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1. Introduction

A typical force-extension curve for double-stranded DNA (dsDNA) exhibits three
portions [2, 17, 30]. During the first portion there is an entropic stretching regime (usually
modeled by the worm-like chain), followed by a force plateau in the region of 65 picoNew-
tons, while in the last portion there is a sharp transition from the usual B-form to a new
overstretched form, usually designated S-DNA. The structure of S-DNA remains the subject
of debate but it should not be confused with single-stranded DNA (ssDNA) [32, 33]. The
biological function of the overstretching DNA transition is complementary to thermal or pH
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induced denaturation and for this reason there is considerable attention focused on modeling
this phenomenon [19], but there appears to be no general agreement about the models that
have been proposed in the literature. For example, in a very recent paper [10] it has been
shown experimentally that overstretching is more complex than previously considered and
that it is in fact a phenomenon that involves two distinct types of double-helix reorgani-
zation: slow hysteretic “unpeeling” of one strand off the other; and a fast, non-hysteretic
transition to an elongated double-stranded form.

In [24] a model based on a force-induced melting of the DNA double helix was proposed.
This implies that S-DNA is made up of a mixture of large islands of separated ssDNA
and remnant base-paired B-DNA, and molecular extension is a weighted average of its
extension in the two possible states. A two-state worm-like chain (WLC) has been also
proposed in [1]. In several papers the idea that the overstretching behavior of DNA may
be modeled by a sort of mixture theory has been applied in the study of B-DNA to S-DNA
transition as a function of solution conditions, including variations in temperature, pH and
ionic strength (see, for example, [25]). In [3], by using a thermodynamical model for tension-
melted dsDNA it is argued that the overstretching transition cannot be explained in terms
of conversion of double helix to noninteracting polynucleotide strands. This is because two
parallel noninteracting ssDNAs cannot explain quantitatively the mechanical properties
of S-DNA. This is argued directly from an examination of the experimental data by the
authors [3]. The Rouzina and Bloomfield model [24, 25] is therefore criticized because in the
B-ss scenario the overstretched state should be associated with a constant force between
the B-DNA and ssDNA lower than that observed.

The aim of the present note is to present a new framework for describing the over-
stretching phenomena. Our model is developed using a nonstandard version of the phe-
nomenological theory of nonlinear elasticity where the stress is determined as a function
of the deformation gradient calculated with respect to a varying reference configuration in
such a way that it is possible to introduce micro-mechanical considerations. This idea was
introduced originally by Eckart [9] and then developed more recently by Rajagopal and
Wineman [23, 35] in order to formulate constitutive equations for materials that undergo
deformations induced by microstructural changes. The micro-mechanical interpretation of
this theory proposed by De Tommasi et al. in [5], may be quite useful in the study of the
overstretching phenomenon.

The general form of the constitutive equation for nonlinear elasticity is expressed in
terms of a strain-energy function. In the standard theory it is assumed implicitly that the
material response is due to a molecular mechanism that does not change during the defor-
mation process under consideration. Our argument is that in single-molecule experiments
on DNA, this assumption may be considered valid only on the first portion of the force-
extension curve. At a certain moment the hydrogen bonds between strands start to break
and there is a fundamental change in the molecular mechanism responsible for the overall
material response. In the case of DNA these microstructural changes are driven by several
factors: stretching, salinity, temperature, etc.

The DNA molecule has been modeled mathematically in very different ways. Atomic
modeling considers each atom of the molecule as a point mass and interaction laws are
introduced via interatomic potentials. Mesoscopic modeling considers base pairs rather than
the atoms as the fundamental units and employs semi-empirical laws for the interactions
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between adjacent pairs. Continuum mechanics imagines the DNA to be a continuous
filament. Within the continuum framework bending and torsional stiffness are introduced
in the usual manner of elasticity theory.

