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In this work we reexamine the unzipping and bubble formation of DNA in the context of the
Peyrard–Bishop–Dauxois DNA model using the transfer integral operator method. After a brief
overview of the method, we use it to calculate the probabilities that consecutive base-pairs are
stretched beyond a threshold amplitude. We compare the continuous Peyrard–Bishop–Dauxois
model with an Ising-type model and demonstrate their similarities. For the Peyrard–Bishop–
Dauxois model, we derive an expression for the force that is required to open a double-stranded
sequence at one end while the other end is kept closed. In the thermodynamic limit, we use this
expression to study the dependence of the unzipping force on the temperature. We also calculate
the opening probabilities in the case of zero force and in the case where a force is applied in the
middle of the sequence. Analytically, the case where the force is applied in the middle is similar to
the case of a homogeneous DNA sequence of strong GC pairs with a defect, in the form of a weaker
AT base pair, in the middle. Numerical results verify this similarity.

Keywords: DNA; Peyrard–Bishop–Dauxois model; transfer integral operator method.

2000 Mathematics Subject Classification: 92D20, 82B05

1. Introduction

1.1. DNA models

The genetic properties of an organism are preserved by storing the bases that encode its
genetic information within the double helical DNA molecule. Since the discovery of the
DNA double-helical structure in 1952 [41], various models have been proposed to describe
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its structure and have attempted to explain its function. While the structure of course is
essential, it is becoming clear that structural information alone is insufficient to under-
stand function. It is now widely accepted that the dynamical conformational changes of
DNA play a central role for some of the molecular functions in which it participates. For
instance, in two of the most fundamental processes of life, transcription and replication,
DNA has to locally open in order to allow the appropriate enzymes to engage and oper-
ate. In transcription the double strand is separated to allow the RNA polymerase to read
the genetic code, while replication begins with a partial unzipping of the DNA end where
DNA polymerase binds and starts assembling and reforming the molecule. Separation of
the double strand of the DNA molecule is also technologically important. In the poly-
merase chain reaction (PCR), for example, DNA double strands are routinely converted
to separate single strands by melting at elevated temperature. This approach uses thermal
energy to disrupt the base pairing and base stacking interactions that otherwise stabilize
the double helix at room temperature. From this perspective it is important to understand
DNA “breathing” — the dynamical process of base pair opening and closing due to ther-
mal fluctuations. Two established modeling methods invoke thermodynamics [22, 26] and
dynamics [17, 31, 36, 42] in order to capture the mechanism of the disruption of the bonds
and the breathing of DNA.

One of the most studied models is the Peyrard–Bishop–Dauxois model [15, 26], which
consists of two spring-mass chains representing the DNA strands connected by Morse poten-
tials representing the hydrogen bonds. This model was introduced to investigate the mech-
anism of DNA denaturation, but has since been used to study the dynamics of DNA [1].
The model introduced by Prohofsky et al. [36] to study dynamical aspects is essentially
the same as the original Peyrard–Bishop–Dauxois model with the important difference that
the nearest neighbor coupling is harmonic. Effects of long-range interactions and additional
on-site nonlinearities were also considered in this context of this model.

Englander and collaborators [17] first considered the possibility that structures in DNA
of 10 or more adjacent open base pairs correspond to thermally induced soliton excitations.
This idea was further developed by Salerno [31, 32] who introduced nonhomogeneities in the
model and studied the dynamics of DNA promoters in the context. His results have attracted
attention [5, 12] and other nonlinear excitations [1, 34, 35], such as discrete breathers, are
emerging as important for DNA dynamics and function. These works take advantage of the
large amount of research [3, 4, 13, 14, 21, 23, 24] that has been concerned with understanding
discrete breathers in nonlinear systems in recent years.

