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Considering a complex Lagrange space ([24]), in this paper the complex electromagnetic tensor
fields are defined as the sum between the differential of the complex Liouville 1-form and the sym-
plectic 2-form of the space relative to the adapted frames of the Chern—Lagrange complex nonlinear
connection. In particular, an electrodynamics theory on a complex Finsler space is obtained.

We show that our definition of the complex electrodynamics tensors has physical meaning and
these tensors generate an adequate field theory which offers the opportunity of coupling with the
gravitation. The generalized complex Maxwell equations are written.

A gauge field theory of electrodynamics on the holomorphic tangent bundle is put over 7'M
and the gauge invariance to phase transformations is studied. An extension of the Dirac Lagrangian
on T'M coupled with the electrodynamics Lagrangian is studied and it offers the framework for a
unified gauge theory of fields.
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1. The Basics of Complex Lagrange Geometry

The geometry of Finsler spaces, or more general of Lagrange spaces, offers a powerful
support for many modern physical theories, [23,6, 10, 32].

The notion of complex Lagrange space was introduced by the author, desiring to obtain
some geometric models for quantum physics theories. The foundations of complex Lagrange
geometry were set in our book [24]. The complex Lagrange space is a natural extension of
the complex Finsler one, for which there already exists a large reference ([1, 3, 33],...). In
this section we resume only set the notations and make an overview of the needed notions
for an accessible understanding of the geometric framework of the electrodynamics on the
holomorphic bundle T"M.

Let M be a complex manifold, (zk) k=Tm be the complex coordinates in a local chart,
and T'M be its holomorphic tangent bundle in which, as a complex manifold, we consider
the complex induced coordinates u = (2%, 7%), _

1n:
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The complexified tangent bundle T (7" M) admits a vertical distribution V'T" M, locally
spanned by {9y := %}kzlfn and its conjugate V”T'M, locally spanned by {0; :=
%} k=17 A supplementary distribution in 7"(7"M) to V'T'M is called a complex nonlinear

connection, in brief (c.n.c.), and it is determined by a set of complex functions N ; (z,m) with

respect to which {0 := 887 - N,za%j}k:ﬁ change like vectors on the underline manifold

M. The distribution spanned by {dx},_17 will be called horizontal, adapted to the (c.n.c.)
and will be denoted by H'T'M. Its conjugate distribution H”T’M is locally spanned by
{0 == 5k}k=1,_n-

A complex Lagrange space is a pair (M, L), where L : T"M — R is a regular Lagrangian
in the sense that the Hermitian metric tensor g;; = 0?L/On' 07’ is nondegenerate. In par-
ticular, if L is a positive function, smooth except the zero sections, (1, 1)-homogeneous, i.e.
L(z, M) =| A |* L(z,m), VA € C, and the quadratic form g;;n'7)’ is positive definite, then
(M, L) is a complex Finsler space with fundamental function F' = VL. Obviously, the class
of complex Lagrange spaces includes that of complex Finsler spaces, but some properties
of the last class are lost in the first class of spaces.

The Lagrange function L defines a (c.n.c.), called by us the Chern-Lagrange (c.n.c.),
with the following coefficients

0L

N} =g¢gm _— =
R R

(1.1)

Its adapted frames have a remarkable property concerning the brackets, namely
[0;,0,] = 0, and the others are

167, 6%] = (0pN))0; — (8;N})y;
(6, 0k] = (OeN})Di; (65, 05] = (OpN})Os; (1.2)
[0;,0%] =0y [0;,0¢] = 0.

With respect to the adapted frames of (1.1) (c.n.c.) a notable derivative law of (1,0)-type

is the so called Chern-Lagrange N-complex linear connection, which in notations from [24]
has the coeflicients

DI(N) = (L, = ¢™0kgjm; Ly, = 0; Ciy, = g™ Ogims Cl

=0), (1.3)
where Ds, 0; = L;ﬂk&i; D(sE(Sj = LéEéi;Da-ka'j = C;k&, Da'];a.j = C]i.]fe@.i, etc.

D is a metrical connection, that is to say D5, G = D5 G = DékG = D(%G = 0, where
G= gﬁdzi ®d# + gl-;(sni ® 67/ is the N-lift of the metric tensor gij-

Also, with respect to the adapted frames of (1.1) (c.n.c.), two well defined forms can be
considered

oL, i OL
o c o
0= gijéni AdZ . (1.5)

w=u +u" = dz', (1.4)

w is the Liouville form of the complex Lagrange space and 6 is the Hermitian symplectic
2-form associated to (M, L) space.
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The complex Lagrange geometry is a Hermitian one but in applications non-Hermitian
quantities will sometimes appear. For instance, if we consider the non-Hermitian tensor
gij = 0*L/On'on’ (without requesting it to be nondegenerate) and 957 = Jij, then a well
defined 2-form is given by

p= gij(sni Adz (1.6)
Subsequently we shall use these objects and their conjugates.

2. The Complex Electrodynamics Fields

In [24, p. 99], we consider the following Lagrangian inspired from real electrodynamics ([23]):

Ly = moeyz (' — LA + Am) (2.1)
where ;5 is a Hermitian metric on the complex universe M, A;i(2)dz" is a 1-form which
defines a complex potential and the other quantities have well-known physical meanings.
The Hermitian metric v;5(2) could be the constant universal metric or even better, for a
unified theory with gravitation, it can be derived from a gravitational potential.

