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This paper investigates symmetries of autonomous ordinary stochastic differential equations.
Change of time includes the stochastic process itself, and is uniquely determined by the trans-
formation of the spatial variable. As a particular feature, the time change by an admitted Lie
symmetry group may be unrelated with the time change in the stochastic process. Sufficient con-
ditions for a Lie group to be admitted by an autonomous equation are derived. This method can
be applied to second order autonomous equations as well as systems of autonomous stochastic
differential equations.
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1. Introduction

While symmetry techniques have found a wide range of applications in the analysis of
ordinary and partial differential equations, there have been only few and recent attempts to
extend these techniques to stochastic differential equations. The main obstacle which one
encounters here is the non-differentiability of stochastic processes, which makes it difficult
to include change of time in the symmetry transformations. Another difficulty is how to
match the time change in the Lie groups of transformations with the time change in the
stochastic processes.

Symmetries of stochastic differential equations are usually considered for scalar equa-
tions or systems of stochastic ordinary differential equations

dXi = fi(t,X) dt + gik(t,X) dBk, (i = 1, 2, . . . , n),

where Bk (k = 1, 2, . . . , r) are standard Brownian motions. Most approaches fall into two
general groups as follows.
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The first approach [1–12] employs fiber-preserving transformations only,

x = ϕ(t, x, a), t = H(t, a),

and thus avoids the problem of how to include the dependent variables in the time change.
Here x is the vector of dependent, that is spatial variables, t is the independent variable,
usually time, and a is the group parameter.a

Misawa [1] and Albeverio and Fei [2] considered H(t, a) = t. Gaeta and Quinter [3]
and Gaeta [4] allowed time to be changed, but did not apply the time change to Brownian
motion. Gaeta later [8] extended the approach developed in [3, 4] to include Brownian
motion in the transformation. Mahomed and Wafo Soh [5] and Ünal [6] used an infinitesimal
transformation for Brownian motion,

dB = dB +
1
2
ε

(
τt + fτx +

1
2
g2
xxτxx

)
dB,

where τ(t, x) = ∂H
∂a (t, x, 0) is the coefficient of the infinitesimal generator of the Lie group.

Fredericks and Mahomed [11,12] tried to reconcile [5] and [6]. Melnick [7] and Alexandrova
[9,10] also include Brownian motion in the transformation of the dependent variables.

In general, the change of variables in stochastic differential equations differs from the
change of variables in ordinary differential equations, as the Itô formula takes the place
of the chain rule of differentiation. Exploiting the Itô formula and the requirement that a
solution of a stochastic differential equation is mapped into a solution of the same equation,
the determining equations of an admitted Lie group can be obtained. This approach has
been applied to stochastic dynamical systems [1, 2, 9, 10], to the Fokker–Plank equation
[3, 6, 8, 14, 15], to scalar second-order stochastic ordinary differential equations [5], and to
the Hamiltonian–Stratonovich dynamical control system [14]. It has also been applied to
stochastic partial differential equations [7].

The second approach [16,17] includes the dependent variables in the transformation of
time as well,

x = ϕ(t, x, a), t = H(t, x, a).

In particular, the transformation of Brownian motion is defined through the transformation
of the dependent and independent variables. Generalizing the change of time formula [18],
it was proven in [17] that the transformed Brownian motion

B(t) =
∫ t

0
η(s,X(s), a) dB(s),

(where η(t, x, a) �= 0) satisfies again the properties of Brownian motion. This transformation
of Brownian motion is a logical generalization of the time change in the Itô integral to the
case where the stochastic process is included in the change. Exploiting the Itô formula, this
transformation of Brownian motion and the requirement that a solution of the stochastic
differential equation is mapped into a solution of the same equation, and finally equating

aFor completeness let us also mention that transformations x̄ = ϕ(ω, x), t̄ = t including elements ω of the
sample space in the transformation, were applied by Arnold and Imkeller [13] to autonomous equations.
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the Riemann and Itô integrands, the determining equations of an admitted Lie group were
obtained. The definition of an admitted Lie group for stochastic differential equations was
given using these determining equations.