The simple base-pair model provided by Peyrard et al. (see [4] for details) considers
that the opposite bases are connected by hydrogen bonds modeled via a Morse potential
whereas the bases on the same strand are connected by a simple harmonic potential. Here we
adopt a similar micro-mechanical picture. The spring that models the stacking interactions
endows the DNA molecule with nonzero stiffness. On the other hand the hydrogen bonds
are breakable and are responsible for the alteration of the molecule. We assume that a
continuous process of microstructural conversion occurs after the deformation increases
beyond a threshold value. In this initial model we shall neglect any factors such as salinity,
temperature or ionic strength that are not strictly mechanical. We emphasize that instead of
considering the conversion of the double helix to two noninteracting polynucleotide strands,
we are considering here a process of conversion related to the rupture of stress-bearing
bonds. Upon rupture of the bonds a new microstructural arrangement forms with a new
unstressed reference configuration. More details of this constitutive model may be found
in [5].

We point out that in the statistical mechanics approach to DNA mechanics it is usual to
model this biomolecule as a one-dimensional system. This choice rules out a systematic use
of continuum mechanics in DNA mechanics. Sometimes in the framework of these studies
researchers tolerate the use of rod theory. On the other hand, experiments such as that
reported in [13] show that three-dimensional continuum mechanics may have a fundamen-
tal role to play in our understanding of complex deformations of the DNA filament. The
reference model from the point of view of statistical mechanics upon which the model of the
overstretching phenomenon is based is the discrete persistent chain [29]. Using a technique
that has been used to explain the helix-coil transition in biopolymers in [29], the authors
develop a seven-parameter model for the overstretching transition with a two-state Ising
model living on a discrete persistent chain. We believe that an approach based on contin-
uum mechanics provides a different perspective and may therefore help in understanding
this interesting mechanical phenomena.

2. Basic Equations

Let us consider a deformation x = x(X, t), where x is the current position of a particle
located at X in the undeformed configuration at time t = 0. The deformation gradient is
given by F(X, t) = ∂x/∂X and the left Cauchy–Green tensor by B = FFT . We assume
that there is a range of deformation for which the material behaves like an incompressible,
isotropic elastic material, i.e. the Cauchy stress T = −pI + T(E,1), where −pI is the inde-
terminate part of the stress due to the constraint of incompressibility (det F = 1) and the
extra stress takes the form

T(E,1) = 2W (1)
1 B − 2W (1)

2 B−1. (2.1)

The strain-energy function W (1) = W (1)(I1, I2) is a function of the principal invariants
I1 = tr(B) and I2 = tr(B−1), where W

(1)
i = ∂W (1)/∂Ii, i = 1, 2. An activation crite-

rion is needed to determine when the microstructural change begins. This is provided by
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introducing a scalar deformation state parameter s. Here, we suppose that s = s(I1, I2)
depends on the deformation through I1 and I2 for consistency with the requirement of
isotropy, although more general forms of s may easily be adopted. For s < sa, the threshold
value of s, no conversion has yet occurred, i.e. all the material is in its original form and
the extra stress is given by (2.1). On the other hand, for a value of the state parameter
ŝ beyond sa microstructural changes have occurred and the reference configuration has
changed. This implies that the stress is now a function of the relative deformation gradient
for the material formed at state ŝ given by F̂ = ∂x/∂x̂, where x̂ is the position of the
particle in the configuration corresponding to deformation state ŝ. In Fig. 1 the original
reference configuration, the configuration at ŝ and the current configuration are depicted.
The associated Cauchy–Green tensor is given by B̂ = F̂F̂T .

We shall assume that the new material formed at the state ŝ is still elastic, isotropic
and incompressible such that the extra Cauchy stress at state s in this new configuration
formed at the deformation state ŝ is given by

T(E,2) = 2W (2)
1 B̂ − 2W (2)

2 B̂−1. (2.2)

Here W (2) = W (2)(Î1, Î2) is the strain-energy function of the newly formed material, relative
to the reference configuration at ŝ. Another important simplifying assumption is that a
single function W (2) governs the strain energy during the continuous microstructural change.
The total current stress is taken as the superposition of the contributions from the material
remaining in its original configuration and from all the new material formed at deformation
states ŝ ∈ [sa, s], i.e.