This Lagrangian is not formally introduced, in fact its use is justified in Ref. 24. Later
we shall see that this Lagrangian coupled with the Dirac Lagrangian on the holomorphic
bundle can be quite useful for a unified field theory.

(M, Ly) is a complex Lagrange space, with g;; = mocy;;(2) the metric tensor and from
(1.1) the associated (c.n.c.) is

9
0%

N? = MG + =50, A with Ag = A and 0 =
mocC

In [24] we contented to make a gravitational approach relative to the Lagrangian L,,
without taking into account some electrodynamics meaning of the complex potential. Actu-
ally, the main difficulty that we encountered in obtaining a consistent theory for complex
electrodynamics was the definition of complex electromagnetic fields which should obey the
covariance principle with respect to the Chern—Lagrange complex linear connection D.

In defining the process of the complex electromagnetic fields, we first try to fit in our
framework a nice idea used by R. Miron (]23]) in the real Lagrange model for electrodynam-
ics theory. Shortly, this idea consists in defining first the vertical and horizontal deflection
tensors D;- = D(;jyi and d;- = Déiyj and then the electromagnetic tensors are given by
fij = %(DU — Dji) and fij = %(dlj — dji), where Dij = gikDé? and dij = glkd;“ Here we
use real notations with respect to the canonical connection according to [23]. The data
contained in the Lagrangian expression are carried to the electromagnetic tensors by means
of the metric tensor and connection coefficients. For the choice of Lagrangian as being the
classical Lagrangian of electrodynamics, R. Miron proved that the classical concepts of
electrodynamics theory are recovered.

When we attempt to follow an analogous idea in our theory, the first remark is that for
the particular case of complex Finsler spaces the Chern—Finsler linear connection (1.3) sat-
isfies, as we can easily see from the homogeneity of the fundamental function, the following
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conditions: D; = D(;jni =0, D% = D(;j’ni =0, d; = ngni = 5;- — éj, d% = Dé}ﬂi = 0.
Consequently, the corresponding electromagnetic tensor fields which could be introduced
in such way all vanish identically. In the general case of complex Lagrange space such a
way does not offer more because D;; and d;; vanish and the mixed tensors which could be
nonzero do not generate coherent Hermitian electromagnetic tensors. Hence such a theory
does not present much interest and then another approach needs to be followed.

Such an helpful idea for us is inspired also from a paper of R. Miron used for an elec-
tromagnetic theory of Ingarden spaces ([22]), whose fundamental function is just of the
Randers type, but its geometry is not of one real Finsler space. R. Miron proved that in
an Ingarden space the differential of the Liouville 1-form is the difference between its elec-
tromagnetic tensor and the symplectic 2-form of the space. This brain remark could be a
motivation for us that similar reasonings must take place in complex Lagrange geometry.

In the sequel we consider {8y, dx, 0z, 0;} the adapted frame of the (1.1) (c.n.c.) and D
the Chern—Lagrange complex linear connection associated to a complex Lagrange space
(M, L), particularly the space (M, Lg) of complex electrodynamics.

Let w,# and ¢ be the forms defined on (M, L) space by formulas (1.4), (1.5) and (1.6),
respectively. The differential operator d = d’ + d” with

d' = opd2" + Opon® and  d" = 6zdz* + Opoi” (2.2)

applied to the Liouville form w = o' + " is dw = d'w' + d'w" + d"w" + d"W".

The complex electromagnetic fields will be defined axiomatically as being the complex
tensors F*0) = Fidz' Adzd, FOD = Fi;dz" A dz? and their conjugates F(20), F(L1)
given by:

do' = -FCO o @' = —FOO) + 5=
(2.3)

dw'=—FD 40, d'w =-FOD +0=du.

Certainly, in this definition we have in mind the above motivation and we take into
account that in a complex Lagrange space 6 is of (1,1)-type and ¢ is of (2,0)-type.
From this, using the (1.4)—(1.6) formulas, we easily deduce the following.

Proposition 2.1. The local expressions for the complex electromagnetic tensors are

Fij = %{53‘(@%) —0i(0jLq) Y Fij = —6;(95Lg) (2.4)

)

and their conjugates F; = Fij» Fij = f_zj

Some remarks are to be placed here. First, it is obvious that F;; is skew-symmetric while
Fi; is not even Hermitian, F7; being a notation for the conjugate of F,;. Further, we note
that in the particular case of the (M, L,) space, although the metric and electromagnetic
potentials depend only on the point of the base M, and therefore could be considered as
prolongations to the holomorphic bundle 77 M of the same objects on M, the electromagnetic

tensors are defined over the manifold 7”M. Finally, let us point out that:

Proposition 2.2. If (M, L) is a complex Finsler space, then FAD — .
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Proof. From the homogeneity condition of the Finsler function there is obtained that
o;L = gijﬁj and 0;L = gijni. Taking into account that the Chern—Finsler connection D is
a metrical one, we have:

Fij = —06;(0;L) = —6:(grn") = —Ds, (gijn") + (gkmnk)Lﬁ
= —gijamk = gkzj(Nik - Llfimh) = 0.

