
Journal of Nonlinear Mathematical 
Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251 
Journal Home Page: https://www.atlantis-press.com/journals/jnmp 

Classification of (n + 2)-Dimensional Metric n-Lie Algebras 

Mingming Ren, Zhiqi Chen, Ke Liang 

To cite this article: Mingming Ren, Zhiqi Chen, Ke Liang (2010) Classification of (n + 2)-

Dimensional Metric n-Lie Algebras, Journal of Nonlinear Mathematical Physics 17:2, 

243–249, DOI: https://doi.org/10.1142/S140292511000074X 

To link to this article: https://doi.org/10.1142/S140292511000074X 

Published online: 04 January 2021 

https://www.atlantis-press.com/journals/JNMP


August 5, 2010 16:29 WSPC/1402-9251 259-JNMP 00074

Article

Journal of Nonlinear Mathematical Physics, Vol. 17, No. 2 (2010) 243–249

c© M. Ren, Z. Chen and K. Liang
DOI: 10.1142/S140292511000074X

CLASSIFICATION OF (n + 2)-DIMENSIONAL
METRIC n-LIE ALGEBRAS

MINGMING REN, ZHIQI CHEN∗ and KE LIANG

School of Mathematical Sciences and LPMC,
Nankai University, Tianjin 300071, P. R. China

∗chenzhiqi@nankai.edu.cn

Received 10 October 2009
Accepted 20 November 2009

In this paper, we give the classification of (n + 2)-dimensional metric n-Lie algebras in terms of
some facts about n-Lie algebras.

Keywords: n-Lie algebra; metric n-Lie algebra.

Mathematical Subject Classification: 17B05, 17D99

1. Introduction

An n-Lie algebra is a vector space A over a field F equipped with an n-multilinear operation
[x1, . . . , xn] satisfying

[x1, . . . , xn] = sgn(σ)[xσ(1), . . . , xσ(n)] (1.1)

[[x1, . . . , xn], y2, . . . , yn] =
n∑

i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn] (1.2)

for any x1, . . . , xn, y2, . . . , yn ∈ A, and σ ∈ Sn. Identity (1.2) is usually called the generalized
Jacobi identity, or simply the Jacobi identity.

The study of n-Lie algebras is strongly connected with many other fields, such as dynam-
ics, geometries and string theory. In order to describe the simultaneous classical dynamics
of three particles as a preliminary step towards a quantum statistic for the quark model,
Nambu [18] generalized the Poisson bracket and obtained a three-linear product {, , }

dx

dy
= {H1,H2, x},

where H1,H2 are Hamiltonians. In [22], Takhtajan developed the geometrical ideas of
Nambu mechanics and introduced an analogue of the Jacobi identity, which connects the
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generalized Nambu mechanics with the theory of n-Lie algebras introduced by Filippov [5].
It is given in [12] some new 3-Lie algebras and applications in membrane, including the
Basu–Harvey equation and the Bagger–Lambert model. More applications can be found in
[4, 10, 14, 17, 20, 21, 23].

A class of Lie n-algebras (finite dimensional, real, n > 2) which have appeared naturally
in mathematical physics are those which possess a nondegenerate inner product which is
invariant under the inner derivations, which are called metric n-Lie algebras. They have
arisen for the first time in the work of Figueroa-O’Farrill and Papadopoulos [8] in the clas-
sification of maximally supersymmetric type IIB supergravity backgrounds [9], and more
recently, for the case of n = 3, in the work of Bagger and Lambert [1, 2] and Gustavsson
[11] on a superconformal field theory for multiple M2-branes. It is this latter work which
has revived the interest of part of the mathematical physics community on metric n-Lie
algebras. There are some progress on metric n-Lie algebras, such as the classification for
Euclidean [16] (see also [19]) and Lorentzian metric n-Lie algebras [6], the classification of
index-2 metric 3-Lie algebras [15] and a structure theorem for metric n-Lie algebras [7].

