Journal of Nonlinear Mathematical Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251 Journal Home Page: https://www.atlantis-press.com/journals/jnmp

Classification of ($n+2$)-Dimensional Metric n-Lie Algebras

Mingming Ren, Zhiqi Chen, Ke Liang

To cite this article: Mingming Ren, Zhiqi Chen, Ke Liang (2010) Classification of ($n+2$)Dimensional Metric n-Lie Algebras, Journal of Nonlinear Mathematical Physics 17:2, 243-249, DOI: https://doi.org/10.1142/S140292511000074X

To link to this article: https://doi.org/10.1142/S140292511000074X

Published online: 04 January 2021

CLASSIFICATION OF $(n+2)$-DIMENSIONAL METRIC n-LIE ALGEBRAS

MINGMING REN, ZHIQI CHEN* and KE LIANG
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China
* chenzhiqi@nankai.edu.cn

Received 10 October 2009
Accepted 20 November 2009

In this paper, we give the classification of $(n+2)$-dimensional metric n-Lie algebras in terms of some facts about n-Lie algebras.

Keywords: n-Lie algebra; metric n-Lie algebra.
Mathematical Subject Classification: 17B05, 17D99

1. Introduction

An n-Lie algebra is a vector space A over a field \mathbb{F} equipped with an n-multilinear operation $\left[x_{1}, \ldots, x_{n}\right]$ satisfying

$$
\begin{align*}
{\left[x_{1}, \ldots, x_{n}\right] } & =\operatorname{sgn}(\sigma)\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right] \tag{1.1}\\
{\left[\left[x_{1}, \ldots, x_{n}\right], y_{2}, \ldots, y_{n}\right] } & =\sum_{i=1}^{n}\left[x_{1}, \ldots,\left[x_{i}, y_{2}, \ldots, y_{n}\right], \ldots, x_{n}\right] \tag{1.2}
\end{align*}
$$

for any $x_{1}, \ldots, x_{n}, y_{2}, \ldots, y_{n} \in A$, and $\sigma \in S_{n}$. Identity (1.2) is usually called the generalized Jacobi identity, or simply the Jacobi identity.

The study of n-Lie algebras is strongly connected with many other fields, such as dynamics, geometries and string theory. In order to describe the simultaneous classical dynamics of three particles as a preliminary step towards a quantum statistic for the quark model, Nambu [18] generalized the Poisson bracket and obtained a three-linear product $\{,$,

$$
\frac{d x}{d y}=\left\{H_{1}, H_{2}, x\right\}
$$

where H_{1}, H_{2} are Hamiltonians. In [22], Takhtajan developed the geometrical ideas of Nambu mechanics and introduced an analogue of the Jacobi identity, which connects the

[^0]generalized Nambu mechanics with the theory of n-Lie algebras introduced by Filippov [5]. It is given in [12] some new 3-Lie algebras and applications in membrane, including the Basu-Harvey equation and the Bagger-Lambert model. More applications can be found in $[4,10,14,17,20,21,23]$.

A class of Lie n-algebras (finite dimensional, real, $n>2$) which have appeared naturally in mathematical physics are those which possess a nondegenerate inner product which is invariant under the inner derivations, which are called metric n-Lie algebras. They have arisen for the first time in the work of Figueroa-O'Farrill and Papadopoulos [8] in the classification of maximally supersymmetric type $I I B$ supergravity backgrounds [9], and more recently, for the case of $n=3$, in the work of Bagger and Lambert [1, 2] and Gustavsson [11] on a superconformal field theory for multiple M2-branes. It is this latter work which has revived the interest of part of the mathematical physics community on metric n-Lie algebras. There are some progress on metric n-Lie algebras, such as the classification for Euclidean [16] (see also [19]) and Lorentzian metric n-Lie algebras [6], the classification of index-2 metric 3-Lie algebras [15] and a structure theorem for metric n-Lie algebras [7].

In this note, we focus on $(n+2)$-dimensional metric n-Lie algebras over \mathbb{R}. If the classification of n-Lie algebras is given, then it is easy to check whether an n-Lie algebra is a metric n-Lie algebra. But the classification of n-Lie algebras is an open problem, even for $(n+2)$-dimensional n-Lie algebras for $n>5$. Even if the classification of 6 -dimension 4 -Lie algebras over \mathbb{C} is known [3], it is a long calculation to get that over \mathbb{R}. The purpose of this paper is to classify $(n+2)$-dimensional metric n-Lie algebras over \mathbb{R}. It is reasonable to believe that these examples do help to the understanding of n-Lie algebras.