Here we use the fact that L§n" = 5h(Nzk)nh = NF, in view of one known property of
Chern—Finsler linear connection. O

Hence, in a complex Finsler space, the nonzero electromagnetic tensors are only F;; and
its conjugate. L L

Further, from ddw = 0, it follows that d(F20) 4 F20) 4 70D 4 FOD) = d(o+F+0+6).
Now, writing this last formula with respect to the adapted frames of the Chern—Finsler
(c.n.c.) and taking into account the (1.2) components of the Lie brackets in the classical
formula of exterior derivative of a two form d¢(X,Y,Z) = > {Dx¢(Y,Z) — ¢([X,Y],Z)},
we have

Theorem 2.1. In a complex Lagrange space we have the following generalized Mazwell
equations

Y D5 Fisy =05 Y {Dy Fiy} =0;
Y ADsFis} =0; Y {Dy Fij} =0;
D ADs Fi} =Y AG(Ngne}; > ADs Figh = 0;
> (D5, Fi5} =D {6;(NM)gni}s Z{Da‘,fﬁ} = 0.

Moreover, the following identities are satisfied

> ADs, g1 + 0;(NVgne} = 0; > {Dy, gij} = 0;

> ADs.9i; + 0;(Ngui} = 0 ) {Dy 91} = 0.

All these sums are cyclic by (i,7,k), the bar indices being an abbreviation for 6/6z" or

d/07".

We note that these Maxwell equations become homogeneous if the complexified hori-
zontal distribution is integrable, i.e. [¢;,d;] = 0. Having in mind that in a complex Finsler
space J;; = 0, another set of identities are obtained for the Chern-Finsler (c.n.c.), which
are consequences of the Bianchi identities ([4]).

Using the metric tensor we can lower or raise the indices for the complex electromagnetic

tensors,

Fi = gEigij,;,; and FY = gikgﬁj}'k,;.
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h h v ©
With these the electromagnetic currents J, .J, .J, J can be given by

h v
Y D5 Fl=dn 5 Yy Dy FU=dn Jh
J J
— . E, — . 1_),
Y Dy FU=dnJ Yy Dy FU=dn J.
J J

h ]
It is obvious that in a complex Finsler space .J = J = 0. The currents will be conservative
h h h h

iff DJ =0, ie. if they satisfy the conditions: Ds; Jt = D53 Jt = Déj Jt = Dy; J'= 0 and
analogously for the others.

Next, let us come back to the expression (2.1) of the electrodynamic Lagrangian L,. The
first part mocq/ﬁ(z)niﬁj contains the specific data about the energy of the space but also
about its geometry by means of ~,;. For a coupling with gravitation 7,; could be derived

from a gravitational potential. Let us denote the classical partial derivative by 0; := 8‘;-.
Then we have:
q q
Fij = T + EFi]’ and .7:15 = _Tij + EFﬁ, (2.5)

where

1 _
Tij = gmoc{di — vl Tij = mocdiyn”

are the stress-energy tensors of the space and

1
by = 5{81‘14]- —0;Ai};  Fi; = 0;4;

are the exterior electromagnetic tensors of the space. o

Let us raise the indices, T = ¢highi Ti; and T hk — ghigjkﬂj. Since D is a metrical
connection, the law of conservative energy D(;HThk = D(;jThk = DBET hk — DéhT hk = 0,
implies that

hi q hi hi
Zg 'Ds. Fij = . Zg ‘O Fij; Zg "Dy, Fij = 0;
3 h h

hi . q hig 1m_. hipy., . _
Zg ’D&;L}"ij = ZQ ZahFijy ZQ ‘D ;L]:ij = 0.
h h h

As we mentioned above, (M, L;) is a complex Finsler space only in a particular case
and then it reduces to one trivial with purely Hermitian metric. It should be of interest to
see how does the proposed theory of complex electrodynamics work on a nontrivial class
of Finsler spaces. Recently the author with N. Aldea ([5]) have made a study of complex
Randers spaces. An immediate example of such a space is (M, F') with F' = a+ | |, where

o’ =7;5(z)n'’  and B = Ai(z)n’

and | B |= /3 - (3 is the complex norm.



A Yang—Mills Electrodynamics Theory on the Holomorphic Tangent Bundle 233

Indeed (M, F) is a complex Finsler space under some smoothness assumptions, and L =
F? defines a complex homogeneous Lagrangian for which we can make similar reasonings
like above.

The metric tensor and the Chern—Finsler (c.n.c.) of the complex Randers space were
determined in the general setting in [5]. In our notations we have:

F F 1
9i5 = Ehij + MA‘ AL

where hz] =Y — 261y2 inE’thnhT/k and

CF 0 7 )
i\t l _% k_ /8 8"47“ . % /8 ﬂ'aAF
Ni=Nj + <’Ykr 525" 132 02 ] >§ 2|m 557

0
where N7:= szagzlm ¢ = P’ + a®Al, A' = 4™ Ay, and k; = L 355 iz + 4‘1 -AiAj. Thus
CF
we can consider the adapted frames {d;} of N; ¢ nonlinear connection.
For the complex electromagnetic fields, ﬁrst we have F;; = 0 and

Fiy = S {50) ~ 500} = 510, (07) — 5iloyen")

1 ) ) )
= 5{Ds, (9%7") = 9w Ly — D5, (9;271") + gzl L }-

Since Dy, g;; = 0 and D(;jﬁk = 0, we obtain that

1 _ 1 _
Fij = §9mE{L§? — L = 5{51'91‘15 — Sig;z "

In a strongly Kahler Finsler space the torsion T;k = L;k — Lij = 0 and consequently
Fij = 0. If the Finsler space is weakly Kéhler (see these notions in e.g. [1]) then Fjn/ =
.7:1']'77i =0.

The generalized Maxwell equations are homogeneous for this example.