Recently, in [22] the prediction of sequence dependent, thermally induced base pair open-
ing probabilities was based on an Ising-type model taking into account the lateral pairing
between the complementary bases and the stacking of the pairs along the longitudinal axis.
In this model each base pair is assumed to be in one of two states: closed or open. In
the later state, the hydrogen bonds are assumed to be completely disrupted and the bases
flipped out of the helical stack. The ten stacking interaction parameters, as well as the two
hydrogen bond parameters, were obtained by studying the electrophoretic mobility in gel
of DNA fragments with nicks [28].

Other dynamical aspects, such as the twist motions of the DNA strands, have also
attracted interest. Yakushevich [42] for example has introduced a model that consists of
two chains of long, elastic, and weakly interacting parallel rods. This model describes the
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motions of DNA on the nanosecond time scale. The soliton dynamics of this model has been
studied by Gaeta [19].

1.2. DNA bubble formation

Whenever the available entropic energy in the system equals the energy that is required to
disrupt the hydrogen bonds between complementary base pairs, temporary localized single-
stranded regions may form. These regions are often called bubbles. This form of thermal
denaturation has some similarities with what is required for transcription, due to the local-
ized nature of the thermally induced bubbles. Hence, the dynamical behavior and statistics
of bubbles and their relation to DNA function have been the subject of numerous studies.

In the context of the Peyrard–Bishop–Dauxois molecular dynamics model the dynamics
of bubbles have been investigated using various thermostated molecular dynamics and equi-
librium statistical mechanics techniques [10, 15, 29, 30, 39, 43]. Other approaches directed
towards the study of bubbles have been based on Ising-type models [20] or stochastic sim-
ulations [6] based on the Poland-Scheraga helix-coil model [27].

1.3. DNA unzipping

Only recently have direct measurements of the mechanical properties of DNA been made [8].
These studies have led to a better understanding of the interactions between DNA and
proteins and enzymes. Mechanical unzipping forces were first measured in [7, 18].

In [18], the mechanical unzipping of DNA was achieved by attaching one end of the
strand to a sliding surface through a linker arm, and the other end to a bead attached to a
cantilever. The cantilever served as a force sensor, as the deflection of its tip was monitored
as a function of the lateral displacement of the surface.

Bockelman et al. [7] introduced a molecular construction anchored between a glass micro-
scope slide and a silica bead held in an optical trap. As the surface is laterally displaced,
the double helix progressively opens. The force acting on the bead is derived by the posi-
tion difference between the bead and the trap center. Very significant increase in base pair
sensitivity was reported, and sequence features appearing at a scale of 10 base pairs were
observed.

In the framework of the Peyrard–Bishop–Dauxois model, the micro-mechanical unzip-
ping was studied using Monte–Carlo simulations and agreement with experimental results
was achieved for homogeneous DNA sequences [40].

It has been noted [18] that a simple relation between the formation of bubbles at high
temperature and the zones of sudden mechanical unzipping has not been established. How-
ever, such an understanding is imperative for further development of technologies [40] based
on mechanical unzipping. Here we show how statistical mechanics calculations based on the
transfer integral operator method can produce predictions on both bubble formation and
the effect of forces. We also investigate how the effect of weak base pairs in an otherwise
homogeneous sequence compares with the effect of a force exerted in the middle of a homo-
geneous sequence.

This article is organized as follows. In Sec. 2 we briefly describe the model. In Sec. 3 we
give details on the transfer integral operator method and show a comparison between the
Peyrard–Bishop–Dauxois model [26] and the two-state “Ising” model introduced in [22]. In
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Sec. 4 we apply the method to calculate the base pair opening probabilities in sequences with
and without applied forces. Finally, in Sec. 5 we discuss the results and future directions.

2. DNA Model of Coupled Oscillators

The Peyrard–Bishop–Dauxois (PBD) model [15, 26] has been studied extensively since it
was introduced to study DNA denaturation. Recently, has also proven useful in the study
of DNA dynamics [1] and mechanical unzipping [40]. In the framework of the PBD, DNA
is modeled as a system of coupled oscillators with an on-site Morse potential modeling the
hydrogen bonds between each pair of complementary bases, and anharmonic coupled springs
modeling the stacking of adjacent bases. The direct interactions between bases are assumed
to extend only to nearest-neighbors, and for each base pair n a single degree of freedom, yn,
is used to represent the displacement of complementary bases. Here, n = 1, . . . , N , where
N is the length of the sequence.