Throughout this paper we assume that the algebras are finite-dimensional over \mathbb{R}. Obvious proofs are omitted.

2. Metric \boldsymbol{n}-Lie Algebras

A metric n-Lie algebra \mathfrak{g} is an n-Lie algebra over \mathbb{R} with a symmetric nondegenerate bilinear form \langle,$\rangle satisfying$

$$
\begin{equation*}
\left\langle\left[x_{1}, \ldots, x_{n}\right], y\right\rangle+\left\langle x_{n},\left[x_{1}, \ldots, x_{n-1}, y\right]\right\rangle=0 \tag{2.1}
\end{equation*}
$$

for any $x_{1}, \ldots, x_{n}, y \in \mathfrak{g}$.
Given two metric n-Lie algebras \mathfrak{g}_{1} and \mathfrak{g}_{2}, we may form their orthogonal direct sum $\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$, by declaring that

$$
\left[x_{1}, x_{2}, y_{1}, \ldots, y_{n-2}\right]=0 \quad \text { and } \quad\left\langle x_{1}, x_{2}\right\rangle=0
$$

for any $x_{i} \in \mathfrak{g}_{1}$ and $y_{i} \in \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$. The resulting object is again a metric n-Lie algebra. A metric n-Lie algebra is said to be indecomposable if it isnot isomorphic to an orthogonal direct sum of metric n-Lie algebras $\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ with $\operatorname{dim} \mathfrak{g}_{i}>0$.

2.1. Basic notions on n-Lie algebras

If a subspace B of an n-Lie algebra \mathfrak{g} satisfying $\left[x_{1}, \ldots, x_{n}\right] \in B$ for any $x_{1}, \ldots, x_{n} \in B$, then B is called a subalgebra of \mathfrak{g}; whereas an ideal I is a subspace $I \subset \mathfrak{g}$ such that $[I, \mathfrak{g}, \ldots, \mathfrak{g}] \subset$ I. Let A_{1}, \ldots, A_{n} be subalgebras of an n-Lie algebra \mathfrak{g}. Denote by $\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ the
subspace of \mathfrak{g} generated by all vectors $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, where $x_{i} \in A_{i}$ for $i=1,2, \ldots, n$. The subalgebra $\mathfrak{g}^{1}=[\mathfrak{g}, \mathfrak{g}, \ldots, \mathfrak{g}]$ is called the derived algebra of \mathfrak{g}. If $\mathfrak{g}^{1}=0$, then \mathfrak{g} is called an abelian n-Lie algebra. The subset $C(\mathfrak{g})=\left\{x \in \mathfrak{g} \mid\left[x, y_{1}, \ldots, y_{n-1}\right]=0, \forall y_{1}, \ldots, y_{n-1} \in \mathfrak{g}\right\}$ is called the center of \mathfrak{g}. An ideal I is said to be maximal if any other ideal J containing I is either \mathfrak{g} and I. An n-Lie algebra is said to be simple if it has no proper ideals and $\operatorname{dimg} \mathfrak{g}^{1}>0$.

Lemma 2.1. If I is a maximal ideal, then \mathfrak{g} / I is simple or one-dimensional.
The classification of simple n-Lie algebras is given as follows.
Theorem 2.2 ([13]). A simple real n-Lie algebra is isomorphic to one of the $(n+1)$ dimensional n-Lie algebras defined, relative to a basis e_{i}, by

$$
\begin{equation*}
\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]=(-1)^{i} \varepsilon_{i} e_{i}, \quad 1 \leq i \leq n+1 \tag{2.2}
\end{equation*}
$$

where symbol \hat{e}_{i} means that e_{i} is omitted in the bracket and the ε_{i} are signs.
It is plain to see that simple real n-Lie algebras admit invariant inner products [7]. Indeed, the n-Lie algebra in Theorem 2.2 leaves invariant the diagonal inner product with entries $\left(\varepsilon_{1}, \ldots, \varepsilon_{n+1}\right)$.

2.2. Basic facts on metric n-Lie algebras

If $W \subset \mathfrak{g}$ is any subspace, we define

$$
W^{\perp}=\{v \in \mathfrak{g} \mid\langle v, w\rangle=0, \forall w \in W\}
$$

Notice that $\left(W^{\perp}\right)^{\perp}=W$. We say that W is nondegenerate, if $W \cap W^{\perp}=0$, whence $V=W \oplus W^{\perp}$; isotropic, if $W \subset W^{\perp}$; Of course, in positive-definite signature, all subspaces are nondegenerate.