In this note, we focus on (n + 2)-dimensional metric n-Lie algebras over R. If the clas-
sification of n-Lie algebras is given, then it is easy to check whether an n-Lie algebra is a
metric n-Lie algebra. But the classification of n-Lie algebras is an open problem, even for
(n + 2)-dimensional n-Lie algebras for n > 5. Even if the classification of 6-dimension 4-Lie
algebras over C is known [3], it is a long calculation to get that over R. The purpose of
this paper is to classify (n + 2)-dimensional metric n-Lie algebras over R. It is reasonable
to believe that these examples do help to the understanding of n-Lie algebras.

Throughout this paper we assume that the algebras are finite-dimensional over R. Obvi-
ous proofs are omitted.

2. Metric n-Lie Algebras

A metric n-Lie algebra g is an n-Lie algebra over R with a symmetric nondegenerate bilinear
form 〈, 〉 satisfying

〈[x1, . . . , xn], y〉 + 〈xn, [x1, . . . , xn−1, y]〉 = 0 (2.1)

for any x1, . . . , xn, y ∈ g.
Given two metric n-Lie algebras g1 and g2, we may form their orthogonal direct sum

g1 ⊕ g2, by declaring that

[x1, x2, y1, . . . , yn−2] = 0 and 〈x1, x2〉 = 0,

for any xi ∈ g1 and yi ∈ g1 ⊕ g2. The resulting object is again a metric n-Lie algebra. A
metric n-Lie algebra is said to be indecomposable if it isnot isomorphic to an orthogonal
direct sum of metric n-Lie algebras g1 ⊕ g2 with dimgi > 0.

2.1. Basic notions on n-Lie algebras

If a subspace B of an n-Lie algebra g satisfying [x1, . . . , xn] ∈ B for any x1, . . . , xn ∈ B, then
B is called a subalgebra of g; whereas an ideal I is a subspace I ⊂ g such that [I, g, . . . , g] ⊂
I. Let A1, . . . , An be subalgebras of an n-Lie algebra g. Denote by [A1, A2, . . . , An] the
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subspace of g generated by all vectors [x1, x2, . . . , xn], where xi ∈ Ai for i = 1, 2, . . . , n. The
subalgebra g1 = [g, g, . . . , g] is called the derived algebra of g. If g1 = 0, then g is called an
abelian n-Lie algebra. The subset C(g) = {x ∈ g|[x, y1, . . . , yn−1] = 0,∀ y1, . . . , yn−1 ∈ g}
is called the center of g. An ideal I is said to be maximal if any other ideal J containing
I is either g and I. An n-Lie algebra is said to be simple if it has no proper ideals and
dimg1 > 0.

Lemma 2.1. If I is a maximal ideal, then g/I is simple or one-dimensional.

The classification of simple n-Lie algebras is given as follows.

Theorem 2.2 ([13]). A simple real n-Lie algebra is isomorphic to one of the (n + 1)-
dimensional n-Lie algebras defined, relative to a basis ei, by

[e1, . . . , êi, . . . , en+1] = (−1)iεiei, 1 ≤ i ≤ n + 1 (2.2)

where symbol êi means that ei is omitted in the bracket and the εi are signs.

It is plain to see that simple real n-Lie algebras admit invariant inner products [7].
Indeed, the n-Lie algebra in Theorem 2.2 leaves invariant the diagonal inner product with
entries (ε1, . . . , εn+1).

2.2. Basic facts on metric n-Lie algebras

If W ⊂ g is any subspace, we define

W⊥ = {v ∈ g|〈v,w〉 = 0,∀w ∈ W}.

Notice that (W⊥)⊥ = W . We say that W is nondegenerate, if W ∩ W⊥ = 0, whence
V = W ⊕W⊥; isotropic, if W ⊂ W⊥; Of course, in positive-definite signature, all subspaces
are nondegenerate.

An equivalent criterion for decomposability is the existence of a proper nondegenerate
ideal: for if I is a nondegenerate ideal, g = I ⊕ I⊥ is an orthogonal direct sum of ideals.

Lemma 2.3 ([7]). If g is a metric n-Lie algebra, then C(g) = (g1)⊥.