The configurational energy of the system reads

E =
N∑

n=1

{V (yn) + W (yn, yn−1)} =
N∑

n=1

E(yn, yn−1), (2.1)

where

V (yn) = Dn(e−anyn − 1)2

is a Morse potential and

W (yn, yn−1) =
k

2
(1 + ρ e−b(yn+yn−1))(yn − yn−1)2

accounts for the nearest-neighbor coupling. The model includes two sets of parameters for
the Morse potential, depending on whether a strong GC or a weaker AT base pair is being
modeled. The GC pair contains three hydrogen bonds while the AT pair contains just two.
Dn represents the depth of the Morse potential and an sets the range of the interaction. The
stacking interaction was originally assumed to be homogeneous, but a set of ten parameters
has been recently derived that accounts for nonhomogeneous stacking has recently been
derived [2]. The anharmonic stacking interaction was introduced in [16] to reproduce the
experimentally observed sharp denaturation curves, and serves the purpose of modifying
the spring constant so that it effectively models the entropy-driven effect of melting.

3. Transfer Integral Operator Method

All of the equilibrium thermodynamical properties and quantities of a system can be
obtained from the partition function. In our case of DNA, we will focus on the following
thermodynamic quantities

• the average displacement of complementary bases
• the probability that a number of consecutive base pairs are open, i.e., the bonds in these

pairs are stretched beyond a threshold, and
• unzipping forces, i.e the forces required to open base pairs in double-stranded DNA.
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The average displacement from equilibrium as a function of temperature can be used
in the calculation of melting curves. We evaluate the number of open base pairs (stretched
beyond a threshold) as a function of the temperature, and the temperature at which half
the base pairs are open is defined as the melting temperature.

The probability that consecutive base pairs are open is related to the formation of
bubbles, i.e. temporary localized openings along the double strand. These have been shown
in a number of studies to reveal information regarding DNA function [1].

The calculation of unzipping forces is relevant to the role of enzymes during transcription
and other processes when DNA has to be partially open and the bases exposed.

The partition function is defined as

Z =
∫ N∏

n=1

dyn exp(−β(V (yn) + W (yn, yn−1))). (3.1)

There are several possible ways of treating the chain ends, y0 and yN . For the case of
periodic boundary conditions, one has y0 = yN . For the case of open boundary conditions,
one has to impose y0 = y1 with no restriction on yN . Another possibility is to keep the ends
at zero displacement y0 = 0 and yN = 0.

3.1. Partition function evaluation

The partition function can be evaluated using the transfer integral operator (TIO) method.
In order to apply this method, one must first solve two integral eigenvalue equations — one
for GC and the second for AT parameter values — with symmetric kernel∫

dy S(x, y)φ(y) = λφ(x), (3.2)

where the kernel is

S(x, y) = exp
(
−β

2
(V (x) + V (y) + 2W (x, y))

)
= S(y, x).

Then repeated application of (3.2) can be used to replace consecutive integrations by
eigenvalue multiplications. We illustrate the method by obtaining an expression for the
partition function in the case of a homogeneous and a nonhomogeneous sequence.