3. The Complex Lagrangian Density of Electrodynamics

The proposed complex version of electrodynamics seems to be consistent from a geometric
point of view but so far we have had no physical meaning of the objects defined above. For
this purpose in this section we restrict our talk to the space (M, Lg).

It is well known that the Lagrangian L, is of interest in the study of charge dynam-
ics, possibly coupled with gravitation when the metric of the space ~,; is derived from
a gravitational potential. The variation of the integral action A = [ Lydv leads to the
Lorentz law of forces, written in relativistic form as ‘%’: = %F;duj, where F; is obtained
by raising the indices of the classical electromagnetic field F;; = 0;A4; — 0;A;. However,
L, is not in position to generate alone an electrodynamics theory of fields. In this sense,

in the classical field theory, in addition to L, the free Lagrangian of electrodynamics is



234 G. Munteanu

considered Lg = F A xF = —iFijF"j, where *F is the Hodge dual of F. Thus the total
Lagrangian of electrodynamics is L, = Lg + Lg. Often Ly is said to be the Lagrangian den-
sity of electrodynamics and more generally when a current field is considered, it becomes
Lo=—1F;;F9 — JFA,,.

The Hodge dual operator *xF plays an essential role in the field theories of electro-
magnetism, the A potentials and their derivatives 0; A, being considered as independent
variables. The variation of the free integral action A = [F A «Fdv on a compact domain
leads on one hand to the Maxwell equations dF = 0 (identically satisfied since F comes
from a potential, F = dA) and on the other hand to the field Euler equation d*F = 0. Since
in the classical field theory the last equations involve only F and the Minkowski metric,
it is considered that it has not enough physical and geometrical significance, and for this
reason in the unified theories of fields a Yang—Mills and a Hilbert-Einstein Lagrangian are
added to the total Lagrangian of electrodynamics. Even then, the researches from the last
decades proved that such general Lagrangian is not able to lead to a unified theory of fields.
Instead of these, some sophisticated mathematical and at the same time physical theories,
likes supersymmetries or Seiberg—Witten theories, focused on solving this modern problem
([27, 30]). As well, a generalization of the Euler field equations to a class of holomorphic
vector bundles was made by us in [25].

The matter of the electromagnetic duality has been known for a long time, first because
in the classical theory, the star operation in Fj; interchanges the electricity and magnetism,
ie. E—- —H and H — E and thus, up to a symmetry, it can offer a dual approach of
the electric and magnetic fields. Nevertheless, it is well known that between these there
exists a significant difference. While an electric charge localized at a point is a perfectly
viable concept (theoretically and experimentally) the same thing is not true for a magnetic
pole localized at a point. This objection leads Dirac in 1931 to discuss about the magnetic
monopole. For all that, the recent works mentioned above have origin scarcely in this simple
property of the Maxwell theory of being invariant under the interchange of electricity and
magnetism.

The research of electromagnetic phenomena in complex coordinates and by using ade-
quate complex Lagrangians has already a long history since it has been introduced in
1907s’ by Silberstein, [31], and further continued with papers of Dirac, Schroedinger,
etc. For instance, Silberstein, having in mind that E?>~H? and E - H are invariants of
the Lorentz transformations, proposed to be studied the following complex Lagrangian
F?2 = E? - H?2 +iE - H. In particular, E. Schroedinger and P. Weiss used the complex
vector field F = E + ¢H in the framework of Born-Infeld theory. A recent approach of
Born-Infeld theory by using the complex Lagrangian L = F + i(xF) is made in [18], by
using an adequate minimax principle for a complex valuated function. Also in [15] is proved
that the basic external object in electrodynamics equations defines a complex structure
which is responsible for the duality invariance. We cannot conclude our motivation con-
cerning applications of complex geometry in electrodynamics without quoting the excellent
book of G. Esposito in complex General Relativity, [16], and also some recent Yang—Mills
field studies on a CR-holomorphic bundle of a contact manifold, [9].

Our approach differs somewhat from these theories and is comely from the Hermitian
geometric point of view, also we hope that it could be a new starting point in the study of
electrodynamics and more by token.
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Now let us turn to the geometry of a complex Lagrange space (M, L,) and by star
duality to obtain the dual electromagnetic fields. Indeed, the function L, is a real valued
function depending on (z,7) and on their conjugates, and the geometry of (M, L) involves,
as we showed, the study of the T¢ (1" M) sections relative to the adapted frames of the (1.1)
(c.n.c.), which behave like tensors on the base manifold M (d-tensors in [24]).

Let Q be a compact domain of 7'M and dv = 55 det(gﬁ)dzl A dzZT A oA A on? the
volume form, where

dz" AdZE A oA Ao = d2t AdEY A A2 AdZY A SE A STEA - A ST A ST

The Hodge dual of the electromagnetic tensor F(11) = ﬂjdzi A dZ is given by

1111
where
(1,1) det(g;;) i © gk fig
(*}— )i/;zl 922n+1 Z}— €ijiota..intna1al...andy O F =¢'"g }“
=1{2,3,...,n}.

