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In this paper we prove some results and detail some calculations published in a previous paper by
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with evolution of a virus population in a time-dependent environment mimicking interaction of the
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1. Introduction

Most applications of Mathematics to real life are based on models and applications to biolog-
ical problems are no exceptions. A model is some kind of simplification of reality hopefully
useful to understand reality itself. Two frequent and contrary drawbacks in building math-
ematical models are oversimplification and overcomplication.

The latter is what happens when the situation is indeed too difficult or else when one is
not able to separate its most relevant aspects. In this case, a mathematical model may be
useless either because it involves a very large number of equations, or because equations are
too complicated to be analyzed by exact or approximate methods, or because the number
of parameters in the model is so large that almost any result can be obtained by a suitable
choice of them. On the other hand, oversimplification frequently happens when an initially
intractable model is so much simplified that it does not describe anymore the situation it
was designed for.

This paper is about a more complete version of a model independently proposed and
studied by Nilsson and Snoad [11] and by Ronnewinkel et al. [16]. Despite its usefulness — it
was able of anticipating a new phenomenon — we believe their model was still oversimplified.
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Although not yet fully tractable, our own version [10] of that model was simple enough to
yield useful numerical results and a richer understanding of the problem.

The real life problem to be analyzed is biological evolution of a virus population in
response to a dynamical environment mimicking the immune systems of a population of
host organisms. After being infected by a virus strain, the immune system of an organism
can usually avoid reinfection by the same strain. In order to survive, viruses are then forced
to mutate in order to diguise immune systems.

A model describing a virus population subject to genetic mutations is Eigen’s quasis-
pecies model [5]. Since the original paper by M. Eigen in 1971, many more have been written
up to now, dealing mainly with static environments. For a good account of the results we
suggest any of the following excellent reviews [1, 4, 15]. Studies in the case of a dynamical
environment were initiated around year 2000 by Nilsson and Snoad [11–13] and Wilke, Ron-
newinkel and Martinetz [16, 18–20]. As we will explain below, Eigen’s model is intractable
in its full generality. Nonetheless, Eigen himself and many others since then were able to
produce useful results by introducing suitable simplifications.

Roughly speaking a quasispecies is a population consisting mostly of individuals having
the so-called wild type or master sequence genome along with mutants at not too distant
sites in genome space. Mutants are considered in Genetics as the fundamental stone upon
which natural selection can act and evolution result. A quasispecies is then a population
whose genomes are localized, although not strictly, in genome space.

One important well-known feature of quasispecies models in static environments is the
so-called error catastrophe. When mutation rates are too large, genetic information of a
virus population will be lost by delocalization of population in genome space.

In case the environment is dynamical, besides error catastrophe a new catastrophe arises
if mutation rates are too low. It was termed adaptability catastrophe, because in this case
genetic information is lost because the population is not able to mutate rapidly enough to
follow environmental changes. Prediction of the new phenomenon of adaptability catastro-
phe is the main result in [11, 16].

The present work is a consequence of our effort to reproduce results in [11, 16] in a less
simplified version of Eigen’s model. In [10] we have introduced the model which we are going
to treat also here. Our main motivation was trying to rigorously justify some approximations
employed in [11, 16]. It turned out that the previous results on the thresholds for the
error and adaptability catastrophes were qualitatively, but not quantitatively accurate.
This numerical difference could be relevant when considering the use of mutagen drugs as
antiviral therapy, as suggested e.g. in [6]. Moreover, our less simplified model added detailed
information on the genetic variability of the quasispecies not available in the previous works.

Whereas [10] is directed to a general audience of physicists and dealt mostly with numer-
ical results and how they differ with respect to the previous results by Nilsson and Snoad
and Ronnewinkel et al., the present paper is directed to mathematical physicists and math-
ematical biologists and devoted to providing some mathematical details absent of [10].

Section 2 will concentrate on the initial definitions and notations regarding the Eigen
quasispecies model and the static sharp-peak landscape. In Sec. 3 we will introduce the
periodically moving sharp-peak landscape to be studied in this paper and the results of the
analyses of that model in [11, 16]. In Sec. 4 we define what we mean by a more complete
version of the model studied in [11, 16], introduce the matrices which define this model and
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prove a theorem characterizing the existence of a quasispecies in our model as the region
in which the Perron–Frobenius eigenvalue λPF of matrix S−1Eτ

1 is larger than 1. Section 5
will then be devoted to estimating this eigenvalue. We close the paper with conclusions in
Sec. 6 and an appendix in which we give explicit approximate formulas for the elements of
matrix Eτ

1 .
Mathematical tools to be used include the Perron–Frobenius [8] and Gershgorin [2, 17]

theorems, perturbation theory and an expansion of matrix elements in terms of directed
graphs. Explicit approximate formulas for the Perron–Frobenius eingenvalue of S−1Eτ

1 were
published without proof in [10]. Derivation of these formulas will be detailed in the present
paper.

2. Eigen Quasispecies Model, Simplifications and the Static
Sharp-peak Landscape

Let Λ denote the set of all sequences (words) written with � letters chosen from an alphabet
with N symbols. Elements in Λ will be thought of as possible genomes of individuals in
a population of viruses. The alphabet in which genomes are written in nature consists of
N = 4 letters denoting the DNA or RNA bases, but an usual and inessential simplification
is to take N = 2, as we will do.

Another simplification we are assuming here is that the genome length � is the same
for all individuals in our population. Even for very simple individuals such as viruses we
have � ∼ 103–105. We will assume throughout that � � 1. Either using N = 2 or N = 4
the number of elements N � in Λ is much larger than any population size, even taking the
smallest realistic values for �.

Between elements in Λ, we introduce the Hamming distance d(σ, σ′), defined as the
minimum number of letter substitutions to be performed in sequence σ to make it coincide
with σ′. This is the only distance notion between genomes we will use in this paper. So,
when we will later talk about nearest neighbors in genome space of a sequence σ0, we mean
sequences at Hamming distance equal to 1 from σ0.

We will describe the virus population at time t by giving the number pσ(t) of individuals
whose genome is σ ∈ Λ. We will consider time as discrete, each generation living one unit
of time. Individuals reproduce asexually and give birth by the end of their lives to a new
generation which replaces present generation. The fitness of an individual is the number
of offspring it contributes for the next generation. It will be supposed that the population
is large enough so that fitnesses can be considered as deterministic rather than random
variables. We also suppose that the fitness of an individual is a function of its genome.
In this paper we will be specially interested in dynamic situations in which fitnesses also
depend explicitly on time. Fitnesses are then described by a fitness landscape f(σ, t).