In the homogeneous case, for open boundary conditions, one obtains

Z =
∫

dy0δ(y0 − y1)
N∏

n=1

dyn exp(−β(V (yn) + W (yn, yn−1)))

=
∫

dy1 exp(−βV (y1))
N∏

n=2

dyn exp(−β(V (yn) + W (yn, yn−1)))

=
∫

dy1 exp
(
−β

2
V (y1)

) N∏
n=2

dynS(yn, yn−1) exp
(
−β

2
V (yN )

)
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=
∫

dy1 exp
(
−β

2
V (y1)

)
dy2dηS(y2, η)δ(y1 − η)

×
N∏

n=3

dynS(yn, yn−1) exp
(
−β

2
V (yN )

)

=
∫ ∑

i

dy1 exp
(
−β

2
V (y1)

)
φi(y1)dηS(y2, η)φi(η)

×
N∏

n=3

dyn−1S(yn, yn−1)dyN exp
(
−β

2
V (yN )

)

=
∑

i

∫
dy1 exp

(
−β

2
V (y1)

)
φi(y1)λidy2S(y3, y2)φi(y2)

×
N∏

n=4

dyn−1 S(yn, yn−1)dyN exp
(
−β

2
V (yN )

)

=
∑

i

(∫
dyφi(y)e−

β
2
V (y)

)2

λN−1
i .

In the third equality we have symmetrized the kernel, and in the fourth we introduce
an auxiliary variable η to allow the expansion of the corresponding δ function in terms of
the eigenfunctions of the integral eigenvalue equation. This auxiliary integration acts as a
catalyst that initiates the repeated application of the transfer integral operator.

In the nonhomogeneous case, for open boundary conditions, the partition function is

Z =
∫ N∏

n=1

dyndy0δ(y0 − y1)S(yn, yn−1)e
β
2
(V (y0)−V (yN ))

=
∑
i,j

∫
dy1φi(y1)e−

β
2

V (y1)λr−1
i

∫
dyrdηS(η, yr)φi(yr)φj(η)

×λN−r−1
j

∫
dyNφj(yN )e−

β
2
V (yN ). (3.3)

Here, we assume that an inhomogeneity exists at base pair r, so that r is not of the
same type as r − 1 and r + 1. Hence, neither of the integral eigenvalue equations can be
used to propagate the integration and one needs to introduce a new auxiliary variable in
order to overcome the integration at r + 1 and move to the next homogeneous region. This
step is used whenever a nonhomogeneity occurs.

3.2. Comparison with an Ising-type model

The expression for the partition function obtained from the TIO method exposes similar-
ities between the PBD model and an Ising-type model introduced to study DNA thermal
fluctuations [22]. According to the Ising-type model, the partition function for a sequence
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consisting of N base pairs reads

Z =
∑

σ1=0,1

∑
σ2=0,1

· · ·
∑

σN=0,1

N∏
i=1

(δi)σi(αi)σi(δi+1)f(σi,σi+1)(ξ)f(σi,σi+1), (3.4)

where δ1 = 1, δN+1 = 1 and σN+1 = 1. Here, σi = 0, 1 corresponds to the closed and open
state of the base-pair, respectively, in position i,

f(σi, σi+1) =

{
σi if σi+1 = 0

0 if σi+1 = 1,

and αi, δi, and ξ are the base-pairing, base-stacking and entropic penalty parameters,
respectively. The base-pairing and base-stacking parameters are given in terms of the free
energies as

αi = exp
(

∆GBP
i

RT

)
and δi = exp

(
∆GST

i−1,i

RT

)
,

where R is the gas constant and T is the temperature.
The similarity between (3.1) and (3.4) are apparent if we rewrite (3.4) as

Z =
∑

σ1=0,1

∑
σ2=0,1

· · ·
∑

σN=0,1

N∏
i=1

× exp
(

1
RT

(σi∆GBP
i + σi∆GST

i−1,i + f(σi, σi+1)∆GST
i,i+1)

)
(ξ)f(σi,σi+1)

=
∑

σ1=0,1

∑
σ2=0,1

· · ·
∑

σN=0,1

N∏
i=1

× exp
(

1
RT

{σi∆GBP
i + σi∆GST

i−1,i + f(σi, σi+1)(∆GST
i,i+1 + RT ln ξ)}

)

In comparison to (3.1), the integrations of the continuous variables yn have been replaced
by summations over the two discrete states, the first term corresponds to the base pairing
interaction, and the second and third ones to the stacking interaction. The entropic penalty
factor ξ in (3.4) modifies the stacking interaction, which is the dominant stability contri-
bution according to this model, so that the numerically calculated probability values are in
agreement with the experimentally measured ones.