Lemma 2.3 can be naturally extended to an n-Lie algebra over C possessing a nondegen-
erate inner product satisfying the identity (2.1). It follows that dim C(g)+ dim g1 = dimg.
By the classification of 6-dimensional 4-Lie algebras [3] over C, the 4-Lie algebra possessing
a nondegenerate inner product satisfying the identity (2.1) is one of the following cases:

(I) g is abelian;
(II) There exists a basis e1, e2, e3, e4, e5 of g1 such that [e2, e3, e4, e5] = e1, [e1, e3, e4, e5] =

e2, [e1, e2, e4, e5] = e3, [e1, e2, e3, e5] = e4, [e1, e2, e3, e4] = e5.
(III) There exists a basis e1, e2, e3, e4, e5 of g1 such that [e2, e3, e4, e5] = e1, [e3, e4, e5, e6] =

e2, [e2, e4, e5, e6] = e3, [e2, e3, e5, e6] = e4, [e2, e3, e4, e6] = e5.

For the case I, we can get a basis ei of g such that 〈ei, ei〉 = 1 for i = 1, 2, . . . , 6.
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For the case II, by the identity (2.1),

〈e1, e2〉 = 〈[e2, e3, e4, e5], e2〉 = −〈e5, [e2, e3, e4, e2]〉 = 0.

Similarly, we have 〈e1, ei〉 = 0 for i = 3, 4, 5, 6. Then 〈e1, e1〉 	= 0 by the nondegeneracy
of 〈, 〉. By the similar discussion, we have that 〈ei, ej〉 = 0 for i 	= j. Furthermore, by the
identity (2.1) and the structure of the n-Lie algebra, we have that

〈e1, e1〉 = −〈e2, e2〉 = 〈e3, e3〉 = −〈e4, e4〉 = 〈e5, e5〉 = a 	= 0 and 〈e6, e6〉 	= 0.

For the case III, the invariant inner product is given by

〈e1, e6〉 = 〈e2, e2〉 = −〈e3, e3〉 = 〈e4, e4〉 = −〈e5, e5〉 = a 	= 0.

3. Classification of (n + 2)-Dimensional Metric n-Lie Algebra

We now classify (n + 2)-dimensional metric n-Lie algebra based on some Lemmas.

Lemma 3.1 ([3]). Suppose that F is an algebraically closed field of characteristic 0. If g

is an (n + 2)-dimensional n-Lie algebra over F, then dim g1 ≤ n + 1.

Lemma 3.2. If g is a nonabelian (n + 2)-dimensional metric n-Lie algebra, then

dim C(g) = 1 and dim g1 = n + 1.

Proof. Assume that dim C(g) = k. Then k 	= n + 2. If n + 2 > k ≥ 2, then it is easy to see
that dimC(g) + dim g1 ≤ n + 1, which contradicts the fact

dim C(g) + dim g1 = n + 2

following from Lemma 2.3. By Lemma 3.1, we know that dim g1 ≤ n + 1. Namely k ≥ 1.
That is, we have that dim C(g) = 1,dim g1 = n + 1.

Since dim C(g) = 1, we have that C(g) is isotropic or C(g) is nondegenerate. In the
following, we will discuss the two cases respectively.

3.1. C(g) is nondegenerate

If C(g) is nondegenerate, then g = C(g) ⊕ g1 is an orthogonal direct sum of ideals. Let
e1, . . . , en+2 be a basis of g such that e1 ∈ C(g), 〈ei, ei〉 = 1 for all 2 ≤ i ≤ m and
〈ei, ei〉 = −1 for all m < i ≤ n + 2.

For any 2 ≤ r ≤ n + 2, we have that

[e2, . . . , êr, . . . , en+2] = arer

by 〈[e2, . . . , êr, . . . , en+2], ej〉 = 0 for j 	= r and 2 ≤ j ≤ n + 2. Since dim g1 = n + 1, we
must have that ar 	= 0 for any 2 ≤ r ≤ n + 2. For any 2 ≤ i < j ≤ n + 2, we have that

〈[e2, . . . , êi, . . . , en+2], ei〉 + (−1)i+j+1〈[e2, . . . , êj , . . . , en+2], ej〉 = 0.

It follows that

(−1)iai〈ei, ei〉 = (−1)jaj〈ej , ej〉.
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Here, g1 is a simple n-Lie algebra belong to the classification of (n + 1)-dimensional
n-Lie algebras given by Filippov [5].