By using a similar Writing we deduce that %0 = (%0) »  dz! A dZ" A o' A 672, where
11a1
A" =1{2,3,...,n} and zlal means that in the permutation signature €; ;7.7 i 7. 41a1. .anan
the indices 7; and a; are replaced with j and b respectively, that is

det(g'_') b
(*9)/\ A= 2T+7“17 Zgj Eiljigfgminfnblt_llmanﬁn'

11a1

Analogously, we have @ = (x@) A , dz1" A dz' A oA A S and «FZ0) = 0, where

1101

det(g;;)

ib ib ki ab—o
(*90)/\/\ ~ T92n+1 § h*’e €i114272...inTnb1G1 ...andn and A" = g""¢"Grq-

11a1

Having in mind the definition (2.3) of the complex electromagnetic tensors, it seems
natural to consider the following complex Lagrangian density for the free particle on 7' M:

Ly = —%(dw) A (xdw). (3.2)

Now we use the decomposition dw = (d'+d")(w' +w"”) and the analogous decomposition
for xdw. Then, in view of the well-known property 11 A xy = 12 A x1)1 for any two forms,
and by taking into account the formulas (2.3) for the conjugates and using the above local
expressions of the dual forms, a direct computation in (2.3) gives

Lo = —F;Fldv (3.3)

and hence the integral action will be A= — [, .7:i3.7:5idv.
We note that Ly is a real valued function on 7"M. In the trivial case when L, is homo-
geneous, then F;; = 0 and a field electromagnetic particle theory is lost of interest.
Further on, our purpose is to obtain the field equations of complex electrodynamics with
respect to the Lagrangian density Lo from (3.3). The variational principle applied to the
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integral action leads to dA = 0. The obvious identity ddw = 0 was called as we seen the
generalized compler Mazwell equations, which are given in Theorem 2.1.
It follows that the variation dA = 0 involves

d(xdw) =0, (3.4)

the Euler electromagnetic complex field equations, which we call the generalized complex
Yang—Mills electromagnetic equations.
On account of

sdw = *(d + d") (W + ") = (xd' W + *d'W) + (xd' " + *d'w")
= #(p+ P+ 0+ 0) — +(FL 4 FOD)
the following generalized complex Yang-Mills equations are obtained
d x Re(FUD) = d « Re(p + 6). (3.5)

Certainly, an explicit local writing of these equations for the general case is uncom-
fortable having in mind that an adapted local frame on To(T'M) is {0k, Ok, 0z, 03}, in
number of 4n, and it assumes a decomposition of the above objects with respect to these

vectors. Hereby, since F; is of (1,1,0,0) type, then (xF(L 1))/\/\ isof (n—1,n—1,n,n)

type. One particular case which could be of interest is that of Rlemann surfaces, n = 1.
In the Riemann surface case L, = gni — —(A77 + A7) with the metric structure g = mqcy,
the (c.n.c.) coefficient is N = %82 q/020n = 1{8/7 - Z%A} and FLY = Fi1dz A dz with
Fii = 5‘1(8;7?) = —(Z - Ng)(gn—24) = -5y + Ng + ¢ 994 — () and 6 = gon A dz,
@ = 0. Concordantly, we will have Ly = 0. It is worthwhlle to note that for a Riemannian
surface we also have F1; = 0. In 1959, Aharanov and Bohm (see [34]) suggested that the
electromagnetic potentials A have physical significance in such circumstances. More pre-
cisely, when M is not simply connected, the electromagnetic effects could be present even
if the electromagnetic (real) field is 0.

Finally, we should point out again that the geometry of the total space T'M is deter-
mined by the chosen electrodynamics Lagrangian L, over the complex manifold M.

The dual electromagnetic tensors depend of course on the volume form on a compact
domain of T'M. Locally we can always choose such a compact set but a global approach
could imply some topological obstructions.

As we have already said the metric tensor could be derived from a gravitational potential
or not. In the last case the coupling with gravitation is realized by adding a Hilbert—Einstein
Lagrangian to the total electromagnetic Lagrangian. In particular, the space metric could be
the Minkowski metric Re(v;;) = (+, —, —, —). The physics fields will be deemed as sections
in the vertical holomorphic bundle V'T’M. Certainly a study of interest is that of gauge
invariance of these particle fields, a problem which will be broached subsequently.

4. Gauge Field Complex Electrodynamics Theory

In [25, 26] we made a fairly general approach of gauge complex fields on a holomorphic
vector bundle with structural group, the total Lagrangian being the sum of a particle
Lagrangian, a Yang-Mills Lagrangian defined by the curvature form of the Chern-Lagrange
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connection (particularly the Bott complex connection) and a Hilbert—Einstein Lagrangian
of the particle space. The matter fields are sections in the vertical bundle.

The obtained theory seems somewhat theoretical so as it should be useful in direct
applications.

In the present section we will restrict to a simplified version of this gauge complex theory,
closer to the classical field theories and we hope more helpful for physicists. The total space
will be the holomorphic tangent bundle 77 M with the geometrical structure determined by
the Lagrangian L,, as it was described in the first section of this paper.

Let L. = L+ Lo be the total Lagrangian of the complex electrodynamics given by (2.1)
and (3.2).

In many physical theories, in addition to the local chart changes on the manifold M
we have another set of changes determined by a Lie group (sometimes group of internal
symmetries) which acts globally or locally on a fibre manifold F, in our situation F = T'M,
and called a gauge transformation.

In [25] we gave a more general definition than here for a complex gauge transformation
T on a holomorphic vector bundle E. Particularly, on 7'M a gauge transformation is given
locally on u = (z,7n) by a holomorphic function Y : v — @

z :Xi(z); 771 :Yi(z>77)a (4'1)

with the regularity condition det(%) det(al) # 0, and certainly from holomorphy we
have: 0X*/0z) = 0Y"/0z7 = 0Y" /o’ = 0.