It is worth to note that if H = H(t, a), then these determining equations coincide with
those obtained in [12]. Coincidence of the determining equations also occurs in the case of
autonomous stochastic ordinary differential equations.

In spite of its greater generality, the definition of an admitted Lie group for stochastic
differential equations given in [16, 17] has some weaknesses, as we explain now. First, the
relation of the function η defined in [16,17] by the formula

η2(t, x, a) = Ht(t, x, a)

restricts the set of transformations substantially. Second, the determining equations defined
in [16, 17] only give necessary conditions for the transformed function to be a solution
of the original equations, as they are obtained by equating integrands. Compare this to
deterministic equations, where the determining equations are obtained by differentiating the
original equations with the transformed solution substituted into them, hence giving also
sufficient conditions. Some of these difficulties will be overcome for autonomous equations
in the next section.

The motivation of this paper is to propose a new set of admitted transformations for
autonomous systems of stochastic differential equations, where the dependent variables are
included in the transformation. We do not require that the time change in an admitted
Lie group is related to the stochastic time change, thus making possible a wide range of
admitted Lie groups. This new method also confirms that the examples considered in [16,17]
are correct.b

The outline of this paper is as follows. In Sec. 2, we define a new class of admitted trans-
formations for autonomous stochastic differential equations. Geometric Brownian motion is
chosen as an example to illustrate the new approach. In Sec. 3, we extend this new method
to systems of autonomous stochastic differential equations and consider two applications.
Section 4 deals with admitted Lie groups of transformations of autonomous stochastic ordi-
nary differential equations.

2. Transformations of Autonomous Stochastic First-Order
Ordinary Differential Equations

The first step in the study of admitted Lie groups of transformations consists of a discussion
of admitted transformations. Throughout, we will consider transformations of the form

t̄ = H(t, x), x̄ = ϕ(t, x),

where the functions H(t, x) and ϕ(t, x) are sufficiently many times continuously differen-
tiable. The time change in stochastic processes will be of the form

t̄ =
∫ t

0
η2(s,X(s)) ds, (2.1)

for some fixed function η(t, x) > 0. Here {Xt}t≥0 is a stochastic process.

bThe authors of [12], using the approach [16,17] assert that the examples in [16,17] are not correct.
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Recall that if ϕ(t, x) is a continuous function with continuous derivatives ϕt, ϕx, ϕxx,
and a stochastic process {Xt}t≥0 is a solution of the stochastic differential equation

dX = f(t,X) dt + g(t,X) dB, (2.2)

then by Itô’s formula, the process ϕ(t,X) has the stochastic differential

dϕ(t,X) =
(
ϕt + fϕx +

g2

2
ϕxx

)
(t,X) dt + (gϕx)(t,X) dB.

Here f = f(t, x) and g = g(t, x) are measurable deterministic functions and {Bt}t≥0 is
standard Brownian motion.

As is usual, for ease of notation we will omit the stochastic variable ω, switch freely
between the notations Xt, X(t) or X(t, ω), and make the convention that identities hold
a.s. only. We also assume that solutions of all stochastic differential equations exist locally,
that is for t ∈ [0, ε).

2.1. Admitted transformations

Assuming that η(t, x) ≥ c > 0 is continuous in t, formula (2.1) defines a random time
change with time change rate η2(t,X(t, ω)):

βX(t) = β(t,X) =
∫ t

0
η2(s,X(s)) ds (2.3)

whose inverse is

αX(t) = α(t,X) = inf
s≥0

{s : β(s,X) > t}, (2.4)

β(α(t,X),X) = t = α(β(t,X),X), (2.5)

for t ≥ 0 sufficiently small. Using the function ϕ(t, x) and this random time change, one
can define a transformation X̄(t̄) of the stochastic process X(t) by

X̄(t̄) = ϕ(α(t̄, X),X(α(t̄, X))). (2.6)

Setting ψ(t) = ϕ(t,X(t)) it follows that

X̄(β(t,X)) = ψ(t). (2.7)