T(s) = −pI + b(s)T(E,1) +
∫ s

sa

a(ŝ)T(E,2)d ŝ, (2.3)

where a(ŝ) is a conversion function, which measures the “rate” of conversion with respect
to the parameter ŝ, and b(s) = 1 − ∫ s

sa
a(ŝ)dŝ is the volume fraction of the material in the

original configuration remaining at state s.
For s < sa, as already indicated, no conversion has yet occurred, all the material is

therefore in its original state and the total extra stress is given by (2.1). As the deformation

F(s)

^ ^
F(s)

X

x

x̂

^
F(s)

Fig. 1. Schematic illustration of a material with the original reference configuration (left), the evolving
reference configuration at the deformation state bs and the current configuration.
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proceeds and the state parameter s increases beyond sa the conversion function a(s)
determines the amount of material transformed into the new phase.

We require the conversion function to satisfy a(s) = 0 when s ≤ sa and a(s) > 0 for
s > sa, while b(s) = 1 when s ≤ sa and 0 ≤ b(s) < 1 for s > sa. Thus, to complete
the model, constitutive equations for W (1) and W (2), the activation criterion sa and the
conversion function a(s) have to be prescribed. Our model is three-dimensional and fully
consistent with the theory of continuum mechanics. To illustrate the ideas quantitatively
we begin with a prototype that is empirical and one-dimensional, and we then show how to
recast the theory in three-dimensional form.

3. The Constitutive Models

3.1. Data sources

We consider a set of experimental data from [32, 33], where several experiments on dsDNA
in different salt concentrations were discussed. Here we use measured data (xi, fi), i =
1, . . . ,m, corresponding to a force-(f in picoNewtons)-extension (x in microns µ) experiment
on a single dsDNA molecule in 250 mM [Na+] buffer solution at 7.5 pH (these data are
reported in Fig. 3 of [32]).

3.2. An empirical one-dimensional model

Let x denote the one-dimensional extension. On the same basis as illustrated in Sec. 2, for
the one-dimensional force f we have

f(x) = b(x)f (1)(x) +
∫ x

xa

a(x̂)f (2)(x̂)dx̂. (3.1)

In (3.1) the various quantities a(x), b(x), xa have the same meaning as before, with x replac-
ing s. Since the process of conversion is continuous we have

b(x) = 1 −
∫ x

xa

a(x̂)dx̂, x ≥ xa. (3.2)

The constitutive assumptions we introduce are: for f (1), a logistic modification of the
original one-dimensional Fung model widely used in biomechanics [11], i.e.

f (1)(x) =
µ1

2
exp[β(x − x0)]

exp[β(x − x0)] + γ
, (3.3)

where the material constants µ1 > 0, x0 > 0 and β > 0 have dimensions of force, length
and 1/length, respectively, and γ > 0 is a dimensionless constant; and, for f (2), the WLC
interpolation formula [2, 14, 22]

f (2)(x) = µ2

[
1
4
(1 − z)−2 − 1

4
+ z

]
. (3.4)

Here µ2 = kT/lp, where lp is the persistence length, k is Boltzmann’s constant and T

the absolute temperature (degrees Kelvin), z = x/lc and lc is the contour length of the
molecule. Note that, to be consistent with units of the data analysed, the parameters for
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the elastic moduli such as µ1, µ2 are measured in pN and for the lengths (lc, x, etc.) are
measured in microns. We have chosen a logistic Fung model to capture the first portion of
the force-extension curve (i.e. to capture the strain-hardening phenomenon) but without
introducing a singularity such as that in the WLC formula. The WLC is used to model the
sharp increase in force at the end of the curve just after the plateau. It is clear that the
modeling of the plateau zone depends on how the reference configuration evolves, and this
may be controlled by the choice of the conversion function a(x). Usually, in the context of
rubber mechanics, very simple models for the conversion function are adopted (for example,
quadratic or piecewise linear functional forms). Here we use a functional form suggested by
statistical mechanics, namely a probability distribution function computed by considering
two possible states for a chain composed of a fixed number of base pairs with a given fixed
difference in the energy between the two states. For this purpose, let c1, c2 be real constants
and

g(x) =
c1e

−c1(x−c2)

[1 + e−c1(x−c2)]2
.

Let δ be a positive constant and define

a(x) = δ(g(x) − g(xa)), x ∈ [xa, xc], (3.5)

with a(x) = 0 otherwise. Here, we are assuming that the conversion has been completed
when x reaches the value xc, and this imposes the continuity requirement a(xc) = 0, which
leads to c2 = (xa + xc)/2. A plot of the function a(x) is shown in Fig. 2.