An equivalent criterion for decomposability is the existence of a proper nondegenerate ideal: for if I is a nondegenerate ideal, $\mathfrak{g}=I \oplus I^{\perp}$ is an orthogonal direct sum of ideals.

Lemma 2.3 ([7]). If \mathfrak{g} is a metric n-Lie algebra, then $C(\mathfrak{g})=\left(\mathfrak{g}^{1}\right)^{\perp}$.
Lemma 2.3 can be naturally extended to an n-Lie algebra over \mathbb{C} possessing a nondegenerate inner product satisfying the identity (2.1). It follows that $\operatorname{dim} C(\mathfrak{g})+\operatorname{dim} \mathfrak{g}^{1}=\operatorname{dimg}$. By the classification of 6 -dimensional 4-Lie algebras [3] over \mathbb{C}, the 4 -Lie algebra possessing a nondegenerate inner product satisfying the identity (2.1) is one of the following cases:
(I) \mathfrak{g} is abelian;
(II) There exists a basis $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}$ of \mathfrak{g}^{1} such that $\left[e_{2}, e_{3}, e_{4}, e_{5}\right]=e_{1},\left[e_{1}, e_{3}, e_{4}, e_{5}\right]=$ $e_{2},\left[e_{1}, e_{2}, e_{4}, e_{5}\right]=e_{3},\left[e_{1}, e_{2}, e_{3}, e_{5}\right]=e_{4},\left[e_{1}, e_{2}, e_{3}, e_{4}\right]=e_{5}$.
(III) There exists a basis $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}$ of \mathfrak{g}^{1} such that $\left[e_{2}, e_{3}, e_{4}, e_{5}\right]=e_{1},\left[e_{3}, e_{4}, e_{5}, e_{6}\right]=$ $e_{2},\left[e_{2}, e_{4}, e_{5}, e_{6}\right]=e_{3},\left[e_{2}, e_{3}, e_{5}, e_{6}\right]=e_{4},\left[e_{2}, e_{3}, e_{4}, e_{6}\right]=e_{5}$.

For the case I, we can get a basis e_{i} of \mathfrak{g} such that $\left\langle e_{i}, e_{i}\right\rangle=1$ for $i=1,2, \ldots, 6$.

For the case II, by the identity (2.1),

$$
\left\langle e_{1}, e_{2}\right\rangle=\left\langle\left[e_{2}, e_{3}, e_{4}, e_{5}\right], e_{2}\right\rangle=-\left\langle e_{5},\left[e_{2}, e_{3}, e_{4}, e_{2}\right]\right\rangle=0
$$

Similarly, we have $\left\langle e_{1}, e_{i}\right\rangle=0$ for $i=3,4,5,6$. Then $\left\langle e_{1}, e_{1}\right\rangle \neq 0$ by the nondegeneracy of \langle,$\rangle . By the similar discussion, we have that \left\langle e_{i}, e_{j}\right\rangle=0$ for $i \neq j$. Furthermore, by the identity (2.1) and the structure of the n-Lie algebra, we have that

$$
\left\langle e_{1}, e_{1}\right\rangle=-\left\langle e_{2}, e_{2}\right\rangle=\left\langle e_{3}, e_{3}\right\rangle=-\left\langle e_{4}, e_{4}\right\rangle=\left\langle e_{5}, e_{5}\right\rangle=a \neq 0 \quad \text { and } \quad\left\langle e_{6}, e_{6}\right\rangle \neq 0
$$

For the case III, the invariant inner product is given by

$$
\left\langle e_{1}, e_{6}\right\rangle=\left\langle e_{2}, e_{2}\right\rangle=-\left\langle e_{3}, e_{3}\right\rangle=\left\langle e_{4}, e_{4}\right\rangle=-\left\langle e_{5}, e_{5}\right\rangle=a \neq 0 .
$$

3. Classification of $(\boldsymbol{n}+2)$-Dimensional Metric \boldsymbol{n}-Lie Algebra

We now classify ($n+2$)-dimensional metric n-Lie algebra based on some Lemmas.
Lemma 3.1 ([3]). Suppose that \mathbb{F} is an algebraically closed field of characteristic 0 . If \mathfrak{g} is an $(n+2)$-dimensional n-Lie algebra over \mathbb{F}, then $\operatorname{dim} \mathfrak{g}^{1} \leq n+1$.