The holomorphic functions X%, Y? depend implicitly on the elements of the Lie group G.
Next we suppose that dim G = m and a = (a',a?,...,a™) are the parameters of the group
and the gauge transformation (4.1) preserves the identity. Hence the gauge transformation
(4.1) is represented by the equations @ = Y (u, a), with u = Y (u,0). In such a case, a useful
expression of the gauge transformation (4.1) is represented by considering an infinitesimal
variation of parameters. Taking the first term in the Taylor series it results the following

infinitesimal transformation:
i = u+ et (4.2)

where &) (u) = %| -0 and e* = Aa’ are the variations of the group parameters.
The variation Au =4 —u = f,\s)‘ gets

f)\ kX and Ank = (2) et

Dk gxk (2)k aYk
where 5/(\) = Sxlar=o and f,\ x lar=o-

For a matter field ¥(z,7n) on T’ M the infinitesimal transformation (4.2) defines an

infinitesimal transformation W —>€J and then taking the first approximation, we have

~ v AN 8\11 oW
AV =) —T = 8—A +* o A (gA W2 4 ek >g* =: (Ay0)e

kaxp +§(2kaqf

The operators Ay = f ) yE are the generators of the gauge transformation

group.
Further on, like in [25], the matter field ¥ (the wave function in quantum mechanics)
will be regarded as a section in the vertical bundle V/T'M, i.e. ¥ = \Ilk% and considering
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[Aﬂ » a matrix representation of the generators in an m-dimensional vector space, hence we
have

ATF = A AN, 0 (4.3)
which represents the first approximation of the matrix power series
E}: eEA[A],\\I,' (4.4)

If &* are constants for any A € {1,2,...,m} then the transformation (4.2) is a global
gauge transformation. The matrix representation of the Lorentz group is given by the well-
known Dirac matrices [’yjk])\, A =0,1,2,3, (see [14], p. 11), the SU(2) representation of a
spinorial isodoublet is given by the Pauli matrices ([14], p. 21), the SU(3) representation
of a three-spinor is given by the Gell-Mann matrices ([14], p. 22), etc. As a rule, the gauge
invariance of fields is relative to the abelian group U(1) of phase transformations or relative
to the nonabelian groups SU(n), n > 2.

How to couple standard Yang—Mills theory to Nonlinear-Sigma models on cosets of U (n),
having us supporting manifolds the complex projective or complex Grassmanian spaces, is
showed in [13].

In classical gauge theories there are usually considered the following Lagrangians: the
real scalar Lagrangians (the wave function W being a real function and therefore it is not
of interest for our purpose), the complex scalar Lagrangians of Klein—-Gordon type, the
electromagnetic field Lagrangian L, and finally the complex spinor field Lagrangians of
Dirac type.

The problem of generalized complex scalar Lagrangians (in which the classical derivative
is replaced by the Chern-Lagrange linear connection) was studied in [24], p. 111, and the
generalized Klein—Gordon equations were obtained there. Subsequently our aim is to make
an approach of a field complex spinorial Lagrangian, study which in our oppinion could be
adequate in Grand Unification Theories.

Let L, be the (2.1) electromagnetic Lagrangian and consider the geometry on 7'M
described in the first two sections by L,. It completely determines the adapted frames
of the (c.n.c.) and the derivative rules with respect to Chern-Lagrange linear connec-
tion. Consider ¥ = W¥'(z, 77)8%1- an n-complex spinorial vector field as a section on V'T"M.

Then the h- and v- derivatives of ¥ will be denoted with \Iflik, \IIIZI—C and respective \I/‘ik, \IITI—C,
where

Wi =6 U 4 L0 W = 50 )

Wi, = U+ O W5 Wi = G0, '

Let )\;E(z) be a fixed d-complex Hermitian tensor, i.e. % = )\gk. By Dy = Ds, + Dy,

we will denote the covariant derivative operator which acts on ! by D;¥? = \I/fl+ \I/‘il and

let Dy be its conjugate. Let us consider now B = By/(z, n)dz* a given 1-form on T'M. The
conjugate spinor will be denoted here by ¥* = Wk (generally denoted in the literature
by ).
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The generalized Dirac Lagrangian is defined by Lpiac(¥) = L

Dirac

(V) + Ln (¥), where:

(0) = — TN DR 07+ UAE D07y 4 whwh,

Lo i
2

Dirac

Int( ) 2{ ik h jk=h }

L1 (P) is the interaction between the spinor and the potentials By on 7' M.

For a gauge field theory which includes the electromagnetism, gravitation and energy of
the spinor particle, the total Lagrangian will be Ly = L¢ + Lpirac-

The interactig of an electordynamic field Ay with Dirac field ¥ in terms of complex
geometry is also considered in [21] and the Y-M equations in language of Penrose twistors
is described.

Next, let us study the gauge invariance of our generalized Dirac Lagrangian. Because the
complex d-tensors )‘?12: (z) behave like tensors on the base manifold M, we further consider

the gauge transformations which act on the fibres of 7" M. Particularly when /\}?E are affine
Hermitian tensors then we may consider more general gauge transformations which act on
both points z of M and fibres of T"M.

