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Under investigation in this paper, with symbolic computation, is the Whitham–Broer–Kaup (WBK)
system for the dispersive long waves in the shallow water small-amplitude regime. N-fold Darboux
transformation (DT) for a spectral problem associated with the WBK system is constructed. Odd-
soliton solutions in terms of the Vandermonde-like determinant for the WBK system are presented
via the N-fold DT and evolution of the three-soliton solutions is graphically studied. Our results
could be used to illustrate the bidirectional propagation of the waves in the shallow water small-
amplitude regime.

Keywords: Whitham–Broer–Kaup system; odd-soliton solutions; N-fold Darboux transformation;
Vandermonde-like determinant; symbolic computation.
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1. Introduction

Seeking for the soliton solutions of the nonlinear evolution equations (NLEEs) is of impor-
tance since such equations can describe the diverse physical aspects [1–12]. Darboux trans-
formations (DTs) based on the Lax pair are a method to get the soliton solutions of some
NLEEs from the seeds [13–37]. Especially, the N -fold DT, which can be interpreted as
the superposition of a single DT, has been applied to certain NLEEs for deriving the
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multi-soliton solutions [22–36]. Advantage of the N -fold DT is that the problem solving
of a NLEE is finally reduced to solve a linear system, which enables us to generate the
multi-soliton solutions [22–37] with symbolic computation [1–12].

With some physical applications [38] and the consequence of a characteristic system
of the linear algebraic equations [39, 40] considered, a Vandermonde-like determinant is
introduced in the N -fold DT, and the form of the multi-soliton solutions of a NLEE becomes
compact and transparent [39, 40]. The Vandermonde-like determinant is associated with
the zeros of the determinant of the Darboux matrix which is a polynomial in the spectral
parameters [39, 40]. This determinant can be written as the sum over the products of the
genuine Vandermonde determinant, which leads to the simplification of the manipulation
and numerical evaluation of the higher-order determinants of such structure [39]. Details on
the properties and applications of the Vandermonde-like determinant in the soliton theory
can be seen in [36–43].

Under investigation in this paper is the Whitham–Broer–Kaup (WBK) system
[44–46],

ut + uux + vx + βuxx = 0,

vt + (uv)x + αuxxx − βvxx = 0,
(1)

which is a completely integrable model to characterize the dispersive long waves in the
shallow water small-amplitude regime [47]. In System (1), x is the scaled space, t is the scaled
time, the subscripts represent the partial derivatives, u = u(x, t) denotes the horizontal
velocity of the water wave and v = v(x, t) is the height deviating from the equilibrium
position of the water, while α and β are both real constants representing different diffusion
powers. When α = 0 and β �= 0, System (1) is the classical long-wave equation that models
the shallow water waves with diffusion [47]. When α = 0 and β = 0, System (1) becomes
the variant Boussinesq equation [13]. In the shallow water regime, System (1) describes the
small-amplitude wave, which are different from the large amplitude waves (e.g., the Saint-
Venant model and Green–Naghdi model) and medium amplitude waves (e.g., the Serre
equations and Camassa–Holm equation) [48–50].

Painlevé property and Hirota bilinear form for System (1) have been reported in [51].
Sorts of the inelastic interactions for System (1) have been presented in [51–53], including
the fission, fusion, and collision between the shock- and bell-shaped solitary waves. Other
solitary wave solutions have also been obtained [54–59].

We expect that seeking for more solutions for System (1) could provide us with the
useful interpretations for the evolution of the waves in the shallow water small-amplitude
regime. Such consideration motivates us to find novel solutions for System (1).

In this paper, we will derive the odd-soliton solutions in terms of the Vandermonde-like
determinant for System (1). Such solutions will exhibit the head-on interactions as well as
the overtaking, not reported in the existing literatures as yet.

This paper will be organized as follows: In Sec. 2, new N -fold DT of a parameter
Broer–Kaup system will be constructed by virtue of a gauge transformation; In Sec. 3,
as the applications, odd-soliton solutions of System (1) will be presented in terms of the
Vandermonde-like determinant, and dynamics of the three-soliton solutions will be analyzed
through figures; Summary will be given in Sec. 4.
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2. N-Fold DT

Through the following transformation,

u = 2
√
β2 + αH, (2a)

v = 4(β2 + α)G− 2(β2 + β
√
β2 + α+ α)Hx, (2b)

System (1) can be changed into a parameter-BK [45–47] system,

Ht + 2
√
β2 + αGx + 2

√
β2 + αHHx −

√
β2 + αHxx = 0, (3a)