3.2. C(g) is isotropic

In this case, let e1, . . . , en+2 be a basis of g such that e1 ∈ C(g), ei ∈ g1 for all 1 ≤ i ≤ n+1,
〈e1, en+2〉 = 1, 〈ei, ei〉 = 1 for all 2 ≤ i ≤ m and 〈ei, ei〉 = −1 for all m < i ≤ n + 1.

Similar to the discussion of 3.1, for any 1 ≤ r ≤ n + 1, we have that ar 	= 0 such that

[e2, . . . , en+1] = a1e1,

[e2, . . . , êi, . . . , en+2] = aiei, for all 2 ≤ i ≤ n + 1.

For any 2 ≤ i < j ≤ n + 1, we have that

〈[e2, . . . , êi, . . . , en+2], ei〉 + (−1)i+j+1〈[e2, . . . , êj , . . . , en+2], ej〉 = 0.

It follows that

(−1)iai〈ei, ei〉 = (−1)jaj〈ej , ej〉. (3.1)

For any 2 ≤ i ≤ n + 1, we have that

〈[e2, . . . , en+1], en+2〉 = (−1)n−i〈[e2, . . . , êi, . . . , en+2], ei〉.
It follow that

(−1)na1 = (−1)iai〈ei, ei〉. (3.2)

Combining the identity (3.1) with the identity (3.2), we get that (−1)na1 = (−1)iai〈ei, ei〉
for all 2 ≤ i ≤ n + 1.

For the above two cases, it is a direct calculation to check that they are n-Lie algebras.

3.3. Main theorem

Theorem 3.3. Let g be a nonabelian (n + 2)-dimensional metric n-Lie algebra. Then g

must be one of the following two cases (only nonzero products are given).

(I) There exists a basis e1, . . . , en+2 of g such that 〈e1, e1〉 = ±1, 〈ei, ei〉 = 1 for all
2 ≤ i ≤ m, 〈ei, ei〉 = −1 for all m < i ≤ n + 2 and the products are given by, for all
2 ≤ r ≤ n + 2,

[e2, . . . , êr, . . . , en+2] = arer,

where (−1)iai〈ei, ei〉 = (−1)jaj〈ej , ej〉.
(II) There exists a basis e1, . . . , en+2 of g such that 〈e1, en+2〉 = 1, 〈ei, ei〉 = 1 for all

2 ≤ i ≤ m, 〈ei, ei〉 = −1 for all m < i ≤ n + 1 and the products are given by, for all
2 ≤ i ≤ n + 1,

[e2, . . . , en+1] = a1e1, [e2, . . . , êi, . . . , en+2] = aiei,

where (−1)na1 = (−1)pap = (−1)q+1aq for all 2 ≤ p ≤ m and m < q ≤ n + 1.
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Remark 3.4. The classification of (n + 2)-dimensional metric n-Lie algebras g can be
obtained by the structure theorem given in [7]. Here we only list an outline. To begin with,
there is a fact that a metric n-Lie algebra of dimension n + 1 is either abelian or simple.
Based on this fact, if g is decomposable, then g is abelian or g = s⊕a, where s is simple, a is
abelian with dim a = 1 and the direct sum is orthogonal. The following is to discuss the case
for indecomposable g. By dimension it has to be a double extension of an n-dimensional
(hence abelian) metric n-Lie algebra by a one-dimensional n-Lie algebra. By [7], it must
take the following form. Let a be a real n-dimensional inner product space and g = a⊕u⊕v,
where u = Ru and v = Rv. Extend the inner product on a to all of g by declaring u, v to
be perpendicular to a and 〈u, v〉 = 1, 〈v, v〉 = 0 and 〈u, u〉 = 0. Let Ω ∈ Λna∗ be nonzero
and ω ∈ Hom(Λn−1a, a) be defined by

〈ω(x1, . . . , xn−1), xn〉 = Ω(x1, . . . , xn−1, xn)

for all xi ∈ a. Then the nonzero products of g are given by

[x1, . . . , xn] = Ω(x1, . . . , xn)v and [u, x1, . . . , xn−1] = (−1)nω(x1, . . . , xn−1).

One can check that the generalized Jacobi identity is satisfied and this agrees with
Theorem 3.3.
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