Now due to Itô’s formula one has

ψ(t) = ψ(0) +
∫ t

0

(
ϕt + fϕx +

g2

2
ϕxx

)
(s,X(s)) ds

+
∫ t

0
(gϕx)(s,X(s)) dB(s). (2.8)

Because X(t) is a solution of (2.2) and ϕx(t, x) is a continuous function, the process
ϕx(t,X(t))g(t,X(t)) is continuous, and gϕx is a nonanticipating functional. According
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to the time change formula for Itô integrals [19], a nonanticipating functional Y (s,X(s))
with

P
(∫ t

0
Y 2 ds+

∫ t

0
η2 ds <∞, t ≥ 0

)
= 1

satisfies the formula∫ αX (t)

0
Y (s) dB(s) =

∫ t

0
Y (αX(s))

1
η(αX (s),X(αX (s)))

dB̄(s).

Correspondingly, the last term of Eq. (2.8) changes to

∫ βX(t)

0
(η−1gϕx)(αX (s),X(αX (s))) dB̄(s).

Since βX(t) =
∫ t
0 η

2(s,X(s)) ds and β(αX(t̄),X) = t, then

η2(αX(t̄),X(αX (t̄))) α′
X(t) = 1,

and hence (2.8) becomes

ψ(t) = ψ(0) +
∫ βX(t)

0

[
η−2

(
ϕt + fϕx +

g2

2
ϕxx

)]
(αX(s),X(αX (s))) ds,

+
∫ βX(t)

0
(η−1gϕx)(αX(s),X(αX (s))) dB̄(s). (2.9)

On the other hand, requiring that X̄(t̄) is a weak solution of Eq. (2.2), one obtains

X̄(t̄) = X̄(0) +
∫ t̄

0
f(s, X̄(s)) ds +

∫ t̄

0
g(s, X̄(s)) dB̄(s).

Substitutingc t̄ = βX(t) into this equation, one gets

X̄(βX(t)) = X̄(0) +
∫ βX(t)

0
f(s, X̄(s)) ds +

∫ βX(t)

0
g(s, X̄(s)) dB̄(s). (2.10)

Equations (2.9) and (2.10) will certainly be equal if the integrands of the two Riemann
integrals and the integrands of the two Itô integrals coincide. Comparing integrands one
obtains,(

ϕt + fϕx +
g2

2
ϕxx

)
(αX(t),X(αX (t))) = f(t, X̄(t)) η2(αX(t),X(αX (t))),

(gϕx)(αX(t),X(αX (t))) = g(t, X̄(t)) η(αX (t),X(αX (t)))

(2.11)

cThese considerations are similar to the constructions applied in [16,17]. It should be noted that there is no
change of variables in the integrands as the authors of [12] misleadingly state.



August 5, 2010 16:26 WSPC/1402-9251 259-JNMP 00070

184 S. V. Meleshko & E. Schulz

for all sufficiently small t. Replacing t by t̄ = βX(t) and using (2.5), these two equations
become (

ϕt + fϕx +
g2

2
ϕxx

)
(t,X(t)) = f(βX(t), X̄(βX(t))) η2(t,X(t)),

(gϕx)(t,X(t)) = g(βX(t), X̄(βX(t))) η(t,X(t)).

Using (2.7), this pair of equations can be rewritten as(
ϕt + fϕx +

g2

2
ϕxx

)
(t,X(t)) = f(βX(t), ϕ(t,X(t))) η2(t,X(t)),

(gϕx)(t,X(t)) = g(βX(t), ϕ(t,X(t))) η(t,X(t)).
(2.12)

From here onwards it is assumed that Eq. (2.2) is autonomous,

dXt = f(Xt) dt + g(Xt) dBt. (2.13)

This assumption makes the time change in (2.12) disappear and allows us to consider these
equations as the deterministic equations for the functions ϕ(t, x) and η(t, x):

ϕt(t, x) + f(x)ϕx(t, x) +
g2(x)