Lemma 3.2. If \mathfrak{g} is a nonabelian $(n+2)$-dimensional metric n-Lie algebra, then

$$
\operatorname{dim} C(\mathfrak{g})=1 \quad \text { and } \quad \operatorname{dim} \mathfrak{g}^{1}=n+1
$$

Proof. Assume that $\operatorname{dim} C(\mathfrak{g})=k$. Then $k \neq n+2$. If $n+2>k \geq 2$, then it is easy to see that $\operatorname{dim} C(\mathfrak{g})+\operatorname{dim} \mathfrak{g}^{1} \leq n+1$, which contradicts the fact

$$
\operatorname{dim} C(\mathfrak{g})+\operatorname{dim} \mathfrak{g}^{1}=n+2
$$

following from Lemma 2.3. By Lemma 3.1, we know that $\operatorname{dim} \mathfrak{g}^{1} \leq n+1$. Namely $k \geq 1$. That is, we have that $\operatorname{dim} C(\mathfrak{g})=1, \operatorname{dim} \mathfrak{g}^{1}=n+1$.

Since $\operatorname{dim} C(\mathfrak{g})=1$, we have that $C(\mathfrak{g})$ is isotropic or $C(\mathfrak{g})$ is nondegenerate. In the following, we will discuss the two cases respectively.

3.1. $C(\mathfrak{g})$ is nondegenerate

If $C(\mathfrak{g})$ is nondegenerate, then $\mathfrak{g}=C(\mathfrak{g}) \oplus \mathfrak{g}^{1}$ is an orthogonal direct sum of ideals. Let e_{1}, \ldots, e_{n+2} be a basis of \mathfrak{g} such that $e_{1} \in C(\mathfrak{g}),\left\langle e_{i}, e_{i}\right\rangle=1$ for all $2 \leq i \leq m$ and $\left\langle e_{i}, e_{i}\right\rangle=-1$ for all $m<i \leq n+2$.

For any $2 \leq r \leq n+2$, we have that

$$
\left[e_{2}, \ldots, \hat{e_{r}}, \ldots, e_{n+2}\right]=a_{r} e_{r}
$$

by $\left\langle\left[e_{2}, \ldots, \hat{e_{r}}, \ldots, e_{n+2}\right], e_{j}\right\rangle=0$ for $j \neq r$ and $2 \leq j \leq n+2$. Since $\operatorname{dim} \mathfrak{g}^{1}=n+1$, we must have that $a_{r} \neq 0$ for any $2 \leq r \leq n+2$. For any $2 \leq i<j \leq n+2$, we have that

$$
\left\langle\left[e_{2}, \ldots, \hat{e}_{i}, \ldots, e_{n+2}\right], e_{i}\right\rangle+(-1)^{i+j+1}\left\langle\left[e_{2}, \ldots, \hat{e_{j}}, \ldots, e_{n+2}\right], e_{j}\right\rangle=0
$$

It follows that

$$
(-1)^{i} a_{i}\left\langle e_{i}, e_{i}\right\rangle=(-1)^{j} a_{j}\left\langle e_{j}, e_{j}\right\rangle
$$

Here, \mathfrak{g}^{1} is a simple n-Lie algebra belong to the classification of $(n+1)$-dimensional n-Lie algebras given by Filippov [5].

3.2. $C(\mathfrak{g})$ is isotropic

In this case, let e_{1}, \ldots, e_{n+2} be a basis of \mathfrak{g} such that $e_{1} \in C(\mathfrak{g}), e_{i} \in \mathfrak{g}^{1}$ for all $1 \leq i \leq n+1$, $\left\langle e_{1}, e_{n+2}\right\rangle=1,\left\langle e_{i}, e_{i}\right\rangle=1$ for all $2 \leq i \leq m$ and $\left\langle e_{i}, e_{i}\right\rangle=-1$ for all $m<i \leq n+1$.