First we suppose that on fibres of 7'M there act the phase transformations of the group
U(),

F =2k and qF = ek (4.7)

where i = \/—1, g is a coupling constant and () is the real valued parameter of the group.
Of course, (4.7) is a gauge complex transformation if de/0zF = 0 and 7* = e~"9=G)yF
says that 7F = n¥ — ige(2)n* + Oa(e), and the conjugate transformation is ik = eto=(@) k.
Accordingly, the electromagnetic potentials Ay (z) and the complex isospin ¥ will transform
with

Ap(Z) = €D A(z) and  TF(z,7) = 7 ENTE (2 ) (4.8)
where 5(z,1) = e(2)£?) %\717’;, as it is follows from (4.3).
We remind that, in order to be in the framework of [25], U = \Pk% was considered

as a section on the vertical holomorphic bundle, but more generally it should be a section
in TcT' M. Therefore, if we restrict to the sections of the vertical holomorphic bundle, ¥
does not define in any way a gauge complex field. Indeed, from (4.7) we deduce that % =
e~ 19e(2) % and hence the gauge transformation of the vertical field W will be Uk = ¢ioe(2) gk,

Obviously, the potentials Ag(z) are gauge invariant.

As well from (4.7) and (4.8) it follows that L, is gauge invariant to the phase transfor-
mations, i.e. Ly(Z,7) = Ly(2,m) and according to Proposition 2.1 from ([25]) it results that
N,g determines a gauge (c.n.c.) and the Chern-Lagrange linear connection is gauge too.
Accordingly, F;; given by (2.4) and its dual *F;; will be gauge complex tensor fields. Thus
we proved that the Lagrangian density Lo is gauge invariant at the transformations (4.7)
and (4.8). On the other hand, it is easy to see that LODirac is not gauge invariant forasmuch

Dirac Dirac

~ 1 = . . - -
L9 () = LY, ..(¥) + 5{\IJ’CA§L,-€\I/JDhﬂJ + UL W Dy 73,
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but, like in classical study, by the transformation D, ¥/ — Eh\llj = D,V —iBy—iDy 3’ (and
its conjugate) we attain that the total Dirac Lagrangian Lpiac(¥) = LY. . () + Ly (V) is
gauge invariant to the phase transformations. Thus the remaining problems are to decide

when Dj, 07 is also a gauge field and that of a suitable choice for )‘?E' As we specified above

if % = ige(2), Vk € {1,2,...,n}, then ¥ will be a gauge vertical field and consequently
DpWJ and Dy, will be d-tensors, conditions which compulsory involve that By,(z,7) need
to be a gauge complex tensor on 7' M. For instance B, = Ap(z) is an adequate choice so
that Lpirac should be gauge invariant. In view of the previous considerations, then the total
Lagrangian Lo, = Ly + Lo + Lpirac Will be gauge invariant to the transformations (4.7)
and (4.8) with g% = ige(z) and By = Ax(z), Yk € {1,2,...,n}. Secondly, concerning the
tensors (which obviously are gauge to (4.7)), their choice could depend on the dimension
n of the base manifold. For instance, if n = 4 an appropriate choice is exactly the Dirac
matrices v* = [Aj,;]h, but in these circumstances ¥ is the Dirac conjugate spinor, ¥ =
W0 = (B, 52, 03, — 1),

Clearly, the total Lagrangian L, is a function of u = (z,7n) by means of (¥, DW¥). Like
in the general settings from [25] for the independence of the integral action to the local
changes of charts, a good choice for the total Lagrangian density is L = Ly |det g|?. The
formula (3.3) from [25] gets in particular the variation of the action A = [, L(V, DW)dS2,
that is:

oL hooo v h
agF = % Ji +0i Ji +N]0; Jp —(J,69) (4.9)
where,
hi k @i i k i hi oL % 0L

We consider inopportune to expand the writing of the gauge field equations (4.9).

The gauge invariance study of the generalized Dirac Lagrangian to the nonabelian group
of transformations SU(m), m = 2,3,..., assumes almost similar steps but the transforma-
tions (4.7) and (4.8) are achieved with exponential matrices, that is

FF =2k and ijF = e i Mk, (4.10)
Ap(3) = M)A () and  TH(Z,7) = AT (2, ) (4.11)
where £* are the SU(m) group parameters and Ay = [/\;?]A, A€ {1,2,...,m} are the matrix

generators of the group relative to the spinorial fields W.

Now the problem of gauge invariance for the total Lagrangian to SU(m) follow the
same steps as we made above for S(1) but using exponential matrices. For m = 2 an
appropriate choice for Ay, A = 1,2, are the Pauli matrices, and if m = 3 then a good choice
for Ay, A € {1,2,...,8}, are the Gell-Mann matrices.

We end these notes pointing out that our theory is a generalization of Abelian gauge
theory with respect to holomorphic transformations. Also the scalar and spinorial fields are
considered. The proposed gauge transformations are generalized so that the gauge potentials
should act over base points of the manifold M and over holomorphic fibres as an additional
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bosonic. It is a natural and pretty extension of Maxwell, Weyl and Dirac theories to the
holomorphic tangent bundle endowed with the metric structure determined by the electro-
dynamic Lagrangian (2.1). The proposed theory offers fairly enough opportunities to be used
in unification of the physical fields. The coupling of gravitation and electromagnetism is pos-
sible by means of metric tensor of the space or by adding a Hilbert—Einstein Lagrangian. The
d-potentials By(z,n) from (4.6) generalized Dirac Lagrangian offer a large scale of coupling
with masses of electricity and magnetically charged spinor particles. The spinorial fields do
not exclude typical massive mass on the curved manifold. The phenomenology of particle
could impose additional restrictions concerning the compacticity of the domain 2 in 7" M.
In the recent Seiberg—Witten gauge theories the various parameters of the Lagrangians are
also holomorphic functions and the known behavior of the Lagrangians are functions of the
law-energy physics called the moduli space. In such gauge theories the space of reference
is two dimensional which created the nice theory of Donaldson polynomial invariants by
requiring the anti-self-duality so that F = — % F. In our approach such a condition is not
possible except for Riemannian surfaces.