In its most general form, Eigen’s quasispecies model is described by the system of N �

equations

pσ(t + 1) =
∑
σ′∈Λ

Wσ,σ′f(σ′, t)pσ′(t). (2.1)

In the above equation, Wσ,σ′ is the probability that an individual of type σ′ has offspring
of type σ due to mutations. In spite of using the term probability here, we remind readers
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that the model is completely deterministic. For an account of quasispecies theories for finite
populations, see e.g. [14].

We remind also that most of the literature on quasispecies models is written using a
continuous-time version of the above equation, leading thus to a system of ordinary differ-
ential equations. We regard the choice between continuous or discrete time as an inessential
question of taste. In particular, papers [11, 16], upon which we based for proposing the
model to be investigated here, adopt different choices and obtain similar results. We also
quote that a slightly different quasispecies model was proposed by Crow and Kimura [3],
also known as ParaMuSe model. Although the Eigen and ParaMuSe models are technically
different [9], results are similar.

Many fitness landscapes have been studied, mostly in static situations. Among those we
have the sharp-peak, Fujiyama and random landscapes [15]. The simplest landscape is the
sharp-peak landscape (SPL) defined by

f(σ, t) =

{
1 + k, if σ = σ0(t)
1, if σ �= σ0(t)

, (2.2)

where σ0(t) denotes the wild type or master sequence at time t. We remind here that most
sequences in Λ will be unpopulated not only because it is a huge set, but also because life
is very organized. We cannot hope that many genomes in Λ describe viable organisms. In
fact, we should hope that most individuals in a population will have genomes equal to or
close to a genome with optimal fitness, which is the master sequence. This is the motivation
behind the above defined SPL. As we will also explore it further, it is useful having in mind
that the wild type or master sequence may depend on time.

Parameter k > 0 in (2.2) is the selective advantage of the master sequence with respect to
all other sequences. Due to the linearity of (2.1), it is obvious that multiplying all fitnesses
by the same constant has the trivial effect of multiplying all populations by the same
constant. Thus, choice of 1 as the fitness of all nonmaster sequences in (2.2) is just a matter
of convenience. Although simplistic, we will see that the SPL is already complex enough to
produce interesting results.

The final ingredient necessary to fully specify evolution of the population through (2.1)
is the mutation matrix Wσ,σ′ . It is common here to assume that the mutation probability is
the same at any site in a sequence, whichever symbol is present at the site. If µ denotes the
mutation rate per base, then the above assumption implies Wσ,σ′ = µd(σ,σ′)(1 − µ)�−d(σ,σ′).

A further simplification, considering that the observed values of µ for living organisms
are of order 10−7–10−11, is to neglect powers of µ with exponent larger than 1 in the
mutation matrix. The result is

Wσσ′ =




1 − β, if d(σ, σ′) = 0
µ, if d(σ, σ′) = 1
0, if d(σ, σ′) > 1

, (2.3)

where we also took the opportunity to introduce the mutation rate per genome denoted as
β and defined as

β = µ�. (2.4)
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Although we will not use that solution in this paper, it must be noted that the Eigen
model with the static SPL, i.e. σ0 does not depend on time, and the mutation matrix (2.3)
is exactly solvable [7].

Before we go on to explore the above described situation, let us spend some time describ-
ing some general results on the static SPL, which will be helpful later.

The Eigen model with the simple static SPL and the simplified mutation matrix (2.3)
are still difficult to manage becuase (2.1) is a system of N � equations. In order to reduce the
number of equations to deal with and uncouple them, it is useful to consider error classes.
Error class Γk, k = 0, 1, 2, . . . , � is the union of all sequences in Λ at distance k from the
master sequence. If X0(t) denotes the population at Γ0, i.e. at the master sequence, and
X1(t) the population at the remaining error classes Γ1,Γ2, . . . ,Γ� all taken together, then
we obtain {

X0(t + 1) = (1 − β)(1 + k)X0(t)

X1(t + 1) = β(1 + k)X0(t) + X1(t)
. (2.5)

In deriving the above equations we have used a further approximation known as no back-
mutations approximation. In fact it should be hoped that some of the mutating offspring of
individuals in Γ1 at time t would contribute to X0(t+1). As there are �−1 nearest neighbors
of a sequence in Γ1 in Γ2 and only one in Γ0, then almost all mutations of an individual in
Γ1 will result in an individual in Γ2. As a consequence in the first of (2.5) we have neglected
a contribution to X0(t + 1) coming from individuals in Γ1. This approximation makes (2.5)
very easy to handle, because its first equation is independent of the second.

Start by noticing that the whole population is given by N(t) = X0(t) + X1(t) and (2.5)
implies that

N(t + 1) = N(t) + kX0(t), (2.6)

showing that the population size is not constant. In order to be able to define a quasispecies
as some equilibrium composition for the population, then we must not base on population
numbers, but rather on frequencies. Denoting

xj(t) =
Xj(t)
N(t)

, (2.7)

j = 0, 1 the frequencies corresponding to X0 and X1, then (2.5) may be written in terms of
frequencies as 


x0(t + 1) =

(1 − β)(1 + k)x0(t)
1 + kx0(t)

x1(t + 1) =
β(1 + k)x0(t) + x1(t)

1 + kx0(t)

, (2.8)

which are now nonlinear.
From the above equations it is easy to obtain the limiting behavior of the frequencies

as t → ∞. There are two fixed points for x0 under the evolution (2.8): x0 = 0 and x0 =
x∗

0 ≡ 1− β − β/k. Whereas the former always exists, the latter is biologically relevant only
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if 0 < x∗
0 ≤ 1, which amounts to

1 − β − β

k
> 0. (2.9)

It is easy to see that 0 is an attractive fixed point when x∗
0 is not relevant and repulsive

when it is relevant. On the other hand, x∗
0 is always attractive whenever it is relevant. It

follows that when (2.9) holds, then the limiting frequencies are (x∗
0, 1 − x∗

0), and when it
does not hold the limiting frequencies are (0, 1).