Similar to the discussion of 3.1 , for any $1 \leq r \leq n+1$, we have that $a_{r} \neq 0$ such that

$$
\begin{aligned}
{\left[e_{2}, \ldots, e_{n+1}\right] } & =a_{1} e_{1} \\
{\left[e_{2}, \ldots, \hat{e}_{i}, \ldots, e_{n+2}\right] } & =a_{i} e_{i}, \quad \text { for all } 2 \leq i \leq n+1
\end{aligned}
$$

For any $2 \leq i<j \leq n+1$, we have that

$$
\left\langle\left[e_{2}, \ldots, \hat{e_{i}}, \ldots, e_{n+2}\right], e_{i}\right\rangle+(-1)^{i+j+1}\left\langle\left[e_{2}, \ldots, \hat{e_{j}}, \ldots, e_{n+2}\right], e_{j}\right\rangle=0
$$

It follows that

$$
\begin{equation*}
(-1)^{i} a_{i}\left\langle e_{i}, e_{i}\right\rangle=(-1)^{j} a_{j}\left\langle e_{j}, e_{j}\right\rangle \tag{3.1}
\end{equation*}
$$

For any $2 \leq i \leq n+1$, we have that

$$
\left\langle\left[e_{2}, \ldots, e_{n+1}\right], e_{n+2}\right\rangle=(-1)^{n-i}\left\langle\left[e_{2}, \ldots, \hat{e_{i}}, \ldots, e_{n+2}\right], e_{i}\right\rangle .
$$

It follow that

$$
\begin{equation*}
(-1)^{n} a_{1}=(-1)^{i} a_{i}\left\langle e_{i}, e_{i}\right\rangle \tag{3.2}
\end{equation*}
$$

Combining the identity (3.1) with the identity (3.2), we get that $(-1)^{n} a_{1}=(-1)^{i} a_{i}\left\langle e_{i}, e_{i}\right\rangle$ for all $2 \leq i \leq n+1$.

For the above two cases, it is a direct calculation to check that they are n-Lie algebras.

3.3. Main theorem

Theorem 3.3. Let \mathfrak{g} be a nonabelian $(n+2)$-dimensional metric n-Lie algebra. Then \mathfrak{g} must be one of the following two cases (only nonzero products are given).
(I) There exists a basis e_{1}, \ldots, e_{n+2} of \mathfrak{g} such that $\left\langle e_{1}, e_{1}\right\rangle= \pm 1,\left\langle e_{i}, e_{i}\right\rangle=1$ for all $2 \leq i \leq m,\left\langle e_{i}, e_{i}\right\rangle=-1$ for all $m<i \leq n+2$ and the products are given by, for all $2 \leq r \leq n+2$,

$$
\left[e_{2}, \ldots, \hat{e_{r}}, \ldots, e_{n+2}\right]=a_{r} e_{r}
$$

where $(-1)^{i} a_{i}\left\langle e_{i}, e_{i}\right\rangle=(-1)^{j} a_{j}\left\langle e_{j}, e_{j}\right\rangle$.
(II) There exists a basis e_{1}, \ldots, e_{n+2} of \mathfrak{g} such that $\left\langle e_{1}, e_{n+2}\right\rangle=1,\left\langle e_{i}, e_{i}\right\rangle=1$ for all $2 \leq i \leq m,\left\langle e_{i}, e_{i}\right\rangle=-1$ for all $m<i \leq n+1$ and the products are given by, for all $2 \leq i \leq n+1$,

$$
\left[e_{2}, \ldots, e_{n+1}\right]=a_{1} e_{1}, \quad\left[e_{2}, \ldots, \hat{e}_{i}, \ldots, e_{n+2}\right]=a_{i} e_{i}
$$

where $(-1)^{n} a_{1}=(-1)^{p} a_{p}=(-1)^{q+1} a_{q}$ for all $2 \leq p \leq m$ and $m<q \leq n+1$.

Remark 3.4. The classification of $(n+2)$-dimensional metric n-Lie algebras \mathfrak{g} can be obtained by the structure theorem given in [7]. Here we only list an outline. To begin with, there is a fact that a metric n-Lie algebra of dimension $n+1$ is either abelian or simple. Based on this fact, if \mathfrak{g} is decomposable, then \mathfrak{g} is abelian or $\mathfrak{g}=\mathfrak{s} \oplus \mathfrak{a}$, where \mathfrak{s} is simple, \mathfrak{a} is abelian with $\operatorname{dim} \mathfrak{a}=1$ and the direct sum is orthogonal. The following is to discuss the case for indecomposable \mathfrak{g}. By dimension it has to be a double extension of an n-dimensional (hence abelian) metric n-Lie algebra by a one-dimensional n-Lie algebra. By [7], it must take the following form. Let \mathfrak{a} be a real n-dimensional inner product space and $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{u} \oplus \mathfrak{v}$, where $\mathfrak{u}=\mathbb{R} u$ and $\mathfrak{v}=\mathbb{R} v$. Extend the inner product on \mathfrak{a} to all of \mathfrak{g} by declaring u, v to be perpendicular to \mathfrak{a} and $\langle u, v\rangle=1,\langle v, v\rangle=0$ and $\langle u, u\rangle=0$. Let $\Omega \in \Lambda^{n} \mathfrak{a}^{*}$ be nonzero and $\omega \in \operatorname{Hom}\left(\Lambda^{n-1} \mathfrak{a}, \mathfrak{a}\right)$ be defined by