We denote by C the total fraction of the material that can undergo conversion. Then,

C =
∫ xc

xa

a(x̂)dx̂. (3.6)

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

x

a(
x)

xa =11 xc = 28 

Fig. 2. Plot of the conversion function a(x) against x, illustrated for xa = 11 and xc = 28 with c1 = 1, based
on the set of data in Wenner et al. [32] for the 250 mM buffer solution.
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From the definition of C in (3.6), we calculate the value of δ by

δ =
C

e−c1(xa+xc)/2−e−c1(xc−xa)/2

[1+e−c1(xc−xa)/2][1+e−c1(xa+xc)/2]
− g(xa)(xc − xa)

,

and then the constitutive parameters to be identified in this empirical model are µ1, β, γ, µ2

and lc. Moreover, we have to fix the activation criterion and therefore we also need values
for xa, xc, c1 and C. At this stage the only a priori information about these parameters is
that C ∈ [0, 1].

We have to point out two fundamental facts. First, because several parameters have to
be identified in the model their numerical approximation could pose severe problems. This
is because in the various linear and nonlinear fitting procedures the objective functions
may have many local minima, a fact that has been highlighted in [21, 22]. These unpleasant
features of least squares problems have also recently been related to the idea of so-called
sloppy models. As described in [27] for applications in both biology and physics, this means
that the parameters in these multiparameter models can vary in concert by many orders of
magnitude without making the fits significantly worse.

The second important issue is to decide whether single molecule experiments are per-
formed in a hard or soft device. This is a commonly used jargon for testing machines in classi-
cal experimental mechanics. A hard device is a testing machine where the control parameter
is the displacement whereas a soft device is a machine where the control parameter is the
load, i.e. the stress (strictly the applied force). When a material with a nonmonotone stress-
stretch curve is considered, as is usual in the modeling of phase transitions, the difference
between the experimental data obtained with the two different protocols is quite impor-
tant. In the case of nonmonotone curves, roughly speaking, there are two stable branches
separated by a metastable region. Each branch corresponds to one of the two coexistent
phases. For a soft device, as the load (the control parameter) increases a critical value is
reached for which the transition between one phase and the other occurs and it is observed
that the displacement suddenly jumps from one stable branch to the other. Such a critical
load is computed by means of the Maxwell line. On the other hand, with a hard device
where the displacement is controlled it is observed that at the critical load the Maxwell
line is traversed from the first stable branch to the second. It seems plausible that in some
of the single molecule experiments a hard device is used. The modeling is the same in the
case of a soft device but a different approach to the fitting of the experimental data has
to be used. From a review of the literature it is clear that the usual micro-manipulation
devices are soft devices. In our one-dimensional model this fact is not so important, but in
a three-dimensional model the difference is substantial.

For these reasons it is necessary to devise a strategy for the fitting. This strategy is
reported in the Appendix and accounts for the physical interpretation of some of these
parameters. Among the various parameters it is important to clarify the role of C, i.e. of
the total fraction of dsDNA converted to sDNA. We know, from [31], for example, and
many other studies that not all the dsDNA is converted. In Fig. 3 we show how the con-
version is progressing as a function of the elongation x. In each nonlinear optimization, the
parameters C, xc, lc were fixed, while the others (µ1, β, γ, µ2, c1, xa) were taken from the
fitting procedure on the 1D model. Hence, the curves presented in Fig. 3 correspond to the
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Fig. 3. Plot of the volume fraction b(x) vs x for different values of C in (3.6): C = 0.2, ◦; C = 0.5, +;
C = 0.8, �; C = 0.9, ∗; C = 1, •. The conversion is faster and more localized for larger values of C. Note
that 1 − C is the fraction of dsDNA remaining at the end of the overstretching transition.

expression (3.2) using the activation function a(x̂) with the parameters xa and c1 obtained
from the best fit. It is worth noting that for small values of C this conversion process is quite
smooth, but beyond a certain level of total conversion becomes very sharp and localized. In
our opinion this behavior is reminescent of what happens in thermal denaturation of DNA
as reported in the pioneering works by Peyrard et al. (see, for example, [4]). Information of
this kind may be used to restrict further the range of variation of the various parameters
and it suggests the need for a new set of experiments tailored to the specific model we wish
to use. This is exactly what the PNAS commentary [34] points out. At the moment our
numerical simulations show that the model proposed here may reproduce experimental data
with a fair degree of accuracy. Therefore, the curves presented here are only representative
of the peculiarities of the model.