3.3. Opening probabilities

In the framework of the Peyrard–Bishop–Dauxois model, we define the probability Pk(s)
for formation of a “bubble” spanning k base-pairs, starting at base-pair s as

Pk(s) = Z−1

∫ ∞

t
Zk(s)

s+k−1∏
n=s

dyne−βE(yn,yn−1). (3.5)
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Here, t is the threshold separation of the double strand above which we define a base-pair
to be open. The quantities Zk are defined as

Zk(s) =
∫  ∏

n �=s,...,s+k−1

dyneβE(yn, yn−1)


dy0δ(y0 − y1), (3.6)

We note that our working definition of a “bubble” does not require that the open
base-pairs s to s + k − 1 are flanked by closed ones [29, 30]. Similarly, in the context of
the Ising-type model introduced in [22] the probability Pk(s) for formation of a ”bubble”
spanning k base-pairs, starting at base-pair s is given by

Pk(s) = Z−1
∑

σ1=0,1

· · ·
∑

σs−1=0,1

∑
σs+k=0,1

· · ·
∑

σN=0,1

N∏
i=1

(δi)σi(αi)σi(δi+1ξ)f(σi,σi+1), (3.7)

with δ1 = 1, δN+1 = 1, σN+1 = 1, and σj = 1 for j = s, . . . , s + k − 1.
In Fig. 1, we show the probabilities — calculated by Eq. (3.5) — that at least 1 or 7

consecutive base pairs are open beyond a threshold set to 1.5 Å, together with the same
probabilities — calculated by Eq. 3.7. The sequence that we used is that of the major late
promoter for the adenovirus found in [33] from base pair −62 to base pair +24: 5′ gccacgt
gaccgggtgttcctgaaggggggctataaaagggggtgggggcgcgttcgtcctcactctcttcccctccatacccttc 3′ . The
parameter values for the PBD model can be found in [9], while the parameter values for
the Ising-type model can be found in [22]. The value for the entropic factor parameter was
taken to be ξ = 0.001. In all cases the temperature was 37◦C.

We notice that for single base pair openings the locations of the peaks in the opening
probability profiles coincide for both models, and that the largest probability corresponds

−60 −40 −20 0 20
0

0.02

0.04

bp

P1

−60 −40 −20 0 20
0

2

4
x 10−4

bp

P7

(a) (b)

−60 −40 −20 0 20
0

2

4
x 10−4

bp

P1

−60 −40 −20 0 20
0

0.5

1
x 10−7

bp

P7

(c) (d)

Fig. 1. Panels (a) and (b) show the probability based on the PBD model that at least 1 (P1) or 7 (P7),
consecutive base pairs are open beyond a threshold of 1.5 Å. In panels (c) and (d), we show the same
probability derived based on Ising-type model.
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to position −30, where the so-called TATA-box resides. The TATA-box is a core promoter
sequence that is the binding site of either transcription factors or histones and has the
sequence 5′ TATAAAA 3′ in this case. In the case of the Ising-type model, especially for
P7, there is a strong bias towards high opening probabilities in soft regions, that is in
regions containing AT base pairs. Also, the overall opening probabilities are smaller in the
Ising-type model than in the PBD model.