We have a kind of “phase transition” in which the ordered phase determined by (2.9) is
such that a positive fraction of the population remains in the master class. The disordered
phase is such that the master sequence becomes unpopulated, even individuals with the
master sequence being fitter than all others. This phenomenon, in which natural selection
becomes uneffective when mutation rates β are too large or the selective advantage k is
too small, was called error catastrophe. The error threshold separating the two phases is,
by (2.9),

βstatic
u =

k

1 + k
. (2.10)

The ordered phase will be called quasispecies phase.

3. The Periodically Moving SPL

The situation we want to explore in this paper is a certain dynamical version of the SPL. At
a time in which a large part of a host population has been infected by — and thus acquired
immunity against — viruses with a certain master sequence, it is conceivable that mutant
viruses will have more chance of infecting the hosts. This situation may be modelled by
considering (2.2) with a time-dependent σ0. More concretely we assume that σ0 remains
constant for a period of τ generations and then it is shifted to another sequence among its �

nearest neighbors in Λ, which will be master for the following period of τ generations, after
which another shift follows and so on.

This situation was considered by Nilsson and Snoad in [11] and by Ronnewinkel et al.
in [16]. A slight difference between the two works is that whereas Nilsson and Snoad take a
random new master sequence among all nearest neighbors of the previous one, Ronnewinkel
et al. concentrate on a deterministic motion of the master sequence along a long path in
Λ in which each successive master sequence is a nearest neighbor of the preceding one.
In [10] we commented more on this difference. It turns out that taking a long deterministic
path or a random path will make no difference in calculating the regions for existence of a
quasispecies in the present model.

The above cited works are interesting both because their authors were the pioneers
in considering dynamic fitness landscapes and also because they anticipated a new phe-
nomenon — the adaptability catastrophe — connected to a second threshold βl. We have
already seen that in the static SPL a quasispecies may cease to exist because of a large
mutation rate β > βstatic

u . The adaptability catastrophe, absent from the static SPL, occurs
when the mutation rate is too small, i.e. β < βl. In this case the population is not able to
adapt itself rapidly enough to the periodic shift of the master sequence. A dynamic version
βu of the static threshold βstatic

u will also exist in the dynamic SPL. More concretely, it was
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shown both in [11] and [16] that for some choices of k and τ two thresholds βl and βu will
exist such that a quasispecies will exist for β ∈ (βl, βu) and not exist outside this interval.

Both [11] and [16] use the no-back mutations approximation and describe the complete
population by a vector pNS(t) = (A(t), B(t), C(t)) in R

3, where A(t) is the number of
individuals in error class Γ0(t), B(t) is the number of individuals in the specific genome in
Γ1(t) which will become master sequence after the next genome shift and C(t) is the number
of individuals in all other sequences. By using the same simplifications as in (2.5), we find
that for any instants of time between successive shifts of the master sequence we have

pNS(t + 1) = ENS pNS(t), (3.1)

with

ENS =




(1 − β)(1 + k) 0 0
β

�
(1 + k) 1 − β 0

β(� − 1)
�

(1 + k) β 1


. (3.2)

The population evolution before the first master sequence shift is then given by pNS(τ−) ≡
Eτ

NSpNS(0).
The effect of the master sequence shift, as in the analyses of [11, 16], is to instantly

replace the population vector at time pNS(τ−) by pNS(τ+), which components are

(A(τ+), B(τ+), C(τ+)) = (B(τ−), 0, C(τ−) + A(τ−) + (� − 1)B(τ−)). (3.3)

We take then pNS(τ+) as initial condition, use again (3.1) for the next cycle and so on.
In deriving (3.3) there are two new assumptions: one is that all � sequences in Γ1(t)

are equally populated with population B(t) and the other is that sequences in Γ2(t) are so
scarcely populated that we may neglect their populations.

We showed in [10] that the results in [11, 16] may be obtained from the preceding
equations by exactly diagonalizing a 3×3 matrix. Because we thought the two assumptions
hidden in (3.3) were too drastic we decided in the above mentioned work to propose and
analyze a less simplified model for the same situation.

4. A More Complete Model for the Periodically Moving SPL

We begin by considering sequences σ1, σ2, . . . , σM in Λ such that d(σi, σi+1) = 1, i =
1, 2, . . . ,M , where we also take periodic boundary conditions identifying σM+1 ≡ σ1. With-
out loss of generality we may think of these sequences as the successive master sequences in
the dynamic SPL model described above. We shall also suppose, with the obvious exceptions
stated above when i = 1 and j = M or vice-versa, that d(σi, σj) ≥ 2 if |i− j| ≥ 2. This last
simplifying assumption means that in using approximation (2.3), individuals with genome
σi will have offspring only with genomes σj where j = i or j = i ± 1. Such a deterministic
path of master sequences in Λ is similar to what was denoted in [16] as a regular motion of
the master sequence.

Parameter M is the number of shifts of the master sequence it takes until the first
master sequence σ1 becomes again master. In case the master sequence is shifted to a
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random nearest neighbor, as in [11], then M is of order 2� with large probability of order
1− 1/�. Of course, having to deal with such huge matrices would not be feasible, but it will
turn out that results are rather independent of M provided it is sufficiently large.

We will adopt here the deterministic point of view of [16]. In case of a random path as
in [11], then condition that d(σi, σj) ≥ 2 if |i − j| ≥ 2 will be violated in average at each �

generations, thus many times during a time of Mτ generations. But, as noticed in [16] and
justified in [10], these violations will not change results in the random case with respect to
the deterministic one.