In Fig. 4, we show three predictions of the 1D model obtained for different optimal sets
of parameters and with very similar low residuals and errors. These results emphasize the
sloppiness of the model [27], or in other words the presence of numerical global minima, i.e.
indistinguishable good fits arising from very different parameter arrays.

Remark. We point out that the function g(x) used in the conversion function (3.5) is purely
phenomenological, but it is suggested by a simple computation from statistical mechanics.
We have supposed that the DNA molecule is composed of a number N of base pairs. A
number, say ns, of base pairs is in a certain state (for example S-DNA) and the remaining
number nb = N − ns is in another state. There is an energy difference ε between the
two states. Then a standard computation where thermodynamical equilibrium is assumed
based on the minimization of a thermodynamical potential allows ns to be computed as a
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function of ε, the applied tensile force and the stretch. We have used this formula to inspire
the empirical form of the conversion function.

3.3. Three-dimensional models

Now we turn to study the single molecule experiment within the framework of a three-
dimensional theory. The motivation for this is provided mainly by the findings of [13].
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Fig. 4. Plot of f(x) vs x. Circles are from the data in Wenner et al. [32] for the 250 mM buffer solution. In
both (a) and (b), the curves in the left panels are obtained from the fitting procedure for the total volume
fraction C = 0.2, xc = 28.76, lc = 32.02 (contour length). In the left panel of (c) C = 0.8 instead. The
red stars indicate the range of values for which the conversion is active. The corresponding optimal sets of
parameter values and the least squares residuals are reported as insets in each plot. In (a), (b) and (c), the
right panels show the absolute errors (at the beginning) and relative errors on the data corresponding to
the predictions in the corresponding left panels. These results show that we are in the presence of a sloppy
model and that quantitative predictions have little meaning.
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Fig. 4. (Continued)

In this celebrated paper the authors use a toy model of DNA in which the biomolecule is
considered as an incompressible elastic rod wrapped around by a stiff wire. The outer wire is
affixed to the inner rod helically and contributes to the overall mechanical properties because
it resists stretching and compression. The outer helix increases the torsional rigidity and
yields a twist-stretch coupling that depends upon the pitch angle of the helix. Such a twist-
stretch coupling is well known in the context of three-dimensional continuum mechanics
and is referred to as the Poynting effect. For many solids, in particular for rubber-like
and polymeric solids, the mechanical response of a tube in torsion is characterized by
an elongation related to the square of the amount of twist. This phenomena is clearly
and simply explained within the framework of the three-dimensional theory of nonlinear
elasticity, but its explanation is much more subtle in the case of one-dimensional theories
of rods. Here, because of the available experimental data, we consider just the deformation
associated with simple tension, but we show that the ideas of the empirical model introduced
in the previous subsection work also in the general setting of continuum mechanics.

We have to point out that the fitting problem for the three-dimensional theory is much
harder than for the one-dimensional model of the previous section. Moreover, here it is of
central importance to consider if the plateau is a Maxwell line. As will be clear this seems to
be the case from several numerical experiments. For all these reasons is not truly significant
to compare the fits obtained in the one-dimensional case with that obtained in this section.

