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We present a method devised by Jacobi to derive Lagrangians of any second-order differential
equation: it consists in finding a Jacobi Last Multiplier. We illustrate the easiness and the power of
Jacobi’s method by applying it to several equations, including a class of equations recently studied
by Musielak with his own method [Z. E. Musielak, Standard and non-standard Lagrangians for
dissipative dynamical systems with variable coefficients J. Phys. A: Math. Theor. 41 (2008) 055205],
and in particular a Liènard type nonlinear oscillator and a second-order Riccati equation. Also, we
derive more than one Lagrangian for each equation.
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1. Introduction

In a 1957-paper suitably entitled The range of application of the Lagrange formalism, Havas
wrote [12] “It has been found in many branches of physics that the solution of a variety of
problems can be greatly simplified if the basic equations can be expressed in the form of
a variational principle” (omissis). “In addition to the well-known usefulness of Lagrange’s
method for the integration of the equations of motions there are two further advantages: a
knowledge of the Lagrangian and of its invariance properties enables one to obtain all the
conservation laws of the system [23], and it forms the basis for the quantization of classical
(discrete or continuous) systems. It is therefore of great importance to know which systems
of forces or fields can be treated by Lagrange’s method”.

In the context of quantization we may refer to the seminal paper by Dirac [6, 11], and
Feynman’s recently published thesis [11] and his 1965 Nobel Lecture [10].
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It should be well-known that the knowledge of a Jacobi Last Multiplier always yields
a Lagrangian of any second-order ordinary differential equation [17, 39]. Yet many distin-
guished scientists seem to be unaware of this classical result. Havas himself cited the book
by Whittaker [39] but only in connection with the formulation of Lagrangian equations [12].

In this paper, we present the method of the Jacobi Last Multiplier in order to compare
the easiness and the power of Jacobi’s method with that proposed by Museliak et al. [21,22]
for the same purpose. The papers [25–38] and the references within may give an idea of the
many fields of applications yielded by Jacobi Last Multiplier.

In [22] the authors searched for a Lagrangian of the following second-order ordinary
differential equation

ẍ + b(x)ẋ2 + c(x)x = 0 (1.1)

with b(x), c(x) arbitrary functions of the dependent variable x = x(t). After some lengthy
calculations they found one Lagrangian. In [38] we showed that (1.1) is a subcase of a more
general class of equations studied by Jacobi [16], i.e.

ẍ +
1
2

∂ϕ

∂x
ẋ2 +

∂ϕ

∂t
ẋ + B = 0 (1.2)

with ϕ and B arbitrary functions of t and x. We applied Jacobi’s method to Eq. (1.1) and
easily derived many (an infinite number of) different Lagrangians.

In the present paper, we show how to obtain many (an infinite number of) different
Lagrangians for the class of equations

ẍ + f(x)ẋ + g(x) = 0 (1.3)

with f(x) and g(x) arbitrary functions of the dependent variable x(t). In [21] Musielak
applied his lengthy method to (1.3) in order to obtain at least one Lagrangian. Here we
show that many standard and nonstandard Lagrangians of (1.3) can be derived without
much effort by using Jacobi’s method.

This paper is organized in the following way. In Sec. 2, we illustrate the Jacobi Last
Multiplier and its properties [13–17], its connection to Lie symmetries [18,19], and its link to
the Lagrangian of any second-order differential equation [17,39]. We also exemplify Jacobi’s
method with an equation, described in 1974 [20], of the class of Eq. (1.1), i.e.:

ẍ = x
−a + λẋ2

λx2 + 1
(1.4)

which is still of great physical interest as it can be seen in a 2007-paper by Cariñena et al. [4],
and a nonautonomous equation [9] of the more general class of Eq. (1.2), i.e.:

ẍ = − ẋ2

x
+

ẋ

t
. (1.5)

Both examples were not included in [38]. In Sec. 3, we apply Jacobi’s method to the class of
Eq. (1.3), show some particular examples such as a Liènard type nonlinear oscillator, which
has been recently studied for its asymptotic behavior in [3], and a second-order Riccati
equation, which has been studied in [5] and also derived in the discussion on differential
sequences [8]. In Sec. 4, we conclude with some final remarks.
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In this paper we employ ad hoc interactive programs [24] written in the language
REDUCE to calculate the Lie symmetry algebra of the equations which we study.