$$
\left\langle\omega\left(x_{1}, \ldots, x_{n-1}\right), x_{n}\right\rangle=\Omega\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)
$$

for all $x_{i} \in \mathfrak{a}$. Then the nonzero products of \mathfrak{g} are given by

$$
\left[x_{1}, \ldots, x_{n}\right]=\Omega\left(x_{1}, \ldots, x_{n}\right) v \quad \text { and } \quad\left[u, x_{1}, \ldots, x_{n-1}\right]=(-1)^{n} \omega\left(x_{1}, \ldots, x_{n-1}\right)
$$

One can check that the generalized Jacobi identity is satisfied and this agrees with Theorem 3.3.

Acknowledgments

We would like to express our thanks to the referee for providing another classification method contained in the Remark 3.4 and the editor for the effective work.

References

[1] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008.
[2] J. Bagger and N. Lambert, Modeling multiple M2's, Phys. Rev. D 75 (2007) 045020.
[3] R. Bai and G. Song, The classification of six-dimensional 4-Lie algebras, J. Phys. A: Math. Theor. 42 (2009) 035207.
[4] R. Bai, X. Wang, W. Xiao and H. An, The structure of low dimensional n-Lie algebras over a field of characteristic 2, Linear Algebr. Appl. 428 (2008) 1912-1920.
[5] V. T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126-140.
[6] J. Figueroa-O'Farrill, Lorentzian Lie n-algebras, J. Math. Phys. 49 (2008) 113509.
[7] J. Figueroa-O'Farrill, Metric Lie n-algebras and double extensions [arXiv: 0806.3534v1 math.RT].
[8] J. Figueroa-O'Farrill and G. Papadopoulos, Plucker-type relations for orthogonal planes, J. Geom. Phys. 49 (2004) 294-331.
[9] J. Figueroa-O'Farrill and G. Papadopoulos, Maximal supersymmetric solutions of ten- and eleven-dimensional supergravity, J. High Energy Phys. 03 (2003) 048.
[10] P. Gautheron, Simple facts concerning Nambu algebras, Commun. Math. Phys. 195 (1998) 417-434.
[11] A. Gustavsson, Algebraic structures on parallel M2-branes, Nuclear Phys. B 811 (2009) 66-76.
[12] P. Ho, R. Hou and Y. Matsuo, Lie 3-algebra and multiple M2-branes, J. High Energy Phys. 6 (2008) 020.
[13] W. Ling, On the structure of n-Lie algebras, Dissertation University-GHS-Siegen, Siegen, (1993).
[14] G. Marmo, G. Vilasi and A. M. Vinogradov, The local structure of n-Poisson and n-Jacobi manifolds, J. Geom. Phys. 25 (1998) 141-182.
[15] P. de Medeiros, J. Figueroa-O’Farrill and E. Méndez-Escobar, Metric Lie 3-algebras in BaggerLambert theory, J. High Energy Phys. 8 (2008) 045.
[16] P. A. Nagy, Prolongations of Lie algebras and applications [arXiv: 0712.1398 math.DG].
[17] N. Nakanishi, On Nambu-Poisson manifolds, Rev. Math. Phys. 10 (1998) 499-510.
[18] Y. Nambu, Generalized hamiltonian dynamics, Phys. Rev. D 7 (1973) 2405-2412.
[19] G. Papadopoulos, On the structure of k-Lie algebras, Classical Quantum Gravity 25 (2008) 142002.
[20] A. P. Pozhidaev, Simple quotient algebras and subalgebras of Jacobian algebras, Sib. Math. J. 39 (1998) 512-517.
[21] A. P. Pozhidaev, Two classes of central simple n-Lie algebras, Sib. Math. J. 40 (1999) 1112-1118.
[22] L. Takhtajan, On foundation of the generalized Nambu mechanics, Commun. Math. Phys. 160 (1994) 295-315.
[23] A. Vinogradov and M. Vinogradov, On multiple generalizations of lie algebras and poisson manifolds, Am. Math. Soc., Contemp. Math. 219 (1998) 273-287.

[^0]: * Corresponding author.