In three dimensions the single molecule force-extension experiment is idealized as a
simple tension test, for which the deformation is given by

x =
1√
λ

X, y =
1√
λ

Y, z = λZ, (3.7)

where λ is the stretch in the axial (i.e. z) direction. The current deformation gradient is
given in matrix form by F(λ) = diag(1/

√
λ, 1/

√
λ, λ), and the corresponding Cauchy–Green

deformation matrix is B(λ) = diag(1/λ, 1/λ, λ2). Hence,

I1 = λ2 + 2λ−1, I2 = λ−2 + 2λ. (3.8)
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Since this is a one-parameter deformation, it is straightforward to establish that there
is a one-to-one correspondence between the activation parameter s and the stretch λ, and
we write s = s(λ) = I1(λ) − 3. In fact, it is easy to see that for λ ≥ 1 this is a monotone
increasing function and can be inverted. Hence, it is possible to identify an activation stretch,
which we denote by λa, instead of a generic activation parameter sa; then, sa = s(λa) =
I1(λa) − 3. The deformation gradient at state λ̂ is denoted by F̂(λ̂) = F(λ)F−1(λ̂) and we
compute

F̂(λ) = diag
(√

λ̂/λ,

√
λ̂/λ, λ/λ̂

)
,

B̂(λ) = diag(λ̂/λ, λ̂/λ, λ2/λ̂2).
(3.9)

It follows that Î1 = λ2/λ̂2 + 2λ̂/λ, and similarly for Î2.
If we consider the class of elastic materials referred to as generalized neo-Hookean mate-

rials, with W = W (I1), then from (2.1) we obtain the principal components of the Cauchy
stress tensor in the form

ti = 2λ2
i W1 − p, i = 1, 2, 3. (3.10)

The requirement that the lateral surfaces of the specimen undergoing the simple extension
are traction free, t1 = t2 = 0, yields

p = 2λ−1W1. (3.11)

Generalizing these results to the case (2.3), we see that the tensile force per unit deformed
cross-sectional area necessary to achieve the stretch is given by the Cauchy stress component

t3(λ) = 2b(λ)(λ2 − λ−1)W (1)
1 + 2

∫ s

sa

a(ŝ)
(

λ2

λ(ŝ)2
− λ(ŝ)

λ

)
W

(2)
1 (λ(ŝ))dŝ, (3.12)

where

b(λ) = 1 −
∫ s

sa

a(ŝ)dŝ. (3.13)

The corresponding stress per unit undeformed area of cross-section is F (λ) = λ−1t3(λ).
At this point it is necessary to complement (3.12) with the constitutive equations. We

need a constitutive equation for the strain-energy function of the material before the conver-
sion starts, i.e. W (1), to model the first portion of the force-extension curve. Then, we also
need a constitutive equation for the function W (2) that governs the mechanical behavior
of the newly formed material. This choice is important for modeling the “last” portion of
the force-extension curve. The overstretching plateau, as already pointed out, is modeled
by the choice of the conversion function a(s). For the strain energy W (1) in the first regime
we consider a modification of the strain-energy function, here denoted W F , based on the
original exponential model of Fung for biological tissues given by

W F
1 =

µ1

2
exp[β(I1 − 3)], (3.14)

where µ1 > 0 is a constant, here with dimensions of stress, and β > 0 is a dimensionless
constant. As for the 1D case, we need to modify this function because a saturation phe-
nomenon has to be taken into account. The mechanical behavior characterizing the strain
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stiffening of the DNA molecule in the first portion of the force-extension curve cannot influ-
ence what happens in the plateau zone. For this reason we consider a logistic modification of
the (three-dimensional) Fung model (3.14) analogous to that used for 1D. This is given by

W
(1)
1 =

µ1

2
exp[β(I1 − 3)]

exp[β(I1 − 3)] + γ
, (3.15)

so that

W (1) =
µ1

2β
ln(exp(β(I1 − 3)) + γ), (3.16)

where γ > 0 is again a dimensionless constant. The function (3.15) reduces to the neo-
Hookean material W = µ1(I1 − 3)/2 when γ = 0.

For the strain-energy function W (2) in the second portion of the deformation range we
consider the phenomenological model first proposed by Gent [12] and given by

W (2)(Î1) = −µ2

2
Jm ln

(
1 − Î1 − 3

Jm

)
, Î1 < Jm + 3, (3.17)

where µ2 is the shear modulus for infinitesimal deformations and Jm (> 0) is the limit-
ing value of Î1 − 3 associated with limiting chain extensibility. In the limit as the chain
extensibility parameter tends to infinity (Jm → ∞), (3.17) also reduces to the classical neo-
Hookean model. The model (3.17) has been discussed in detail by Horgan and Saccomandi
[15] and it can be connected with the so-called Freely Jointed Chain (FJC) model. In this
case the response function is given by