2
ϕxx(t, x) = f(ϕ(t, x)) η2(t, x),

g(x)ϕx(t, x) = g(ϕ(t, x)) η(t, x).
(2.14)

Considering the second equation of (2.14) as an equation defining the function η(t, x),

η(t, x) =
g(x)ϕx(t, x)
g(ϕ(t, x))

,

the first equation becomes the parabolic nonlinear equation

ϕt(t, x) + f(x)ϕx(t, x) +
g2(x)

2
ϕxx(t, x) = f(ϕ(t, x))

(
g(x)ϕx(t, x)
g(ϕ(t, x))

)2

. (2.15)

Thus, if the function ϕ(t, x) is a solution of (2.15) and X(t) is a solution of (2.13), then
ϕ(t,X(t)) will again be a solution of (2.13). In case that

η(t, x) =
g(x)ϕx(t, x)
g(ϕ(t, x))

= 1 (2.16)

the solution ϕ(t,X(t)) is a strong solution, and we call the transformation x̄ = ϕ(t, x)
a strong admitted transformation of (2.13). Otherwise it is called a weak admitted
transformation.

2.2. Geometric Brownian motion

As an example, consider the autonomous stochastic ordinary differential equations

dXt = µXt dt + σXt dBt, (2.17)

where µ > 0 and σ > 0 are constant. Its solution with the initial condition X(0) = X0 is
called geometric Brownian motion.
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Since the solution of the pair of Eqs. (2.15) and (2.16) is trivial: ϕ = kx, where k is
constant, there are no nontrivial strong admitted transformations.

For obtaining weak admitted transformations one has to solve Eq. (2.15) which is now

ϕt + µxϕx +
σ2x2

2
ϕxx = µ

x2ϕ2
x

ϕ
. (2.18)

A simple check shows that this equation admits the Lie group with the generators

X1 = x∂x, X2 = ϕ∂ϕ, X3 = ∂t.

These generators compose an abelian Lie algebra.d Invariant solutions constructed on the
basis of this Lie algebra are exhausted by two classes: one class is based on the generator

X1 − kX2 = x∂x − kϕ∂ϕ,

while the second class is based on the generator

2X3 − λσ2X1 + 2kX2 = 2∂t − λσ2x∂x + 2kϕ∂ϕ,

where k and λ are arbitrarye constants.
The first class of invariant solutions has the representation

ϕ = xkv(t).

Substituting this representation into (2.18), one gets

v′ − k(k − 1)
(
µ− σ2

2

)
v = 0.

Hence, the transformation is

ϕ = Cxk exp
(
tk(k − 1)

(
µ− σ2

2

))
. (2.19)

The second class has the representation

ϕ = ektv(z), z = xeλσ2t/2. (2.20)

Substituting this representation into (2.18), one gets

σ2z2vv′′ + z(λσ2 + 2µ)vv′ − 2µz2v′ 2 + 2kv2 = 0.

This equation is linearizable. Introducing y = ln(z) similar to the linear Euler equation, it
can be reduced to the equation

vv′′ + k1vv
′ − (γ + 1)v′ 2 + k3v

2 = 0, (2.21)

where the constants are

γ = 2
µ

σ2
− 1, k1 = γ + λ, k3 = 2

k

σ2
.

dThe admitted Lie algebra of Eq. (2.18) is infinite dimensional.
eHere signs and scales of these constants have been chosen for convenience in computations.
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This equation can be mapped into the free particle equation u′′(τ) = 0 by the change of
variables

u = h(y)v−γ , τ = q(y),

where

q′ = h2e−k1y, h′ = ψh, ψ′ = ψ2 − k1ψ − k3γ. (2.22)

Thus, the general solution of (2.21) is

h(y)v−γ = c̃1q(y) + c̃0.

Solutions of (2.18) of the form ϕ = v(z), (i.e. k = 0 in (2.20)) depend on the
parameter k1.