Gt +
√
β2 + αGxx + 2

√
β2 + α(GH)x = 0. (3b)

Linear system associated with System (3) is [16–20,33–35]

φx = Uφ, φt = V φ, (4)

with

U =


λ

2
− 1

2
H −G

1
1
2
H − λ

2

, V =

(
P Q

R −P

)
, (5)

P =
1
2

√
β2 + α(H2 − λ2 −Hx), (6)

Q =
√
β2 + α(G(H + λ) +Gx), (7)

R =
√
β2 + α(−H − λ). (8)

Compatibility condition φxt = φtx yields a zero curvature equation,

Ut − Vx + [U, V ] = 0, (9)

which leads to System (3).
This section discusses the N -fold DT of System (3). Now, we introduce a gauge

transformation,

φ = T̃ φ, (10)

where T̃ is defined by

T̃x + T̃U = UT̃ ,

T̃t + T̃V = V T̃ .
(11)

Lax Pair (4) can be transformed into

φx = Uφ, φt = V φ, (12)

where U and V have the same forms as U and V , respectively, except replacing H and G

with H and G.
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Let Matrix T̃ in Eq. (10) be in the form of

T̃ = T̃ (λ) = ρ

(
A B

C D

)
, (13)

with

A = λN +
N−1∑
k=0

λkAk, B =
N−1∑
k=0

λkBk,

C =
N−1∑
k=0

λkCk, D =
N−1∑
k=0

λkDk,

(14)

where ρ,Ak, Bk, Ck and Dk are the functions of x and t. Ak, Bk, Ck and Dk can be deter-
mined by the following linear algebraic system,

N−1∑
k=0

λk
j (Ak +Bkσj) = −λN

j ,

N−1∑
k=0

λk
j (Ck +Dkσj) = 0,

(15)

with

σj =
ϕ2(λj) − rjψ2(λj)
ϕ1(λj) − rjψ1(λj)

, (1 ≤ j ≤ 2N − 1), (16)

where ϕ = (ϕ1, ϕ2)T and ψ = (ψ1, ψ2)T are two basic solutions of Eq. (4), and λj and rj
(λk �= λj , rk �= rj as k �= j) are some parameters suitably chosen such that the determinant
of the coefficients for Eq. (15) is nonzero.

Hence, if we take

BN−1 = −G, CN−1 = 1, (17)

the rest of Ak, Bk, Ck and Dk(0 ≤ k ≤ N − 1) are uniquely determined by Eq. (15).
Equation (14) shows that T̃ (λ) is the (2N − 1)th-order polynomial of λ and

det T̃ (λj) = A(λj)D(λj) −B(λj)C(λj). (18)

On the other hand, from Eq. (15) we have

A(λj) = −σjB(λj), C(λj) = −σjD(λj). (19)

Therefore, it holds that

det T̃ (λj) = 0, (20)

which implies that λj(1 ≤ j ≤ 2N − 1) are the (2N − 1) roots of det T̃ (λj), i.e.,

det T̃ (λ) = γ
2N−1∏
j=1

(λ− λj), (21)

where γ is independent of λ.
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We can verify the following:

If ρ satisfy

ρ2 =
1

DN−1
, (22)

then Matrices U and V have the same forms as U and V , respectively, where the transfor-
mations from the old potentials into the new are determined by

H = H +
DN−1,x

DN−1
, (23)

G = G−AN−1,x. (24)

In fact, let

T̃−1 =
T̃ ∗

det T̃
, (25)

(T̃x + T̃U)T̃ ∗ =

(
f11(λ) f12(λ)

f21(λ) f22(λ)

)
, (26)

where T̃ ∗ denotes the adjoint matrix of T̃ . It can be seen that f11(λ) and f22(λ) are the
2Nth-order polynomials in λ, while f12(λ) and f21(λ) are the (2N − 1)th-order polynomials
in λ. From Eqs. (4) and (16), we have a Riccati equation,

σjx = 1 − (λj −H)σj +Gσ2
j . (27)

Through some direct calculations, all λj (1 ≤ j ≤ 2N−1) are the roots of fsl(λ) (s, l = 1, 2).
Therefore, Eq. (26) gives

(T̃x + T̃U)T̃ ∗ = (det T̃ )P (λ), (28)

with

P (λ) =

f (1)
11 λ+ f

(0)
11 f

(0)
12

f
(0)
21 f

(1)
22 λ+ f

(0)
22

, (29)

where f (j)
sl (s, l = 1, 2; j = 0, 1) are the undetermined functions independent of λ. Now

