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We show that the geodesic flow on the infinite-dimensional group of diffeomorphisms of the circle,
endowed with a fractional Sobolev metric at the identity, is described by the generalized Constantin–
Lax–Majda equation with parameter a = − 1

2 .

Keywords: Geodesic flow; fractional Sobolev metric; generalized CLM equation.

Mathematics Subject Classification: 53D25, 35Q35

1. Introduction: The Dual Generalized Constantin–Lax–Majda Equation

The generalized Constantin–Lax–Majda equation with parameter a ∈ R ∪ {+∞}



ωt + a vωx = ωvx, x ∈ S := R/2πZ, t > 0

vx(t, x) = Hω(t, x)

ω(0, x) = ω0(x)

(1.1)

(henceforth referred to as the gCLM equation) was first derived in [17]. Here, the (spatial)
Hilbert transform of a function f , denoted above by Hf , is defined via the Fourier transform
F by F(Hf)(ξ) = −√−1 sign(ξ)F(f)(ξ), ξ ∈ S. Thus, H gives rise to an L2(S)-isometry,
and H2f = −f .

For different values of a ∈ R, the gCLM equation interpolates between several one-
dimensional model equations arising in fluid dynamics. For example, if a = 0, the gCLM

equation reduces to the classical Constantin–Lax–Majda equation [10] mimicking the 3D
vorticity equation. A model for the quasi-geostrophic equations [11] is obtained by setting
a = −1, and if a = 1, we obtain the De Gregorio equation [13, 14]. For the first two
cases, [10] and [11] proved that many smooth initial data give rise to solutions which blow
up in finite time, while [17] provided strong numerical evidence for global existence of
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solutions for the case a = 1. Moreover, if a = ∞ (the case of which bears close resemblance
to the 2D vorticity equation) it was shown analytically in [17] that solutions exist for all
times.

Let us define the dual generalized Constantin–Lax–Majda equation (gCLM∗ equation
for short) with parameter a∗ ∈ R ∪ {−∞} via




ωt − vωx = a∗ ωvx, x ∈ S, t > 0

vx(t, x) = Hω(t, x)

ω(0, x) = ω0(x).

(1.2)

It can obviously be recovered from the gCLM equation with parameter a ∈ R by ω(t, x) �→
ω(a∗t, x), where a∗ = − 1

a (if a → 0, so that a∗ → −∞, we arrive at the CLM equation in
the limit).

2. The Geodesic Flow on D(S) Endowed with the Right-invariant
H

1
2 (S) Metric

In this paper, we observe that the gCLM∗ equation with parameter a∗ = 2 describes
the geodesic flow on the infinite-dimensional Lie group of orientation-preserving diffeomor-
phisms of the circle S, D(S), endowed with the H

1
2 (S) fractional Sobolev right-invariant

metric given at the identity by

〈u, v〉id =
∫

Λu v dx, u, v ∈ TidD(S) ≡ C∞(S), (2.1)

where Λf is defined via the Fourier transform F :

F(Λf)(ξ) = ξ sign(ξ)F(f)(ξ), ξ ∈ S.

Consequently, we have the calculation rules HΛf = ΛHf = −fx, and Λf = Hfx.

To define a smooth right-invariant Riemannian metric on D(S), we extend the inner product
(2.1) to each tangent space TϕD(S) by right translation:

〈V,W 〉ϕ = 〈V ◦ ϕ−1,W ◦ ϕ−1〉id for V,W ∈ TϕD(S). (2.2)

The existence of a covariant derivative ∇ preserving the inner product (2.2), which is
necessary to derive the geodesic equation of the metric, is guaranteed by the following
theorem.

Theorem 2.1 [9]. Consider a non-degenerate continuous inner product 〈., .〉 on TidD(S) ≡
C∞(S), and extend it to each tangent space TϕD(S) by right translation. If there exists a
bilinear operator B : C∞(S) × C∞(S) → C∞(S) such that

〈B(u, v), w〉 = 〈u, [v,w]〉 u, v,w ∈ C∞(S), (2.3)

where the commutator [., .] is given by [v,w] = vwx−vxw, then there is a unique Riemannian
connection ∇ on D(S) associated with the right-invariant metric 〈., .〉.
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The geodesic equation (also referred to as the Euler equation) is now given as [1, 2, 9]

ut = B(u, u). (2.4)

Let us first determine the bilinear form B(u, v) using formula (2.3):

〈u, [v,w]〉 =
∫

S

Λuvwx dx −
∫

S

Λuvxw dx

=
∫

S

H(Huxv)Hwx dx −
∫

S

H(Huxvx)Hw dx

=
∫

S

H(Huxv)Λw dx +
∫

S

∂−1
x H(Huxvx)Λw dx,

hence

B(u, v) = H(Huxv) + ∂−1
x H(Huxvx),

and so the geodesic equation reads

ut = H(uHux) + ∂−1
x H(uxHux).

Differentiation with respect to the space variable x now yields

utx = H(uHuxx + uxHux) + H(uxHux) = H(uHuxx) + 2 H(uxHux).

Applying the Hilbert transform H to this equation, we see that

Hutx = −uHuxx − 2uxHux.

If we set ω = Hux, then we obtain the gCLM∗ equation with parameter a∗ = 2:

ωt = 2ωvx + vωx, vx = Hω. (2.5)

Thus we have proven

Theorem 2.2. The generalized Constantin–Lax–Majda equation (1.1) with parameter a =
−1

2 (or equivalently, the gCLM∗ equation (1.2) with parameter a∗ = 2) corresponds to the
equation of the geodesic flow on D(S) with respect to the right-invariant metric (2.1), (2.2).

Remark 2.1. It is important to point out that while we have proven that geodesics must
obey the evolution prescribed by the gCLM∗ equation with parameter a∗ = 2, we have
not demonstrated the existence of geodesics on the manifold D(S) endowed with the H

1
2 (S)

right-invariant metric. This will be proven in a more detailed analysis, together with results
about related topics on the gCLM∗ equation and the geometry of D(S) endowed with the
fractional Sobolev metric.

Let us also mention that our considerations are not in the least limited to the peri-
odic case: appropriate conditions at infinity (cf. [5, 6]) ensuring that the diffeomorphisms
approach the identity far out should facilitate the study of the case on the line R.

Remark 2.2. Recently, there has been written a host of articles (cf. [7–9, 15, 16] and the
references therein) dedicated to the study of differential geometric features of D(S) endowed
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with several right-invariant metrics, among which the L2(S), H1(S), and (the homogeneous)
Ḣ1(S) metrics attracted the greatest attention, since in these cases, the geodesic equations
are re-expressions of the Burgers [3], Camassa–Holm [4], and Hunter–Saxton equations [12],
respectively. Thus it is of interest to notice that also the fractional Sobolev metric can give
rise to a physically meaningful equation, lying “between” the Burgers equation and the
Hunter–Saxton equation, both of which have solutions which lose their initial regularity in
finite time [9,18].

Remark 2.3. In the hierarchy of the generalized Constantin–Lax–Majda equation [17], the
equation discussed lies between the 1D model equation for the quasi-geostrophic equation
[11] and the original CLM equation [10]. Solutions to both equations are known to become
singular in most cases: This, together with the above remark, supports the conjecture that
solutions to the gCLM∗ equation with parameter a∗ = 2 blow up in finite time as well. We
will address this question in a forthcoming study as well.
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