2. The Method by Jacobi

The method of the Jacobi Last Multiplier [13–17] provides a means to determine all the
solutions of the partial differential equation

Af =
n∑

i=1

ai(x1, . . . , xn)
∂f

∂xi
= 0 (2.1)

or its equivalent associated Lagrange’s system

dx1

a1
=

dx2

a2
= · · · =

dxn

an
. (2.2)

In fact, if one knows the Jacobi Last Multiplier and all but one of the solutions, then the
last solution can be obtained by a quadrature. The Jacobi Last Multiplier M is given by

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= MAf, (2.3)

where

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= det




∂f

∂x1
· · · ∂f

∂xn

∂ω1

∂x1

∂ω1

∂xn

...
...

∂ωn−1

∂x1
· · · ∂ωn−1

∂xn




= 0 (2.4)

and ω1, . . . , ωn−1 are n − 1 solutions of (2.1) or, equivalently, first integrals of (2.2) inde-
pendent of each other. This means that M is a function of the variables (x1, . . . , xn) and
depends on the chosen n−1 solutions, in the sense that it varies as they vary. The essential
properties of the Jacobi Last Multiplier are:

(a) If one selects a different set of n − 1 independent solutions η1, . . . , ηn−1 of Eq. (2.1),
then the corresponding last multiplier N is linked to M by the relationship:

N = M
∂(η1, . . . , ηn−1)
∂(ω1, . . . , ωn−1)

.

(b) Given a nonsingular transformation of variables

τ : (x1, x2, . . . , xn) → (x′
1, x

′
2, . . . , x

′
n),

the last multiplier M ′ of A′F = 0 is given by:

M ′ = M
∂(x1, x2, . . . , xn)
∂(x′

1, x
′
2, . . . , x

′
n)

,

where M obviously comes from the n − 1 solutions of AF = 0 which correspond to
those chosen for A′F = 0 through the inverse transformation τ−1.
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(c) One can prove that each multiplier M is a solution of the following linear partial
differential equation:

n∑
i=1

∂(Mai)
∂xi

= 0; (2.5)

vice versa every solution M of this equation is a Jacobi Last Multiplier.
(d) If one knows two Jacobi Last Multipliers, M1 and M2, of Eq. (2.1), then their ratio is a

solution ω of (2.1) or, equivalently, a first integral of (2.2). Naturally the ratio may be
quite trivial, namely a constant. Vice versa the product of a multiplier M1 times any
solution ω yields another last multiplier M2 = M1ω.

Since the existence of a solution/first integral is consequent upon the existence of symmetry,
an alternate formulation in terms of symmetries was provided by Lie [19]. A clear treatment
of the formulation in terms of solutions/first integrals and symmetries is given by Bianchi [2].
If we know n − 1 symmetries of (2.1)/(2.2), say

Γi =
n∑

j=1

ξij(x1, . . . , xn)∂xj , i = 1, . . . , n − 1, (2.6)

Jacobi’s last multiplier is given by M = ∆−1, provided that ∆ �= 0, where

∆ = det




a1 · · · an

ξ1,1 ξ1,n

...
...

ξn−1,1 · · · ξn−1,n


 . (2.7)

There is an obvious corollary to the results of Jacobi mentioned above. In the case that
there exists a constant multiplier, the determinant is a first integral. This result is potentially
very useful in the search for first integrals of systems of ordinary differential equations. In
particular, if each component of the vector field of the equation of motion is missing the
variable associated with that component, i.e. ∂ai/∂xi = 0, the last multiplier is a constant
and any other Jacobi Last Multiplier is a first integral.

Another property of the Jacobi Last Multiplier is its (almost forgotten) relationship
with the Lagrangian, L = L(t, x, ẋ), for any second-order equation

ẍ = F (t, x, ẋ) (2.8)

namely [17,39]

M =
∂2L

∂ẋ2
, (2.9)

where M = M(t, x, ẋ) satisfies the following equation

d
dt

(log M) +
∂F

∂ẋ
= 0. (2.10)
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Equation (2.8) becomes the Euler–Lagrangian equation:

− d
dt

(
∂L

∂ẋ

)
+

∂L

∂x
= 0. (2.11)

The proof is given by taking the derivative of (2.11) by ẋ and showing that this yields (2.10).
If one knows a Jacobi Last Multiplier, then L can be easily obtained by a double integra-
tion, i.e.

L =
∫ (∫

M dẋ

)
dẋ + f1(t, x)ẋ + f2(t, x), (2.12)

where f1 and f2 are functions of t and x which have to satisfy a single partial differential
equation related to (2.8) [33]. As it was shown in [33], f1 and f2 are related to the gauge
function G = G(t, x). In fact we may assume

f1 =
∂G

∂x

f2 =
∂G

∂t
+ f3(t, x), (2.13)

where f3 has to satisfy the partial differential equation mentioned and G is obviously
arbitrary.