W
(2)
1 =

µ2

2
Jm

Jm − (Î1 − 3)
, (3.18)

so that the stress has a singularity as Î1 → Jm + 3.
The 3D model we have proposed contains several constitutive parameters that have to

be found by using a nonlinear least squares fitting procedure. The parameters needed to fix
the strain-energy functions are µ1, β, γ and µ2, Jm. Moreover, we use the same activation
criterion as was used for the 1D model in (3.5). Hence, to fix the activation criterion we
need to identify the interval with ends xa → λa and xc → λc and the parameters c1, C.
Note that this criterion may easily be reformulated in a way compatible with 3D elasticity
in terms of the invariant I1 − 3. Equation (3.12) provides a formula for the Cauchy stress,
but it is the nominal stress F (λ) = λ−1t3(λ) (force per unit reference cross-sectional area)
that is needed for the data fitting. We therefore transform the data set (xi, fi) into the
data set (λi, fi), where λi = 1 + xi/lc, with the contour length lc identified in the 1D case.
To match the dimensions of the force f in the data the stress F (λ) = λ−1t3(λ) has to be
multiplied by the reference cross-sectional area, which is unknown. However, this is just a
multiplicative factor that is accounted for by incorporating it into the constants µ1 and µ2,
which then have dimensions of force as in the 1D situation.

From the considerations of the 1D model at the end of the previous section and by
the arguments in [31, 34], a relatively large fraction C of dsDNA can be considered to be
converted. Hence, we fix C and try to identify the other parameters such that in the space
(λ, F (λ)) the 3D model “sees” the overstretching transition (plateau) in the original data
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Fig. 5. Plot of λ−1t3(λ) vs λ. Circles are from the data in Wenner et al. [32] for the 250 mM buffer solution.
The curves are obtained from the fitting procedure, for different (fixed) values of C, reported in the plot.
The stars indicate the range of values for which the conversion is active. Note that the dimensions of the
stress have been converted into “force” by multiplication by the unknown reference cross-sectional area,
which is incorporated into the parameters µ1 and µ2.

as its Maxwell line. Curves obtained from the fitting procedure, for different (fixed) values
of C, are reported in Fig. 5. In this framework, the idea of best fit depends on the kind of
device used for the experiments. In a hard device, that is following the data on the plateau,
the best fit is obtained for C = 0.2. In a soft device, it is reasonable to consider as absolute
minimizers those having the plateau as their Maxwell line, that is such that the area below
and under the plateau are equal. As shown in Fig. 5, this is attained for larger values of C.

4. Concluding Remarks

The model proposed here yields good fits to the data, and because it has been formulated
within a very general framework it may easily be extended to take into account several
variables of biological interest, such as solution temperature, pH, and ionic strength (see,
e.g., [25]).

It should be mentioned that the number (six) of parameters truly free for fitting in the
1D model is fewer than for some one-dimensional models, such as those studied in [28, 29].
For the 3D model the same number (seven) of free parameters used in the well-known
Storm and Nelson model [29] is considered. However, as emphasized in [34], more specific
experiments are required to determine all these parameters.

The model is interesting not only because it comprises a single formula describing the
complete force-extension curve, but also from a conceptual point of view. Indeed, as has
been argued by Cocco et al. [3], S-DNA cannot be described as a simple sort of mixture of
dsDNA and ssDNA. The relationship is more complex and it is clarified by the existence
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of multiple reference configurations. We emphasize that because DNA overwinds when it
is stretched, in our opinion we need a three-dimensional model to obtain a complete and
realistic picture of the single molecule experiments and our model is just a rigorous version
of the toy model proposed by Gore et al. in [13].

We have considered that experiments are conducted either with a hard device or a soft
device. With a hard device we are able to follow the plateau, i.e. we have an increase of
displacement at constant stress, while for a soft device the plateau is the bridge between the
two stable branches of the nonmonotone force-extension curve, i.e. we jump from a value
of displacement to a significantly larger value.