Let pi(t) denote the number of individuals with genome σi at time t, p(t) be the
vector (p1(t), p2(t), . . . , pM (t)) in R

M and q(t) be the total number of individuals in all
other sequences in Λ which are not components of p(t). Vector p(t) will be called rel-
evant population and q(t) will be called background population. We will also consider
p̂(t) = (p(t), q(t)) ∈ R

M+1 and call it complete population.
For the first τ generations, σ1 will be the master sequence. During this time, i.e. for

0 ≤ t ≤ τ − 1, Eigen’s equation (2.1) with the SPL (2.2) and mutation matrix (2.3) can be
written in vector form as

p̂(t + 1) = Ê1 p̂(t), (4.1)

with Ê1 being the (M + 1) × (M + 1) matrix given in block form as

Ê1 =




0
0

E1 0
...
0(

1 − 2
�

)
β(1 + k)

(
1 − 2

�

)
β · · ·

(
1 − 2

�

)
β 1




(4.2)

and E1 is the M × M matrix for evolution only of the first M components of p̂(t), i.e.
p(t + 1) = E1p(t). It is explicitly given by

E1 =




(1 − β)(1 + k)
β

�
0 0 · · · 0

β

�
β

�
(1 + k) 1 − β

β

�
0 · · · 0 0

0
β

�
1 − β

β

�
· · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
β

�
(1 + k) 0 0 0 · · · β

�
1 − β




. (4.3)

More generally, for (j − 1)τ ≤ t ≤ jτ − 1 we will have

p̂(t + 1) = Êj p̂(t), (4.4)

with

Êj = Ŝj−1 Ê1 (Ŝ−1)j−1,
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where the (M+1)×(M+1) matrix Ŝ in the above equation implements the master sequence
shift by right-shifting (taking into account the periodic boundary condition) the first M

components of the complete population vector and leaving fixed the background population

Ŝ =




0 0 · · · 0 1 0
1 0 · · · 0 0 0
0 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 0 0
0 0 · · · 0 0 1




. (4.5)

As we will also need it, we define an M × M matrix S which is simply Ŝ with the
last row and the last column deleted, i.e. the restriction of Ŝ to the relevant population
subspace.

With the above definitions, it is easy to see that by the end of the first cycle of τ gener-
ations, i.e. by the end of the time in which σ1 is the master sequence, the population vector
is given by p̂(τ) = Êτ

1p(0). As the total population is not necessarily constant, then any
equilibrium compositions of the population may be expected only by considering frequen-
cies, as in the static SPL. Instead of dividing by total population and getting nonlinear
equations, as in the passage from (2.5) to (2.8), we will introduce a factor to take into
account a possible growth of the total population. An equilibrium population will thus be
some vector v̂ ∈ R

M+1 with nonnegative components in which the frequencies of the master
sequence and all other considered sequences repeat themselves with a right-shift after τ

generations, i.e.

Êτ
1 v̂ = λ̂ Ŝv̂, (4.6)

where λ̂ is the growth factor for the whole population in the time of τ generations.
Matrices and vectors having all of their components nonnegative are called nonnegative

[8]. A special case is when all components are positive and then we will call these matrices
and vectors positive.

In spite of v̂ in (4.6) not being a steady-state population, but a vector of steady-state
frequencies, we will still call it a steady-state population. By (4.6) we see that the steady-
state population is an eigenvector of Ŝ−1Êτ

1 and λ̂ is the corresponding eigenvalue. Of course
identification of an eigenvector with a population will be possible only if v̂ is a nonnegative
vector and λ̂ > 0. It is clear that v̂ = (0, . . . , 0, 1) is always a steady-state population with
λ̂ = 1, in which all individuals are in the background.

As matrices E1, Ê1, S and Ŝ are nonnegative, then also Eτ
1 , S−1Eτ

1 , Êτ
1 and Ŝ−1Êτ

1 are
all nonnegative. The Perron–Frobenius (PF) theorem, see Theorem 4.2 in Chap. I of [8],
guarantees that for any nonnegative matrix G there exists r > 0 such that all eigenvalues
λ ∈ C of G are such that |λ| ≤ r, that r is itself an eigenvalue of G and its corresponding
eigenvector can be taken nonnegative.

By using the PF theorem we guarantee existence of a nonnegative eigenvector vPF with
eigenvalue λPF for S−1Eτ

1 and similarly v̂PF and λ̂PF for Ŝ−1Êτ
1 .
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We may then prove the following

Theorem 4.1.

(i) λPF is a simple root of the characteristic polynomial of S−1Eτ
1 and all other eigenvalues

of this matrix have absolute value strictly smaller than λPF. Furthermore vPF has
strictly positive components and positive multiples of vPF are the only nonnegative
eigenvectors of S−1Eτ

1 .
(ii)

λ̂PF = max{λPF, 1}. (4.7)

(iii) If λPF < 1, the only eigenvectors of Ŝ−1Êτ
1 with eigenvalue λ̂PF = 1 are the multiples of

the trivial v̂PF ≡ (0, . . . , 0, 1). If λPF > 1, the only nonnegative eigenvectors of Ŝ−1Êτ
1

are multiples of (0, . . . , 0, 1) and of a positive vector v̂PF

v̂PF =
(

vPF,
vPF · w
λPF − 1

)
, (4.8)

where w is the vector in R
M whose components are wj = (Êτ

1 )M+1,j .

Proof. Besides being nonnegative, Theorem 3.2 in Chap. IV of [8] guarantees that S−1Eτ
1 is

also irreducible. Some claims in (i) follow from irreducibility by various theorems in chapter
I of [8]: Theorem 4.3 ensures that λPF is a simple root, Corollary 4.2 guarantees that vPF

is positive and Theorem 4.4 makes sure its positive multiples are the only nonnegative
eigenvectors of S−1Eτ

1 . The claim that all other eigenvalues of S−1Eτ
1 have absolute value

strictly smaller than λPF is due to primitivity of this matrix, guaranteed by Corollary 1.1
in Chap. III of [8].

By the peculiar form (4.2) it can be seen that

Ê1
τ

=

(
Eτ

1 0M

w 1

)
, (4.9)

where 0M stands for a column vector with M zeros and w is a positive line vector with M

components. It follows that if λPF �= 1, we may construct from the eigenvector vPF of S−1Eτ
1

an eigenvector v̂ for Ŝ−1Êτ
1 with the same eigenvalue λPF in the form v̂ = (vPF, vM+1), where

vM+1 =
w · vPF

λPF − 1
.

This will be referred to in this proof as augmentation construction. Furthermore, v̂ will be
positive if λPF > 1.

Vice-versa, if the vector v obtained by deleting the last component in an eigenvector v̂ of
Ŝ−1Ê1

τ
is not the zero vector, then it is an eigenvector of S−1Eτ

1 with the same eigenvalue.
This will be called the deletion construction.

As Ŝ−1Êτ
1 is reducible, we must use more indirect arguments in proving (ii) and (iii).