Eq. (28) can be written as

(T̃t + T̃U) = P (λ)T̃ . (30)

Comparing the coefficients of λN+1 and λN in Eq. (30), we obtain that

f
(1)
11 = −f (1)

22 = −1
2
, f

(0)
21 = 1, (31)

f
(0)
11 = −f (0)

22 = −1
2

(
H +

DN−1,x

DN−1

)
, (32)

f
(0)
12 = −G+AN−1,x. (33)
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Substituting Eq. (22) into Eq. (32) and noticing H in Eq. (23) yield

f
(1)
11 = −f (1)

22 = −1
2
H. (34)

Using G in Eq. (24), we get

f
(0)
12 = −G. (35)

Therefore, we can obtain P (λ) = U .
Next, we will prove that V has the same form as V under Transformations (23) and (24).

Let

(T̃t + T̃V )T̃ ∗ =

(
g11(λ) g12(λ)

g21(λ) g22(λ)

)
, (36)

we see that g11(λ) and g22(λ) are the (2N + 1)th-order polynomials in λ, while g12(λ) and
g21(λ) are the 2Nth-order polynomials in λ. From Eqs. (4) and (16), we have a Riccati
equation,

σjt =
√
β2 + α[−(GH +Gλj +Gx)σ2

j + (−H2 + λ2
j +Hx)σj −H − λj ]. (37)

Through some direct calculations, all λj (1 ≤ j ≤ 2N−1) are the roots of gsl(λ) (s, l = 1, 2).
Therefore, Eq. (36) gives

(T̃t + T̃ V )T̃ ∗ = (det T̃ )Q(λ), (38)

with

Q(λ) =

g(2)
11 λ

2 + g
(1)
11 λ+ g

(0)
11 g

(1)
12 λ+ g

(0)
12

g
(1)
21 λ+ g

(0)
21 g

(2)
22 λ

2 + g
(1)
22 λ+ g

(0)
22

, (39)

where g(j)
sl (s, l = 1, 2; j = 0, 1, 2) are some undetermined functions independent of λ. Now

Eq. (38) can be written as

(T̃t + T̃V ) = Q(λ)T̃ . (40)

Comparing the coefficients of λN+2, λN+1 and λN in Eq. (40), we obtain that

g
(2)
11 = −g(2)

22 =
1
2
g
(1)
21 = −1

2

√
β2 + α, g

(1)
11 = g

(1)
22 = 0, (41)

g
(1)
12 =

√
β2 + α

GH +GAN−1 +BN−2 +Gx

DN−1
, (42)

g
(0)
21 = −

√
β2 + α(AN−1 − CN−2 −DN−1), (43)
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g
(0)
12 =

1
2
ρ[2ρ(

√
β2 + αBN−3 −Gt +

√
β2 + αAN−1Gx − g

(1)
12

√
β2 + αGx)

+G(
√
β2 + αρ(H2 + 2AN−1H + 2g(0)

11 + 2AN−2 −Hx) − 2ρt)], (44)

g
(0)
11 = −g(0)

22 =
√
β2 + α

[
H2

2
− GH

DN−1
+G

(
1 − AN−1

DN−1

)

− Gx

DN−1
− Hx

2
+

ρt

ρ
√
β2 + α

− BN−2

DN−1

]
. (45)

Comparing the coefficients of λN−1 and λN−2 in Eq. (30), we get

AN−1,x = −BN−2 +G(H +AN−1 −DN−1) +Gx

DN−1
, (46)

DN−1,x = DN−1 (−H −AN−1 + CN−2 +DN−1) , (47)

BN−2,x =
1

DN−1
[BN−3DN−1 −Gx(BN−2 +Gx)

−H(BN−2DN−1 +GGx) +G(AN−2DN−1 −AN−1Gx)], (48)

CN−2,x = AN−2 − CN−3 +CN−2(−AN−1 + CN−2 +DN−1) −Gx. (49)

Noticing G in Eqs. (24) and (46) yields

g
(1)
12 =

√
β2 + αG. (50)

Applying H in Eqs. (23) and (47), we have

g
(0)
21 = −

√
β2 + αH. (51)

Comparing the coefficients of λN in Eq. (38), we obtain

DN−1,t =
√
β2 + α(DN−1H

2 −D2
N−1H −GH

+AN−1D
2
N−1 −GAN−1 −BN−2 −A2

N−1DN−1

+GDN−1 +AN−2DN−1 − CN−3DN−1

+AN−1CN−2DN−1 −DN−1Gx −Gx −DN−1Hx). (52)

Using Eqs. (46)–(49) yields

g
(0)
12 =

√
β2 + α(Gx +HG). (53)

Employing Eqs. (46)–(49) and (52), we find that

g
(0)
11 = −1

2

√
β2 + α(Hx −H

2). (54)

Therefore, we can obtain Q(λ) = V .
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The above deduction shows that Transformations (10), (23) and (24) change Lax Pair (4)
into another Lax pair of the same type, i.e., Eq. (12). So both of the Lax pairs lead to
System (3). We call Transformation (φ,H,G) → (φ,H,G) a N -fold DT of System (3).