In [16] Jacobi himself found his “new multiplier” for the class of second-order ordinary
differential equations studied by Euler [7] [Sect. I, Ch. VI, §§915 ff.] (1.2). Indeed Jacobi
derived that the multiplier of Eq. (1.2) is given by:

M = eϕ(t,x), (2.14)

as it is obvious from (2.10). Consequently in our previous paper [38] we derived a Lagrangian
of the class of Eq. (1.2) by means of (2.9), i.e.

L =
1
2
eϕ(t,x)ẋ2 + f3(t, x) +

d
dt

G(t, x) (2.15)

with f3 a function of t and x satisfying the following equation:

∂f3

∂x
+ eϕ(t,x)B(t, x) = 0. (2.16)

Equation (1.4) is a particular example of the equation considered by Jacobi. In fact from
(2.14) and (2.15) we derive:

M =
1

λx2 + 1
, (2.17)

and consequently

L =
ẋ2

2(λx2 + 1)
− ax2

2(λx2 + 1)
+

d
dt

G(t, x). (2.18)

This Lagrangian is known [20]. Equation (1.4) does not possess any Lie point symme-
try apart translation in t. Therefore Noether’s theorem [23] applied to the autonomous
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Lagrangian L in (2.18) yields the following known first integral [20]:

I =
ax2 + ẋ2

2(λx2 + 1)
. (2.19)

Jacobi proved that in the case of a second-order differential equation, if one knows a first
integral and a last multiplier, then the equation can be integrated by quadrature (a new
Principle of Mechanics, indeed) [13,14].

Equation (1.5) is obtained by the symmetry reduction transformation x = u′, t = u of
the third-order equation:

u′′′ = −u′u′′

u
, (2.20)

where u(T ) is a function of T . Equation (1.5) admits an eight-dimensional Lie point sym-
metry algebra and therefore is linearizable. In [33] it was shown that if one knows several
(at least two) Lie symmetries of the second-order differential Eq. (2.8), i.e.

Γj = Vj(t, x)∂t + Gj(t, x)∂x, j = 1, r, (2.21)

then many Jacobi Last Multipliers could be derived by means of (2.7), i.e.

1
Mnm

= ∆nm = det




1 ẋ F (t, x, ẋ)

Vn Gn
dGn

dt
− ẋ

dVn

dt

Vm Gm
dGm

dt
− ẋ

dVm

dt




, (2.22)

with (n,m = 1, r), and therefore many Lagrangians can be obtained by means of (2.12). In
particular fourteen different Lagrangians can be obtained if the equation admits an eight-
dimensional Lie point symmetry algebra. We do not look for the fourteen Lagrangians of
Eq. (1.5). Instead we use Eq. (2.14) to find a Jacobi Last Multiplier and consequently a
Lagrangian. In fact from (2.14) and (2.15) we derive:

JLM =
x2

t
, (2.23)

and consequently

Lag =
ẋ2x2

2t
+

d
dt

G(t, x). (2.24)

If one applies Noether’s theorem to Lag then the following five first integrals of Eq. (1.5)
can be derived:

FI1 = x2(x − ẋt)2

FI2 = −x2ẋ(x − ẋt)
2t

FI3 =
x2ẋ2

2t2
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FI4 = x(x − ẋt)

FI5 =
xẋ

t
. (2.25)

We emphasize that the first integrals FI1 and FI4 could not be derived if the gauge function
G(t, x) was assumed to be equal to zero.

3. Equations with Space-dependent Coefficients

The class of Eq. (1.3) has an obvious Jacobi Last Multiplier and therefore Lagrangian if
the following relationship holds between f(x) and g(x):

d
dx

(
g(x)
f(x)

)
= α(1 − α)f(x), (3.1)

where α is any constant �= 1. In fact, if (3.1) holds, then Eq. (1.3) can be written as

u̇ + αf(x)u = 0, (3.2)

i.e.

f(x) = − 1
α

d
dt

(log u) with u = ẋ +
g(x)

αf(x)
(3.3)

and thus a Jacobi Last Multiplier for Eq. (1.3) is

M = exp
(∫

f(x)dt

)
= exp

(
− 1

α

∫
d(log u)

)
= u−1/α (3.4)

and the corresponding Lagrangian is

L = u2−1/α +
d
dt

G(t, x) =
(

ẋ +
g(x)

αf(x)