Begin by noticing that by the deletion construction, if v̂PF is not parallel to (0, . . . , 0, 1), then
we may obtain a nonnegative eigenvector of S−1Eτ

1 with eigenvalue λ̂PF. By the uniqueness
property for vPF in (i), we must have either λPF = λ̂PF or v̂PF = (0, . . . , 0, 1).
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If λPF > 1 the augmentation construction produces a positive eigenvector for Ŝ−1Ê1
τ

with eigenvalue λPF. It follows then that λ̂PF ≥ λPF > 1 and hence v̂PF �= (0, . . . , 0, 1). In
this case, the argument in the preceding paragraph forces that λ̂PF = λPF. Moreover, v̂PF

must be given by (4.8) or else, using the deletion construction, uniqueness of vPF would be
violated.

Consider now λPF ≤ 1. We cannot have λ̂PF > 1, otherwise we would obtain by the dele-
tion construction an eigenvector for S−1Eτ

1 with eigenvalue larger than λPF. We cannot have
λ̂PF < 1, either, because we already know of an eigenvector for Ŝ−1Ê1

τ
with eigenvalue 1.

Then λ̂PF = 1. Finally, if λPF < 1 then v̂PF = (0, . . . , 0, 1). Otherwise, we could apply the
deletion construction and obtain a nonnegative eigenvector for S−1Eτ

1 with eigenvalue 1.

The above results imply that the Jordan block of S−1Eτ
1 associated with eigenvalue

λPF is a 1 × 1 matrix and all other Jordan blocks are associated with eigenvalues strictly
smaller than λPF in absolute value. Thus, for large enough m ∈ N, almost any (in the sense
of Lebesgue measure in RM ) initial relevant population vector p(0) will become after m

cycles of τ generations approximately equal to λm
PFSmvPF. The exceptional initial relevant

populations, if any, would be the ones having a zero component in the direction of vPF.
We were not able to determine whether there exist any nonnegative vectors having zero
component in the direction of vPF, but if they do exist, they are not biologically relevant
because the set of these vectors has 0 Lebesgue measure.

Thus, if λPF < 1, the evolution of almost any initial nonnegative complete population
vector p̂(0) will tend to be parallel to the trivial (0, . . . , 0, 1) as the number m of cycles of
τ generations goes to ∞.

If λPF > 1, then almost any initial nonnegative population vector will not tend to
(0, . . . , 0, 1) and will be asymptotically parallel to v̂PF as m → ∞. In this case the population
is not asymptotically scattered to the background sequences.

In other words, almost any initial population will preserve some genetic structure given
by v̂PF if λPF > 1 and lose it if λPF < 1. A quasispecies will exist then if λPF > 1 and not
exist if λPF < 1.

Knowing now that the transition between a quasispecies phase and the disordered phase
is governed by λPF, we proceed to estimating this eigenvalue.

5. Estimation of λPF

5.1. Heat analogy

One immediate difficulty we encounter on trying to find the eigenvalues of S−1Eτ
1 is the

fact that, although E1 is rather simple, raising it to power τ complicates things. A simple
analogy will be useful in understanding matrix Eτ

1 .
Consider the diffusion equation with losses

∂u

∂t
− D

∂2u

∂x2
+ γ u(x, t) = 0, (5.1)

where D and γ are positive costants, along with the periodic boundary condition u(0, t) =
u(M, t). If we think of u(x, t) as the temperature at point x and time t, then the equation
above describes the evolution of temperatures u(x, t) in a thin circular rod of length M
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made of a heat-conducting material, which, due to the last term in the right-hand side, also
exchanges heat with an environment at temperature 0. D is the heat conductivity and γ

a coefficient describing the effectiveness of heat transfer to the environment. If the initial
temperatures u(x, 0) are all positive, then heat is always lost to the environment.

By replacing u(x, t) by a uniform mesh discretization u(i∆x, j∆t) ≡ ui,j and approxi-
mating the partial derivatives by their simplest discretizations, (5.1) becomes

ui,j+1 =
(

1 − 2D∆t

(∆x)2
− γ∆t

)
ui,j +

D∆t

(∆x)2
(ui+1,j + ui−1,j). (5.2)

The reader may see without difficulty that if the selective advantage k in (2.2) is zero, then
the evolution equation p(t+1) = E1p(t) written in components becomes exactly (5.2) if we
choose ∆t = ∆x = 1 and take D = µ = β/�, γ = β(1 − 2/�).

This means that if there is no selective advantage, i.e. all genomes have the same fitness,
then any initial relevant population p(0) will diffuse and also be lost to the environment,
to be identified here with the background population q. Notice also that as � � 1, then
γ ≈ β � µ = D, which means that the loss of population to the background is much more
relevant than the diffusion of population to nearest sites.

The effect of taking k > 0 is to introduce a heat source at x = 0. But, as heat loss
dominates diffusion largely, heat produced at x = 0 will have almost no effect on tempera-
tures even at points more or less close to the source. Of course Eτ

1 will be analogous to the
evolution operator of temperatures for τ time units.

5.2. Directed graph calculation of Eτ
1

Matrix E1 is rather sparse. Its only nonzero elements are the ones in the main diagonal, in
its upper and lower neighbor diagonals and, due to the periodic boundary condition, the
last elements in the first row and column. This property helps simplifying the calculation
of Eτ

1 , as we now explain.
Let A be any n × n matrix with elements ai,j and m a positive integer. By using the

definition of matrix product it is easy to be convinced that the matrix Am has elements
given by the graphical representation

(Am)i,j =
∑

g∈G(i,j)
m

m∏
e=1

aie(g),je(g). (5.3)

In the above equation, G(i,j)
m is the set of all directed graphs with vertices in the set

{1, 2, . . . , n} and m edges (i1(g), j1(g)), . . . , (im(g), jm(g)) connecting vertex i to vertex j,
i.e. with i1(g) = i, jm(g) = j and ie+1(g) = je(g), e = 1, 2, . . . ,m − 1.