3. Odd-Soliton Solutions in Terms of the Vandermonde-Like Determinant

In this section, we obtain the odd-soliton solutions of System (1) by applying the afore-
mentioned N -fold DT. Substituting H = 0 and G = 1 into Lax Pair (4), we have two basic
solutions

ϕ(λj) =

 cosh ξj
1
2
λj cosh ξj − cj sinh ξj

, (55)

ψ(λj) =

 sinh ξj
1
2
λj sinh ξj − cj cosh ξj

, (56)

with

ξj = cj(x− λj

√
β2 + αt), cj =

1
2

√
λ2

j − 4, (1 ≤ j ≤ 2N − 1). (57)

According to Eq. (16), we have

σj =
1
2
λj − cj

tanh ξj − rj
1 − rj tanh ξj

, (1 ≤ j ≤ 2N − 1). (58)

Let λj (1 ≤ j ≤ 2N − 1) be some constants. Solving System (15) with BN−1 = −1 and
CN−1 = 1 yields [36,37]

AN−1 =
VN−1,N (1;σj |λj)

(−1)N−1VN,N−1(1;σj |λj)

+ (−1)N+1

∑2N−1
k=1 (−1)kλN

k VN−1,N−1[1;σl(k)|λl(k)]
VN,N−1(1;σj |λj)

,

DN−1 = (−1)N
VN,N−1(1;σj |λj)
VN−1,N (1;σj |λj)

, (59)

with

l(k) =


2, 3, . . . , 2N − 1, k = 1,

1, 2, . . . , k − 1, k + 1, . . . , 2N − 1, 2 ≤ k ≤ 2N − 2,

1, 2, . . . , 2N − 2, k = 2N − 1.

(60)

Using Expressions (2), (23) and (24), we obtain the (2N − 1)-soliton solutions of Sys-
tem (1) as follow,

u[N ] = 2
√
β2 + α

[
VN,N−1(1;σj |λj)
VN−1,N (1;σj |λj)

]
x

VN,N−1(1;σj |λj)
VN−1,N (1;σj |λj)

, (61)
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v[N ] = 4(β2 + α)

{
1 −

[
VN−1,N (1;σj |λj)

(−1)N−1VN,N−1(1;σj |λj)

+ (−1)N+1

∑2N−1
k=1 (−1)kλN

k VN−1,N−1(1;σl(k)|λl(k))
(VN,N−1(1;σj |λj)

]
x

}

− 2(β2 + β
√
β2 + α+ α)


[

VN,N−1(1;σj |λj)
VN−1,N (1;σj |λj)

]
x

VN,N−1(1;σj |λj)
VN−1,N (1;σj |λj)


x

. (62)

Remark. The Vandermonde-like determinant is introduced as [39–43]

VMN (ar; br | xr)

=

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a1x1 · · · a1x
M−1
1 b1 b1x1 · · · b1x

N−1
1

a2 a2x2 · · · a2x
M−1
2 b2 b2x2 · · · b2x

N−1
2

...
...

...
...

...
...

...
...

aM+N aM+NxM+N · · · aM+Nx
M−1
M+N bM+N bM+NxM+N · · · bM+Nx

N−1
M+N

∣∣∣∣∣∣∣∣∣∣∣∣
,

(63)

where r = 1, 2, . . . ,M + N . In particular, we denote VMN (ar; br|xr) = 0 for M < 0 or
N < 0 and V00(ar; br|xr) = 1 for M = N = 0. This determinant has some properties and
applications in soliton theory [36–43].

