfj
, Pr(j) =

nj
01∑

j n
j
01

.

Table 1. Comparison of the values for the Free Energy
Landscape parameters as extracted by the two methods.

Bayesian method Standard method

X0 (nm) 8.6 ± 0.6 9.0 ± 0.8
X1 (nm) 6.0 ± 0.6 6.2 ± 0.6
Xm (nm) 14.6 ± 0.8 15.2 ± 1
∆G0 (kBT ) 51 ± 4 52 ± 3
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Fig. 7. Comparison of the Free Energy Landscape parameters as obtained from the Bayesian method (con-
tinuous lines) and the standard methods (dotted line). Inset: the two methods applied to data coming from a
single molecule, perfect agreement between the two methods is shown. Main figure: The methods are applied
to a collection of traces coming from different molecules. Points do represent the unfolding rates measured
via the standard method and squares represent the refolding rates measured in the same way. The Bayesian
method and the standard method show a low 5% discrepancy.
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The right-hand side of (5.9) does always take value in the interval [fmin, fmax], while, due
to the term exfj , the left hand side spans the same range when x varies form −∞ to
∞. The maximum likelihood analysis can be easily performed on data from PM hopping
experiments and the results obtained compared with those obtained by standard methods.
When analyzing the trace for a single molecule (Fig. 7 inset) the results from the two
methods can coincide pretty well and even when traces from different molecules are analyzed
together (Fig. 7 main figure) the results show only a moderate discrepancy.

6. Conclusions

Two of the salient experimental issues in single molecule biophysics are the inherently
stochastic nature of the observed processes, which are usually strongly affected by thermal
fluctuations, and the large heterogeneity between molecules of the same species. As a con-
sequence of these two facts Bayesian reasoning, which turns probability distribution on the
experimental outcomes into probability distributions for the system’s parameters, might
prove very fruitful when applied to single molecule experiments as it was done for example
in [17, 19, 20]. We have derived a posterior distribution for the parameters describing the
folding kinetics of a DNA hairpin under tension. This posterior distribution is based on the
assumption that the unfolding/refolding dynamics can be described as a two-state Markov
chain and that the kinetic rates obey a simplified Transition State model. Under these
assumptions the posterior distribution for the rates obtained from a single force trace have
the form of a beta distribution, whose variance decreases with the number of observed tran-
sitions. At the level of the single force trace the Bayesian approach and the standard method
do agree pretty well. The Bayesian approach does also allow the extraction of a probability
distribution for the parameters describing the free energy landscape of the hairpin from a set
of force traces obtained at different forces and from different molecules. The equations for
the maximum of such probability distribution were derived and solved. In the case in which
data from many different molecules are analyzed together, the two methods of analysis can
show moderate discrepancies, which are due to the fact that the Bayesian method does
not take into account all the traces on an equal basis, but weights them according to their
length. In the case of the data discussed in this paper the discrepancy proved to be below
the experimental error. The introduction of Bayesian methods in single molecule biophysics
seems thus useful to validate widely used data analysis techniques from a statistical point
of view and maybe to discover possible improvements to the actual methods.
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