For general matrices, the sum in (5.3) has a very large number of terms. But due to
sparseness of E1, the number of nonzero graphs contributing to the sum is much smaller if
A = E1. Moreover, as E1 is nonnegative, any sum over a subset of G(i,j)

τ is a lower bound to
the exact (Eτ

1 )i,j . Another advantage is that nonzero elements in E1 are of 3 possible sizes:
some are equal to β/�, thus much smaller than 1, some are equal to 1 − β, thus O(1), and
finally some may be large if k is large. It is thus possible to devise approximation schemes
by neglecting suitably small nonzero terms in the sum (5.3). This is done in Appendix A.
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5.3. A lower bound and an approximate formula for the PF eigenvalue

In order to find a lower bound to the PF eigenvalue of any irreducible nonnegative matrix,
we will use the proof method in [8] of the version of the PF theorem for irreducible matrices.
For any n × n matrix A, the Collatz–Wielandt function fA is defined as

fA(x) = min
xi �=0

(Ax)i
xi

, (5.4)

where x are vectors in R
n, (Ax)i and xi are the i-th components of the vectors Ax and x

and the minimum is taken over all the indices i such that xi �= 0. A proof of the PF theorem
for irreducible matrices, see e.g. [8], goes through showing that fA attains a maximum over
the set P

n of nonnegative vectors in R
n, this maximum is exactly the PF eigenvalue and

the vector x which maximizes fA is the corresponding eigenvector. Then for any x ∈ P
n,

the PF eigenvalue r of A is such that r ≥ fA(x).
We may then easily obtain useful lower bounds for r by taking suitable vectors x and

calculating fA(x). An example is given in the following

Theorem 5.1. Let A be an irreducible n × n nonnegative matrix and i, j be indices with
1 ≤ i < j ≤ n. Then the PF eigenvalue r of A is bounded below by

ri,j = aj,j +
δi,j

1 − δi,j
aj,i, (5.5)

where

δi,j =
ai,i − aj,j − 2ai,j +

√
(ai,i − aj,j)2 + 4ai,jaj,i

2[(ai,i − aj,j) + (aj,i − ai,j)]
. (5.6)

Proof. We take, for any pair i, j of indices with i < j, vectors of the form xi,j(δ) =
δei + (1 − δ)ej , where δ ∈ [0, 1] and ek is the k-th vector in the canonical basis of R

n. As
xi,j(δ) has only two nonzero components, it is straightforward to calculate the value of δ

so that fA(xi,j(δ)) is maximized. The result is δ = δi,j, where δi,j is given by (5.6) and the
maximum value is ri,j given by (5.5).

In the concrete case of A = S−1Eτ
1 the lower bound in (5.5) with i = 1 and j = M is

also an excellent approximation for λPF if µ is not too small, as illustrated in Fig. 1 of [10].
Although we do not have any rigorous results on how good an approximation the lower
bound is, we do have an interesting argument using ideas from Gershgorin’s theorem [2, 17]
explaining why it is a reasonable approximation.

Let A be any n × n matrix, not necessarily nonnegative, and i be an element in
{1, 2 . . . , n}. The i-th Gershgorin disk is the region

Di =


z ∈ C ; |z − ai,i| ≤

n∑
j=1

j �=i

|ai,j |


 .

Gershgorin’s theorem states that all eigenvalues of A are in D ≡ ⋃n
i=1 Di. Although this is

usually not emphasized, Gershgorin’s theorem follows as a simple corollary of the following
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Lemma 5.1. Let A be any square matrix. If λ is an eigenvalue of A with eigenvector v

and the largest component of v in absolute value is the i-th, then λ ∈ Di.

Proof. The i-th component of equation (A − λI)v = 0 is

(ai,i − λ)vi +
∑
j �=i

ai,jvj = 0.

Thus

|(ai,i − λ)vi| ≤
∑
j �=i

|ai,j| |vj |,

where we have used the triangle inequality. Using now in the above inequality the fact that
|vj | ≤ |vi| for all j, we prove that λ ∈ Di.

We may now use the above lemma in conjunction with an enhanced form of Gershgorin’s
theorem enunciated and proved at page 977 in [2]. This enhanced form says that if A is
an n × n matrix, the union D of all Gershgorin disks of A is D = C1 ∪ C2, where C1 is the
union of j Gershgorin disks, C2 is the union of the remaining n − j Gershgorin disks and
C1 ∩ C2 = ∅, then C1 contains exactly j eigenvalues of A and C2 contains all the remaining
n−j eigenvalues. This form implies of course that if Di and ∪j �=iDj are disjoint, then exactly
one eigenvalue of A must lie in Di. We can then prove the following

Proposition 5.1. If k > 4µ/(1 − µ� − µ), the largest component in absolute value of the
PF eigenvector of E1 is the first.

Proof. By looking at the Gershgorin disks of E1, it can be seen immediately that if k > 0
then D2 = DM ⊃ Di for 3 ≤ i ≤ M−1. If k > 4µ/(1−µ�−µ), D1 will be disjoint of the union
of the other disks and any point in D1 will be farther from the origin of the complex plane
than any point in ∪j �=1Dj . By the above quoted enhanced form of Gershgorin’s theorem,
it follows that if k > 4µ/(1 − µ� − µ), then the eigenvalue of E1 lying in D1 is the PF
eigenvalue.

Moreover, by Lemma 5.1 the largest component in absolute value of the PF eigenvector
of E1 must be the first. In fact, if some other component j �= 1 were the largest, then the
PF eigenvalue would lie in Dj . This is absurd because D1 ∩ Dj = ∅ if j �= 1.

We now start the argument showing that λPF should be well approximated by r1,M in
(5.5). Suppose then k > 4µ/(1 − µ� − µ) and also that τ is large. Dominance of the PF
eigenvalue implies that Eτ

1 v will point approximately in the direction of the PF eigenvector
of E1 for almost any nonnegative vector v. Thus, for almost any nonnegative v the largest
component of Eτ

1 v will be the first if k > 4µ/(1 − µ� − µ) and τ is large enough. Taking
now v = vPF, the PF eigenvector of S−1Eτ

1 , we see that the largest component of SvPF

must be the first, because it is parallel to Eτ
1vPF. As the first component of SvPF is the

last component of vPF, we obtain that for k > 4µ/(1− µ�− µ) and τ large enough vPF is a
vector having its last component as the largest.

If we want to obtain the largest possible lower bounds for λPF of the form (5.5), we
must choose the values of i and j according to the columns of S−1Eτ

1 with the largest
elements. Notice first that the elements of a column of S−1Eτ

1 are the elements of the same
column in Eτ

1 in a different order. By the heat analogy or, more exactly, by the estimates
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in Appendix A, elements in column 1 of Eτ
1 are the largest and elements in columns 2 and

M in Eτ
1 are equal and larger among elements in all columns other than the first.