4. Applications to Unzipping and Bubble Formation

4.1. Calculation of the force required to keep apart one end of the chain

Following [37] we can calculate the unzipping force as a function of L. We assume that
y0 = 0 and either yN+1 = 0 or yN+1 = L > 0. Then, using the transfer integral operator
method one can obtain the following expression for the partition function of a homogeneous
chain:

Z(yN+1) =
∫

dy1e
−β

2
(V (y1)+V (0)+2W (y1,0))

×
N∏

n=2

dynS(yn, yn−1)e−β(V (yN+1)+ 1
2
V (yN )+W (yN+1,yN ))

=
∑

i

∫
dy1S(y1, 0)dηdy2φi(η)φi(y1)S(y2, η)

×
N∏

n=3

dynS(yn, yn−1)e−β(V (yN+1)+ 1
2
V (yN )+W (yN+1,yN ))

=
∑

i

φi(0)λN+1
i φi(yN+1)e−

β
2

V (yN+1).

Hence,

Z(L) =
∑

i

φi(0)λN+1
i φi(L)e−

β
2

V (L)

and

Z(0) =
∑

i

φi(0)2λN+1
i .

The free energy difference between the two states is

∆G = − 1
β

ln
(

Z(L)
Z(0)

)
,

which in the thermodynamic limit N → ∞ becomes

∆G = − 1
β

ln
(

φ1(L)
φ1(0)

)
+

1
2
V (L), (4.1)

where φ1 the eigenfunction corresponding to the largest eigenvalue λ1. We note that (4.1) is
similar to Eq. (6) in [11] that was obtained through a continuum transfer matrix technique
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for a semi-microscopic model. In that model a single degree of freedom is used for every
base-pair, and besides the interactions with the nearest neighbors and the hydrogen bonding,
also a torque energy term was included.

The unzipping force can be calculated as the derivative

∂∆G

∂L
= − 1

β

φ′
1(L)

φ1(L)
+

1
2
V ′(L). (4.2)

It is worth pointing out that, at zero temperature, the unzipping force is

∂E

∂L
=

∂W (yN , L)
∂L

+ V ′(L).

However, there is a way to rewrite (4.2) so that V ′(L) has unity as its prefactor: We
write

Z(yN+1) =
∑

i

φi(0)λN
i

∫
dyNφi(yN )e−

β
2
(V (yN )+2W (yN+1,yN ))e−βV (yN+1).

Then, as N → ∞

∆G = − 1
β

ln

(∫
dyNφ1(yN )e−

β
2
(V (yN )+2W (L,yN ))e−βV (L)

φ1(0)λ1

)

and

∂∆G

∂L
=

∫
dyφ1(y)e−

β
2
(V (y)+2W (L,y)) ∂W (y,L)

∂L∫
dyφ1(y)e−

β
2
(V (y)+2W (L,y))

+ V ′(L). (4.3)

Both (4.2) and (4.3) are useful because (4.2) reveals the almost linear behavior in tem-
perature, while (4.3) reveals the resemblance with the force at zero temperature.

In Fig. 2, we show the force given by (4.2) vs. the stretching in the last base pair N +1.
The stretching length L is given in Å and the force in pN . The temperature is 309.15 K.

0 1 2 3 4
0

20

40

60

80

L

F
or

ce

Fig. 2. The force vs. the stretching L in base pair N + 1. The length is given in Å and the force in pN .
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0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Force

T

Fig. 3. The temperature vs. the unzipping force at the end of the chain for L = 1.7 Å. The force is given in
pN and the temperature in 0C.

The force barrier is of the same order of magnitude as the one reported in [40], where a
force was applied at the end of a chain 300 base-pairs long pulling the last base-pair apart
at a constant velocity. The parameter values used here correspond to a homogeneous AT
sequence.

In Fig. 3, we show force-temperature diagram for a homogeneous AT sequence. For the
numerical evaluation of the data points we used Eq. (4.2) and assumed that the base pair
at the end of the sequence was stretched by L = 1.7 Å. The shape of the T (Force) curve is
in agreement with previously reported experimental and numerical studies [40].