References

[1] M. Abate and G. Patrizio, Finsler Metrics — A Global Approach, Lecture Notes in Math.,
Vol. 1591 (Springer-Verlag, 1994).

[2] T. Aikou, A partial connection on complex Finsler bundle and its applications, Illinois J. Math.
42 (1998) 481-492.

[3] T. Aikou, Finsler geometry on complex vector bundles, Riemann Finsler Geometry, MSRI
Publications 50 (2004) 85-107.

[4] N. Aldea, Complex Finsler spaces of constant holomorphic curvature, Diff. Geom. and Its Appl.
in Proc. Conf. Prague 2004, Charles Univ. Prague, Czech Republic (2005), pp. 179-190.

[5] N. Aldea and G. Munteanu, On complex Finsler spaces with Randers metric, J. Korean Math.
Soc. 46(5) (2009) 949-966.

6] G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories (D. Reidel Publ. Co.,
Dordrecht, 1985).

[7] G.S. Asanov, Finsleroid-relativistic time-asymmetric space and quantized fields, Reports Math.
Physics 57 (2006) 199-231.

[8] M. F. Atiyah, Geometry of Yang—Mills Fields (Pisa, 1979).

[9] E. Barletta, S. Dragomir and H. Urakawa, Yang-Mills fields on CR Manifolds,
arXiv:math.DG/0605388v1, May 2006.

[10] A. Bejancu, Finsler Geometry and Appl. (Ellis Harwood, 1990).

[11] D. Bleeker, Gauge Theory and Variational Principles (Addison-Wesley Publ. Co. Inc., 1984).

[12] M. Born and L. Infeld, Fundations of the new field theory, Proc. Royal Soc. London A 144
(1934) 425-451.

[13] M. Calixto, V. Aldaya, F. Lopez-Ruiz and E. Sanchez-Sastre, Coupling nonlinear Sigma-Matter
to Yang—Mills fields: Symmetry breaking patterns, J. Nonlinear Math. Physics 15 suppl. 3
(2008) 91-101.

[14] M. Chaichian and N. F. Nelipa, Introduction to Gauge Field Theories (Springer-Verlag, 1984).

[15] S. Donev, Complex structures in electrodynamics, arXiv:math-ph/0106008v3, Nov. 2001.

[16] G. Esposito, Complex Geometry of nature and General Relativity, Kluwer Acad. Publ., FTPH
69 (1995) arXiv:gr-qc/991105v1, Nov. 1999.

[17] R. Friedman and J. Morgan, Gauge Theory and Topology of Four-Manifolds, ed. IAS/ PARK
CITY, Math. Series, Vol. 4 (AMS, 1998).

[18] M. Gondran and A. Kenoufi, Complex Faraday’s tensor for the Born-Infeld theory, arXiv:math-
ph/0708.0547v1, Aug. 2007.



242
(19]

[20]

W
2.0 %N

31]
32]
33]

[34]

G. Munteanu

M. Green, J. Schwarz and E. Witten, Superstring Theory, Vols. 1 and 2 (Cambridge Univ.
Press, 1987).

C. Hong-Mo, J. Faridani and T. S. Tsun, A nonabelian Yang—Mills analogue of classical elec-
tromagnetic duality, arXiv:hep-th/9503106v4, Sep. 1995.

Y. I. Manin, Gauge Field Theory and Complex Geometry (Springer-Verlag, 1997).

R. Miron, The geometry of Ingarden spaces, Rep. Math. Physics 54 (2004) 131-147.

R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces. Theory and Appl., Fundamental
Theories of Physics, Vol. 59 (Kluwer Acad. Publ., 1994).

G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Fundamental
Theories of Physics, Vol. 141 (Kluwer Acad. Publ., 2004).

G. Munteanu, Gauge field theory in terms of Hamilton geometry, Balkan J. Geom. Appl. 12(1)
(2007) 107-121.

G. Munteanu, The Lagrangian—Hamiltonian Formalism in Gauge Complex Field Theories,
Hypercomplex number in geomery and physics 2(6), Vol. 3 (2007) 123-133.

L. Nicolaescu, Notes in Seiberg—Witten Theory, Graduate Stud. in Math., Vol. 28 (AMS, 2000).
R. Palais, The Geometrization of Physics, Lecture Notes in Math. (Hsinchu, Taiwan, 1981).
M. Peskin, Duality in supersymmetric Yang—Mills theory, arXiv:hep-th/9702094v1, Feb. 1997.
N. Seiberg and E. Witten, Electric-Magnetic duality, monopole condensation, and condinement
in N = 2 supersymmetric Yang—Mills theory, Nucl. Physics B 431 (1994) 19-52.

L. Silberstein, Nachtrag zur Abhandlung ber Electromagnetische Grundgleichungen in bivek-
torieller Behandlung, Ann. Phys. Lpz. 24 (1907) 783.

I. Suhendro, A new Finslerian unified field theory of physical interactions, Progress in Physics
4 (2009) 81-90.

P.-Mann Wong, A survey of complex Finsler geometry, Advanced Studied Pure Math., Math.
Soc. Japan 48 (2007) 375-433,

C. N. Yang, Collection of Papers in Chern Symposium, Vol. 247 (Springer-Verlag, 1979).