Thus, in order to obtain large values for ri,j we must take i = 1. The choice j = M

comes from the fact proved above that the M -th component of vPF is the largest, so a vector
of the form δe1 + (1− δ)ej with j = M should approximate vPF better than a vector of the
same form with j = 2.

Although not completely rigorous, this is the argument we have for justifying that for
A = S−1Eτ

1 lower bound (5.5) with i = 1, j = M is a good approximation for λPF. This will
be the case if k and τ are large enough and also µ is not too small. The last requirement
is due to the fact that if µ is too small, then the j-th components of vPF with j < M but
close to M are not negligible. As can be seen in Fig. 1 of [10], the approximation indeed
fails for very small µ.

In order to write an expression for the lower bound and approximate eigenvalue r1,M

in terms of the parameters of the model, we must be able to calculate elements of matrix
Eτ

1 . This is done in Appendix A by using the directed graph expansion. By noticing that
(S−1Eτ

1 )i,j = (Eτ
1 )i+1,j ≡ ti+1,j, where an index with value M + 1 is interpreted as being

equal to 1 due to the periodic boundary conditions, then (5.5, 5.6) become

r1,M = t1,M +
δ1,M

1 − δ1,M
t1,1,

with

δ1,M =
t2,1 − t1,M − 2t2,M +

√
(t2,1 − t1,M )2 + 4t2,M t1,1

2[(t2,1 − t1,M ) + (t1,1 − t2,M )]
.

and approximate expressions for the matrix elements are given by formulae (A.1, A.3, A.4,
A.8).

In the numerator of the expression for δ1,M we may neglect t2,M with respect to other
terms to which it is summed outside the square root, but not inside it, in which it is
multiplied by the large t1,1. In the denominator we neglect t2,1, t1,M and t2,M which are
order µ or µ2 when summed to the much larger t1,1. Neglecting also terms of order k summed
to terms of order (1 + k)τ , we obtain

δ1,M ≈ t2,1 − t1,M +
√

(t2,1 − t1,M )2 + 4t2,M t1,1

2t1,1
≈ (1 + k)µ

k(1 − β)
. (5.7)

By this result, we are now justified in approximating δ1,M/(1−δ1,M ) ≈ δ1,M in the expression
for r1,M . Putting it together with (A.1, A.3) and using µ = β/�, we finally obtain

λPF ≈ r1,M ≈ β(1 − β)τ−1(1 + k)τ (2 + k)
k �

. (5.8)

The above approximation was used in [10] to obtain good approximations for the phase
diagram of the periodically moving SPL. It is interesting to notice that it does not depend
on M , because the approximate formulas for elements ti,j used in deriving it are independent
of M . This is in its turn a consequence of the heat analogy, in which the loss term dominates
over the diffusion term.
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To complete the study of the phase diagram, we should also study the behavior of λPF

for very small values of µ, for which the approximation above is not good. This is done in
the following subsection.

5.4. Perturbative calculation of λPF

By looking at (4.3) it can be seen that E1 becomes diagonal in case we take limits � → ∞
and µ → 0 such that β = µ� is constant. Furthermore, by a simple cofactor expansion of
the determinant, we find that it is possible to exactly diagonalize S−1Eτ

1 in this limit. The
eigenvalues of S−1Eτ

1 in this case are

λj(0) = eiθjα (1 − β)τ , (5.9)

where

α = (1 + k)τ/M , (5.10)

θj =
2πj

M
(5.11)

and j = 0, 1, 2, . . . ,M − 1. Of course the PF eigenvalue is obtained if j = 0. The corre-
sponding eigenvectors are

vj(0) =
1

αM
(αeiθj , α2ei2θj , . . . , αM ). (5.12)

We are now going to take ε = �−1 as a perturbative parameter and calculate the correc-
tion at first order in ε to the PF eigenvalue λPF ≡ λ0(ε). Let then

S−1Eτ
1 ≡ T0 + εT1 + O(ε2).

Using the directed graph expansion we may calculate the O(ε) terms in Eτ
1 , from which it

follows that

T1 =




(1 + k)β(1 − β)τ−1στ 0 τβ(1 − β)τ−1 · · · 0 0
0 τβ(1 − β)τ−1 0 · · · 0 0
0 0 τβ(1 − β)τ−1 · · · 0 0
· · · · · · · · · · · · · · · · · ·

(1 + k)β(1 − β)τ−1στ 0 0 · · · τβ(1 − β)τ−1 0
0 β(1 − β)τ−1στ 0 · · · 0 β(1 − β)τ−1στ


,

(5.13)

where we have abbreviated

στ =
τ−1∑
j=0

(1 + k)j =
(1 + k)τ − 1

k
. (5.14)
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Writing

λPF = λ0(ε) = λ0(0) + ελ01,

v0(ε) = v0(0) + εv01,

expanding

Tv0(ε) = λ0(ε) v0(ε)

in powers of ε and neglecting terms O(ε2) or higher we obtain

T1v0(0) + T0v01 = λ01v0(0) + λ0(0)v01. (5.15)

We can also calculate v∗0(0), the left-eigenvector of T0 with eigenvalue λ0(0), or equivalently,
the eigenvector of the transpose of T0 with eigenvalue λ0(0). We find

v∗0(0) =
1
M

(αM−1, αM−2, · · · , α, 1),

where the normalization was chosen such that

〈 v∗0(0), v0(0) 〉 = 1.

Taking then the scalar product of (5.15) at left with v∗0(0), using the above normalization
and noticing that

〈 v∗0(0), T0v01 〉 = λ0(0)〈 v∗0(0), v01 〉
we obtain

λ01 = 〈v∗0(0), T1v0(0)〉.
Now, after calculating a tedious matrix product and simplifying, the result is

λ01 = β(1 − β)τ−1

{
τ

(
1 − 2

M

)
[1 + (1 + k)

2τ
M ] +

k + 2
Mk

[(1 + k)τ − (1 + k)−τ ]
}

. (5.16)

Notice that despite (5.8) does not depend on M , both the 0-th order term (5.9) and the
above first order correction do depend on M . In the comparison with numerically calculated
λPF, both the dependence on M for small β and the (almost) independence for larger β

were illustrated in Fig. 1 of [10], which shows good agreement between the estimates and
the numerical values in both regions. Notice also that our perturbative result has a limit
when M → ∞

λPF = (1 − β)τ
(

1 +
2τβ

�(1 − β)

)
+ O(

1
�2

). (5.17)

This should be thought as the relevant approximation for λPF at the small β region, because
with large probability M = O(2�), a huge number.