)2−1/α

+
d
dt

G(t, x), (3.5)

with G(t, x) an arbitrary gauge function.
We note that this Lagrangian is autonomous and therefore it admits at least the Noether

point symmetry of translation in t and consequently the following first integral

In =
(

ẋ +
g(x)

αf(x)

)1−1/α αf(x)ẋ − f(x)ẋ − g(x)
α2f(x)2

. (3.6)

We would like to remark that because of property (d) of the Jacobi Last Multiplier we can
obtain another Jacobi Last Multiplier M = In ×M and consequently another Lagrangian of
Eq. (1.3). We do not pursue it here any further, but one can envision a deluge of Lagrangians
obtained by simply taking any function of the first integral In in (3.6) and multiplying it
by either M in (3.4) or M and so on ad libitum.

3.1. Examples

It is very easy to obtain a Jacobi Last Multiplier and therefore a Lagrangian for the following
Liènard type nonlinear oscillator:

ẍ + kxẋ +
k2

9
x3 + λx = 0. (3.7)
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In fact we know that M = exp(
∫

kxdt). If one can put the equation in the form

u̇1 + αkxu1 = 0, (3.8)

with α a constant to be determined, i.e.

kx = − 1
α

d
dt

(log u1), (3.9)

then

M = u
−1/α
1 . (3.10)

In the case of Eq. (3.7) we have

u̇1 +
1
3
kxu1 = 0 with u1 = ẋ +

k

3
x2 +

3
k

λ, i.e. α =
1
3
. (3.11)

Therefore M1 = u−3
1 and consequently

L1 =
1
u1

+
d
dt

G(t, x) =
1

ẋ + k
3x2 + 3

kλ
+

d
dt

G(t, x). (3.12)

Actually we can derive another Lagrangian because substituting f(x) = kx, g(x) = k2

9 x3 +
λx into Eq. (3.1) yields two different α, i.e.

d
dt

(
g

f

)
− α(1 − α)f = 0 =⇒ 9α2 − 9α + 2 = 0 =⇒ α1,2 =

1
3
,
2
3
. (3.13)

The case α = 1
3 has been considered above. If we substitute α = 2

3 into Eq. (3.2), then we
obtain M2 = u−3/2 and consequently

L2 =
√

u +
d
dt

G(t, x) =

√
ẋ +

k

6
x2 +

3
2k

λ +
d
dt

G(t, x). (3.14)

Equation (3.7) admits an eight-dimensional Lie symmetry algebra and therefore is lineariz-
able. Moreover one can determine at least twelve more Lagrangians [36]. We note that L1

admits one Noether point symmetry while L2 admits three Noether point symmetries.
A particular case of (3.7) is the second-order Riccati equation:

ẍ + 3xẋ + x3 = 0, (3.15)

a member of the Riccati-chain [1]. Equation (3.15) is linearizable to a third-order linear
equation by the transformation x = V̇ (t)/V (t), namely (3.15) transforms into

···
V = 0. It

also well-known that Eq. (3.15) is linearizable by means of a point transformation because
it admits an eight-dimensional Lie symmetry algebra generated by the following operators:

Γ1 = t3(tx − 2)∂t − t(xt − 2)(x2t2 + 2 − 2xt)∂x

Γ2 = xt3∂t − (xt − 1)(x2t2 + 4 − 2xt)∂x

Γ3 = xt2∂t − x(x2t2 + 2 − 2xt)∂x

Γ4 = xt∂t − x2(xt − 1)∂x
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Γ5 = x∂t − x3∂x

Γ6 = ∂t

Γ7 = t∂t − x∂x

Γ8 = t2∂t − 2(xt − 1)∂x. (3.16)

In order to find the linearizing transformation we have to look for a two-dimensional abelian
intransitive subalgebra [19] and, following Lie’s classification of two-dimensional algebras
in the real plane [19], we have to transform it into the canonical form

∂x̃, t̃∂x̃

with t̃ and x̃ the new independent and dependent variables, respectively. We found that one
such subalgebra is that generated by Γ1 and Γ9 ≡ Γ2 − Γ8. Then it is easy to derive that

t̃ =
tx − 1

t(tx − 2)
, x̃ = − x

2t(tx − 2)

and Eq. (3.15) becomes

d2x̃

dt̃2
= 0. (3.17)

We can derive fourteen different Lagrangians by using (2.22) and (2.12). Two of these
Lagrangians admit five Noether symmetries, i.e.:

L56 = − 1
2(ẋ + x2)