The mathematical details of the family of models considered here (which were introduced
in [5, 6]) may be found in [7]. The ideas contained in [6] have been applied successfully to
the modeling of various biomaterials, including, for example, spider silk [8], and in [16] a
similar approach to that in [6] has been used to model beta-sheet proteins.

On the other hand, the need for a mixture theory in modeling DNA mechanics is not new.
In 2005 Moakher and Maddocks proposed a theory of birods [20] in which they construct a
continuum mechanics model of DNA composed of two elastically interacting elastic strands.
The two strands are described in terms of averaged, or macroscopic, variables plus an
additional small, internal or microscopic, perturbation. Therefore the model is quite different
from that proposed here.

Our results show that not only entropic elasticity, but also the material properties play
an important role in DNA mechanics. In the framework of the overstretching transition
the role of nonentropic elasticity has now been clearly pointed out by a new generation
of experiments [34] that, combining single-molecule force spectroscopy and fluorescence
imaging, are able to visualize the phenomena directly. Clearly for our model to be useful
more information is needed than is currently available. For example, as already pointed out
in the previous section, we need to have clear information about the conversion rates.

When in [31] multi-color, single-molecule fluorescence imaging was used on uncon-
strained DNA, first the molecule was stretched torsionally to various extensions within
the low-force transition and then it was exposed to an intercalating dye. In such a way
the experiment was able to reveal the fraction of dsDNA at that extension. This dsDNA
fraction corresponds directly to the fraction of the transition remaining to be stretched.

We think that our model may have a deep impact on the nonlinear dynamics of DNA,
as already shown in [26]. For example, the constitutive equations considered here intro-
duce the possibility of nonclassical shocks in DNA dynamics, an interesting new idea for
understanding DNA denaturation with models à la Peyrard [4]. Indeed, the next step is to
consider if, by using a suitable adaptation of the model in [6], we are able to use micro-
mechanical considerations, and not a priori assumptions, to model DNA denaturation based
on a nonconvex elastic energy and nonlocal interactions.

Appendix

The strategy for fitting the theoretical model to the experimental data is based on a
nonlinear least squares (NLS) approximation as follows. As a first step, we fix a priori
some parameters from simple biological and physical considerations and we solve the opti-
mization problem for the remaining parameters in order to identify a first optimal subset.
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In the successive steps, the strategy consists of implementing the NLS algorithm by starting
from this solution and then moving in a descent direction by including each time a new
free parameter from amongst those that were fixed. The solution found at each step is then
used as an initial guess for solving the next NLS problem in which a further parameter
has to be identified. Only xc, lc, C, x0 = xa for the 1D model and C for the 3D model are
always fixed. This assumption implies that in the final part of the experimental curve, for
x > xc (or λ > λc), the material is all converted to its new form. All the computations
are performed in Matlab with the lsqcurvefit routine (see [18]) for solving nonlinear least
squares problems. We allow the algorithm to perform a maximum of 1000 iterations and
stop with tolerances (tol =1e−10) on the residual and (tol = 1e−6) on the iterative steps.

For the 1D model, we considered the starting guesses for the nonlinear problems account-
ing for the following physical features:

• The total contour length lc is chosen to be slightly larger than the last datum value for
the extension since its value locates the asymptote of the WLC;

• x0 = xa since x0 in the logistic function (3.3) identifies the point where the largest growth
occurs, and this corresponds to the meaning of xa in the activation criterion;

• Since µ1 corresponds to the horizontal asymptote of the logistic function, its starting
guess is set to almost the force value of the plateau in the data; thus, we set µ1 = 62.

Three optimal final results with almost equivalent low residuals and errors are reported in
the text and in Fig. 4, to emphasize the property of sloppiness for the 1D model.

The same fitting strategy used for fitting the data with the 1D empirical model (3.1) is
used for the 3D model (3.12). As starting guess, for the activation criterion we fix λc = 1.895,
for the Gent material we fix µ1 = µ2 equal to almost the force corresponding to the plateau,
and the parameter Jm, accounting for the asymptote location, such that Jm = 1.9 is almost
the last numerical value available for the stretch data.

Many local minima have been attained in the fitting procedure, and the best results
such that the overstretching plateau can be identified as a Maxwell line are reported in
Fig. 5 for different values of the total fraction C.
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