So, while the perturbative result for finite M gives a finite region close to β = 0 in
which λPF > 1, (5.17) shows that this region vanishes when M → ∞, in accordance with
the results in [11, 16].
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6. Conclusions

Calculating eigenvalues for huge matrices is known to be a hard numerical task. Although
there are still rigor gaps to be filled in the present calculations, we feel the results here and
in [10] are more logically satisfying than the ones in [11, 16]. The model considered here is
more complete and still treatable without having to resort to unjustified approximations.

Using the approximations derived in this paper we could qualitatively justify the con-
clusions of the above papers regarding the existence of two thresholds for the existence
of a quasispecies. But these thresholds are not quantitatively equal to the ones in [11, 16],
mainly for small selective advantages k. This was illustrated at Fig. 4 in [10]. This numerical
difference might be important if using mutagen drugs as antiviral therapy [6].
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Appendix A. Approximating the elements of Eτ
1

It is necessary to have explicit formulas for the elements of matrix Eτ
1 in order to produce

both approximations (5.8) and (5.17) for λPF. In this appendix we will obtain some of such
approximate formulas by using the directed graph expansion outlined in Subsec. 5.2.

Denote then Eτ
1 ≡ T , with elements ti,j. We start with t1,n. In this and other calculations

we shall think of the order M of matrix E1 as very large, M � τ . Graphs contributing to t1,n

start at vertex 1 and should arrive to vertex n in τ steps; thus t1,n = 0 if τ+1 < n < M+1−τ .
At first, we have

t1,1 ≈ (1 + k)τ (1 − β)τ , (A.1)

which comes from the single graph with τ edges connecting vertex 1 to itself. All other
graphs contributing to t1,1 are of order at µ2 and will be neglected.

For 2 ≤ n ≤ τ + 1, the minimum number of edges in the graph contributing with the
smaller elements (E1)i,i±1 = µ is n− 1. Graphs with larger numbers of such edges are thus
depleted with respect to graphs with n− 1 such edges by a factor of at least µ2 and will be
neglected. Within this approximation we thus have, for 2 ≤ n ≤ τ + 1,

t1,n ≈ µn−1
τ+1−n∑

j=0

cn−1,j [(1 + k)(1 − β)]τ+1−n−j(1 − β)j

= (1 − β)τ+1−nµn−1
τ+1−n∑

j=0

cn−1,j(1 + k)τ+1−n−j , (A.2)

where

cn−1,j =
(

j + n − 2
n − 2

)

is a combinatorial factor giving the number of ways j indistinguishable objects can be put
in n − 1 distinguishable boxes.
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Formula (A.2) may be understood by noticing that cn−1,j is the number of graphs
contributing to t1,n which have, besides n − 1 edges of type (E1)i,i−1, τ + 1 − n − j edges
of type (E1)1,1 = (1 + k)(1 − β) and, consequently, j edges of type (E1)i,i with i ≥ 2.
Fortunately, summation in (A.2) may be exactly calculated.

The case n = 2 is very easy, because c1,j = 1 and we only have to sum a finite geometric
progression. For n = 3, we have c2,j = j + 1. Then

τ−2∑
j=0

c2,j(1 + k)τ−2−j =
∂

∂x

τ−1∑
j=0

xj(1 + k)τ−1−j

∣∣∣∣∣∣
x=1

=
∂

∂x

(1 + k)τ − xτ

1 + k − x

∣∣∣∣
x=1

=
(1 + k)τ − (1 + τk)

k2
.

The other cases may be handled by taking successive derivatives. In general we get

t1,n ≈




µn−1(1 − β)τ+1−n

(1+k)τ−Pn−2
j=0

0
@τ

j

1
Akj

kn−1 , if n ≤ τ + 1

µM+1−n(1 − β)τ+n−M−1

(1+k)τ−PM−n
j=0

0
@τ

j

1
Akj

kM+1−n , if M + 1 − τ ≤ n ≤ M

0, if τ + 2 ≤ n ≤ M − τ

, (A.3)

where the sum in the first line is interpreted as being 0 if n = 1 and the approximate equality
means that graphs which are not of the leading order in parameter µ were neglected.

For the terms tn,1 with n ≥ 2 we may notice that graphs contributing to tn,1 are exactly
the same contributing to t1,n but with all edges reversed. Almost all factors due to edges
remain exactly the same with the only modification that in the graphs considered in the
above (A.3) there is exactly one edge representing (E1)1,2 = µ and it will be replaced by
(E1)2,1 = (1 + k)µ. Thus we may use (A.3) to obtain to leading order in µ

tn,1 ≈ (1 + k) t1,n, if n > 1. (A.4)

For the diagonal elements tn,n at lines n �= 1, the leading contribution in powers of µ

is (1 − β)τ . For n � 2 and M + 1 − n � 1, i.e. “central” lines in the matrix, column 1 is
too far to influence tn,n. By this we mean that, in the heat analogy, heat injected at x = 0
has a negligible influence at x = n because losses and diffusion from nearby locations are
dominant. Then we may approximate

tn,n ≈ (1 − β)τ . (A.5)

Again in the central lines approximation, we have

tn,n±j ≈
(

τ

j

)
µj(1 − β)τ−j if j ≤ τ, (A.6)
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where the combinatorial coefficient accounts for the number of ways of choosing j factors
µ in a product of τ factors and

tn,n±j = 0 if j > τ. (A.7)

An important result in deducing (5.8) is an estimate for t2,M . The easiest way to get it
is a recursive calculation:

(Eτ
1 )2,M =

M∑
j=1

(Eτ−1
1 )2,j (E1)j,M .

The only nonzero terms in the preceding sum are for j = 1,M − 1,M and we have

(Eτ
1 )2,M = µ[(Eτ−1

1 )2,1 + (Eτ−1
1 )2,M−1] + (1 − β) (Eτ−1

1 )2,M .

Neglecting the term with (Eτ−1
1 )2,M−1, which is of larger order in µ, iterating and using

(A.4) to approximate (Ej
1)2,1 we finally get

t2,M ≈ µ2(1 + k)(1 − β)τ−2

k2
[(1 + k)τ − (1 + k) − k(τ − 1)]. (A.8)
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