+
d
dt

G(t, x) (3.18)

and

L19 = − 1
2t4(x2t2 + ẋt2 − 2xt + 2)

+
d
dt

G(t, x) (3.19)

which are derived from

JLM 56 = − 1
(ẋ + x2)3

, (3.20)

and

JLM 19 = − 1
(t2x2 + t2ẋ − 2tx + 2)3

, (3.21)

respectively. We remark that JLM56 can be also obtained from (3.2). In fact Eq. (3.15) can
be written as

u̇ + 3xαu = 0, u = ẋ + x2, α =
1
3
. (3.22)

If one applies Noether’s theorem to L56 then the following five first integrals of Eq. (3.15)
can be derived:

I1 =
(x2t2 − 2xt + ẋt2 + 2)2

4(x2 + ẋ)2
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I2 =
(x2t2 − 2xt + ẋt2 + 2)(x2t − x + ẋt)

2(x2 + ẋ)2

I3 =
x2 + 2ẋ

2(x2 + ẋ)2

I4 =
(x2t − x + ẋt)2

(x2 + ẋ)2

I5 =
x2t − x + ẋt

x2 + ẋ
(3.23)

while Noether’s theorem applied to L19 yields:

In1 =
x2t − x + ẋt

x2t2 − 2xt + ẋt2 + 2

In2 =
(x3t − 2x2 − 2ẋ)xt + (ẋt2 + 4)ẋ + (2ẋt2 + 3)x2

(x2t2 − 2xt + ẋt2 + 2)2

In3 =
(x2t − x + ẋt)(x2 + ẋ)
(x2t2 − 2xt + ẋt2 + 2)2

In4 =
(x2 + ẋ)2

(x2t2 − 2xt + ẋt2 + 2)2

In5 =
x2 + 2ẋ

2(x2t2 − 2xt + ẋt2 + 2)2
.

(3.24)

We remark the importance of the gauge function G(t, x). None of the first integrals above,
apart I3 and In5, could be derived if the gauge function was assumed to be equal to zero.

The Lagrangian which admits the maximum number of Noether point symmetries seems
to be that obtained by means of the Jacobi Last Multiplier that is derived from the determi-
nant (2.22) with the two solution symmetries, namely the two-dimensional abelian intran-
sitive subalgebra which yields the linearizing transformation. We could infer that this is the
physical Lagrangian. Yet the Lagrangian obtained by using the Jacobi Last Multiplier (3.4)
also possesses the maximum number of Noether point symmetries as shown in the case
of Eq. (3.1). This may explain why Lagrangian (3.5) possesses nice physical properties as
shown in [5].

4. Final Remarks

The many Lagrangians that Jacobi’s method may produce could confuse a physicist seeing
such a lot of mathematical formulas. Yet the correct application of Noether’s theorem can
actually discriminate among those Lagrangians. In fact the Lagrangians which possess the
maximum number of Noether symmetries are those that possess the most useful physical
properties, as it can be seen in the provided examples.

In the present paper, we do not claim to have been exhaustive in our presentation of
the application of the Jacobi Last Multiplier for finding Lagrangians of any second-order
differential equation. Indeed we would like to encourage other authors to apply Jacobi’s
method to their preferred equation. The key is to be able to solve Eq. (2.5). In this paper,
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we show that it is not an impossible task. Lie symmetries may also help. Noether symmetries
should not be forgotten.
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last multiplier, J. Math. Phys. 48 (2007) 013514.
[33] M. C. Nucci and P. G. L. Leach, Lagrangians galore, J. Math. Phys. 48 (2007) 123510.
[34] M. C. Nucci and P. G. L. Leach, Gauge variant symmetries for the Schrödinger equation, Il

Nuovo Cimento B 123 (2008) 93–101.
[35] M. C. Nucci and P. G. L. Leach, Jacobi last multiplier and Lagrangians for multidimensional

linear systems, J. Math. Phys. 49 (2008) 073517.
[36] M. C. Nucci and P. G. L. Leach, The Jacobi last multiplier and applications in Mechanics,

Phys. Scr. 78 (2008) 065011.
[37] M. C. Nucci and P. G. L. Leach, An old method of Jacobi to find Lagrangians, J. Nonlinear

Math. Phys. 16 (2009) 431–441.
[38] M. C. Nucci and K. M. Tamizhmani, Using an old method of Jacobi to derive Lagrangians:

a nonlinear dynamical system with variable coefficients, (Il Nuovo Cimento B) 125 (2010)
255–269.

[39] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
(Cambridge University Press, Cambridge, 1988, First published, 1904).