Figures 1(a) and 2(a) display the head-on collision of one right-going soliton with two
left-going ones. Figures 1(b)–1(d) and 2(b)–2(d) provide three figures for Figs. 1(a) and 2(a)
when the different time is taken, from which we find that the three solitons preserve their
shapes and amplitudes and the higher left-going soliton exceeds the shorter one after the
collision. On the contrary, Figs. 3 and 4 shows that the overtaking collision of three soli-
tons along the same direction of propagation. Through a set of photographs for Figs. 3(a)
and 4(a) taken at an equal temporal interval, Figs. 3(b)–3(d) and 4(b)–4(d) demonstrate
that the large-amplitude solitons with the faster velocities exceed the small-amplitude ones,
and the shorter ones are left behind after the collision. It is observed that Figs. 2 and 3
exhibit the double-humped structure for the field v, which is an interesting phenomenon. By
choosing appropriate parameters (reducing |λ1| in Fig. 4), Fig. 5 demonstrates the elastic
interaction between a single-humped soliton and two double-humped ones. Consequently,
those double-humped structures mainly depend on the absolute value of λj, i.e., the higher
λj , the more obvious such phenomena.

As discussed above, one notices that the value of λj not only affects the amplitude,
velocity and shape of the soliton for System (1), but also the direction. For example, choosing
λj < −2 and λj > 2 yields the left-going and right-going solitons, respectively. In order
to generate [2(k + l) − 1]-solitons with 2k left-going and (2l − 1) right-going solitons, the
power of the spectrum parameter in the N -fold DT is assigned to be N = k + l. The 2k
left-going solitons can be derived by selecting λ2k < λ2k−1 < · · · < λ1 < −2 while the
(2l − 1) right-going solitons are obtained by assuming λ′2l−1 > λ′2l−1 > · · · > λ′1 > 2.
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(a) (b)

(c) (d)

Fig. 1. Overtaking collision of three solitons via Expression (61) with H = 0, G = 1, λ1 = 6, λ2 = −6.2, λ3 =
−6.3, α = 5.5, β = 0.1, r1 = 0.5, r2 = −0.5 and r3 = −6; the set of three pictures of (a) taken at t =
−0.7, t = 0 and t = 0.7 is shown in (b), (c) and (d), respectively.

(a) (b)

(c) (d)

Fig. 2. Overtaking collision of three solitons with double humps via Expression (62) with H = 0, G = 1, λ1 =
6, λ2 = −6.2, λ3 = −6.3, α = 5.5, β = 0.1, r1 = 0.5, r2 = −0.5 and r3 = −6; the set of three pictures of (a)
taken at t = −0.7, t = 0 and t = 0.7 is shown in (b), (c) and (d), respectively.
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(a) (b)

(c) (d)

Fig. 3. Head-on collision of three solitons via Expression (61) with H = 0, G = 1, λ1 = −6, λ2 = −7, λ3 =
−8, α = 6, β = 0.2, r1 = 0.2, r2 = 5 and r3 = −0.5; the set of three pictures of (a) taken at t = −0.7, t = 0
and t = 0.7 is shown in (b), (c) and (d), respectively.

(a) (b)

(c) (d)

Fig. 4. Head-on collision of three solitons with double humps via Expression (62) with H = 0, G = 1, λ1 =
−6, λ2 = −7, λ3 = −8, α = 6, β = 0.2, r1 = 0.2, r2 = 5 and r3 = −0.5; the set of three pictures of (a) taken
at t = −0.7, t = 0 and t = 0.7 is shown in (b), (c) and (d), respectively.
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(a) (b)

(c) (d)

Fig. 5. Overtaking collision between two solitons with double humps and a single soliton via Expression (62)
with H = 0, G = 1, λ1 = −3, λ2 = −6, λ3 = −7, α = 6, β = 0.2, r1 = 0.2, r2 = 5 and r3 = −0.5; the set of
three pictures of (a) taken at t = −0.7, t = 0 and t = 0.7 is shown in (b), (c) and (d), respectively.

4. Conclusions

In this paper, under investigation is the WBK system, which describes the dispersive long
waves in the shallow water small-amplitude regime.

We have constructed the N -fold DT of System (3), by which the odd-soliton solutions
of System (1) have been obtained from a trivial seed. Such solutions have been expressed in
terms of the Vandermonde-like determinant which is compact and transparent. A unified
and explicit odd-soliton solution for System (1) has been given as Expression (62) and
the problem solving of System (1) is finally reduced to solve Linear System (15), which
is suitable for generating the multi-soliton solutions with symbolic computation. More on
symbolic computation can be seen, e.g. in [60–63].

Elastic interactions of the three-soliton solutions have been analyzed graphically. Those
multi-soliton solutions exhibit the head-on and overtaking collisions. Meanwhile, we have
found that the value of the spectral parameters λj influences the directions and shapes
of the solitons by Expression (62). Our results are expected to illustrate the bidirectional
propagation of the waves in the shallow water small-amplitude regime.
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