4.2. Effect of a force applied in the middle of a sequence

We now assume that there is a force applied at base pair r within a homogeneous sequence
and study the effect this has on the opening profile. We compare this profile with that of
a homogeneous sequence with a single “defect” base pair r of another type. We compare
the influence that the force and the nonhomogeneity have on the average opening displace-
ments. The case with the force applied on base pair r can be used to explain the effect
of restriction proteins on DNA [38]. We also compare these cases with the one when no
force or inhomogeneity is present and show the range of influence of the force, namely the
number of neighboring base pairs that are affected.

We consider a homogeneous sequence of N base pairs with a force applied to base pair
1 < r < N . The modified configurational energy now reads

E =
N∑

n=1

{V (yn) + W (yn, yn−1) − Vpull(yr)},
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where

Vpull (yr) =
kp

2
(yr − Yr)2 (4.4)

and kp, Yr are the spring constant and displacement of the elastic spring that deforms base
pair r.

Then, using the same ideas as above, the partition function can be evaluated from the
expression:

Z =
∑
i,j

∫
dy1φi(y1)e−

β
2
V (y1)λr−1

i

∫
dyr dyr+1S(yr+1, yr)φi(yr)φj(yr+1)e−βVpull(yr)

×λN−r−1
j

∫
dyNφj(yN )e−

β
2

V (yN ). (4.5)

The expressions (3.3) and (4.5) suggest a similarity between the action of forces and
nonhomogeneity on a DNA sequence.

In Fig. 4, we show the opening probability profile for a homogeneous GC sequence, with
a weak pair AT that acts as a defect at base pair 43, and also with a force applied at
base pair 43. As a reference, the purely homogeneous sequence is also shown. All sequences
contain the same number of base pairs N = 87 and are flanked by 50 base pairs at each side
to avoid opening due to the boundary effect. The contribution to the energy of the applied
force is given by (minus) (4.4) with parameter values kp = 0.0016 pN/Å and Yr = 0.5 Å.
For these parameter values, the range of effect of the force is slightly larger than that of the
defect. There are base pairs with opening propensity greater than that of the homogeneous
GC sequence that are located further from base pair 43 in the case of the force than in
the case of the defect. Another difference is in the opening propensity of base pairs 42
and 44: in the presence of the force, their opening probabilities are significantly lower than

0 20 40 60 80 100
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homogeneous

AT defect

force

Fig. 4. Probability that one or more base-pairs are opened a beyond threshold 1.5 Å, for a homogeneous GC
sequence, a homogeneous GC sequence with an AT defect at base pair 43, and a homogeneous GC sequence
with a force applied at base pair 43.



August 27, 2011 11:23 WSPC/1402-9251 259-JNMP S1402925111001581

The Transfer Integral Operator Method in the Study of DNA Unzipping and Bubble Formation 393

in the presence of the defect. This is due to the fact that when the defect is present, the
nearest neighbor coupling also affects the immediate neighbors and effectively increase their
amplitude.

To understand the dependence of the the opening profile on the force parameters, we
repeated the calculation with kp varying from 1.6×10−4 to 1.6×10−2 pN/Å and Yr varying
from 0.5 to 1.5 Å. As Yr increases, the opening probabilities decrease slightly, but the overall
profile is otherwise unaffected. On the other hand, keeping Yr = 1 Å and varying kp results
in significant changes in the opening profiles. These results are shown in Figs. 5 and 6.
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0.016

0.018
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Fig. 5. Probability that one or more base-pairs are open beyond threshold 1.5 Å, for a homogeneous GC
sequence with a force applied at base pair 43, with various values of Yr.
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Fig. 6. Probability that one or more base-pairs are open beyond threshold 1.5 Å, for a homogeneous GC
sequence with a force applied at base pair 43, with various spring constants kp.
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5. Discussion and Future Directions

We have shown that a model of DNA with a single degree of freedom per base pair gives
valuable results capturing essential dynamical features of the molecule. Our studies strongly
suggest that this level of modeling even has biological relevance [1]. As this kind of meso-
scale modeling continues to improve [2, 25], and maintain a strong coupling to experiments,
it has the potential to enable significant insight into several of DNAs biomolecular func-
tionalities
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