If k1 = 0, then

ψ = −1
y
, h =

1
y
, q = −1

y
,

ϕ = (c1y + co)−1/γ , y = ln(x) − tγσ2/2.
(2.23)

If k1 �= 0, then

ψ =
k1

1 + ek1y
, h =

ek1y

1 + ek1y
, q =

1
k1

ek1y

1 + ek1y
, y = ln(x) + λtσ2/2

ϕ = (c1 + cox
−k1e−k1λtσ2/2)−1/γ .

(2.24)

3. Autonomous Systems of Stochastic First-Order ODEs

The approach developed above is easily extended to systems of autonomous stochastic first-
order ordinary differential equations. For simplicity, we illustrate this with a system of two
equations

dX1 = f1(X1,X2) dt+ g1(X1,X2) dBt,

dX2 = f2(X1,X2) dt+ g2(X1,X2) dBt.
(3.1)

Let us make a transformation of the dependent variables,

x̄1 = ϕ1(t, x1, x2), x̄2 = ϕ2(t, x1, x2).

Comparison of integrands as in (2.11) leads to the equations

η−2

(
ϕ1t + f1ϕ1x1 + f2ϕ1x2 +

g2
1

2
ϕ1x1x1 + g1g2ϕ1x1x2 +

g2
2

2
ϕ1x2x2

)
= f1(ϕ1, ϕ2),

η−2

(
ϕ2t + f1ϕ2x1 + f2ϕ2x2 +

g2
1

2
ϕ2x1x1 + g1g2ϕ2x1x2 +

g2
2

2
ϕ2x2x2

)
= f2(ϕ1, ϕ2),

η−1(g1ϕ1x1 + g2ϕ1x2) = g1(ϕ1, ϕ2),

η−1(g1ϕ2x1 + g2ϕ2x2) = g2(ϕ1, ϕ2).

(3.2)

Here on the left-hand sides, η = η(t, x1, x2), fi = fi(t, x1, x2), and gi = gi(t, x1, x2), i = 1, 2.
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Next two applications are considered: autonomous stochastic differential equations of
order greater than one, and deterministic change of Brownian motion.

3.1. Second-order stochastic ordinary differential equation

Notice that a second-order stochastic ordinary differential equation

dẊ = f(X, Ẋ) dt + g(X, Ẋ) dBt,

can be rewritten as the system of first-order stochastic ordinary differential equations

dX1 = X2 dt,

dX2 = f(X1,X2) dt+ g(X1,X2) dBt,

where as is usual for deterministic differential equations, X1 = X, X2 = Ẋ have been
applied. Equations (3.2) become

η−2(ϕ1t + x2ϕ1x1) = ϕ2,

η−2

(
ϕ2t + x2ϕ2x1 + fϕ2x2 +

g2

2
ϕ2x2x2

)
= f(ϕ1, ϕ2),

ϕ1x2 = 0, η−1gϕ2x2 = g(ϕ1, ϕ2).

(3.3)

We observe that the first equation is similar to the prolongation formula if one takes into
account the change of time

β(t,X, Ẋ) =
∫ t

0
η2(s,X(s), Ẋ(s)) ds.

From the last equation in (3.3) one finds

η(t, x1, x2) =
g(x1, x2)ϕ2x2(t, x1, x2)

g(ϕ1(t, x1, x2), ϕ2(t, x1, x2))
. (3.4)

Substituting (3.4) into the remaining equations of (3.3), one obtains an overdetermined
system of partial differential equations for the functions ϕ1(t, x1, x2) and ϕ2(t, x1, x2):

ϕ1x2 = 0, ϕ1t + x2ϕ1x1 = ϕ2

(
g

ϕ2x2

g(ϕ1, ϕ2)

)2

,

ϕ2t + x2ϕ2x1 + fϕ2x2 +
g2

2
ϕ2x2x2 = f(ϕ1, ϕ2)

(
g

ϕ2x2

g(ϕ1, ϕ2)

)2

.

(3.5)

For example, for the Ornstein–Uhlenbeck equation

dẊ = −bẊ dt+ σ dBt,

where b > 0 is the friction coefficient and σ �= 0 is the diffusion coefficient, Eqs. (3.5) become

ϕ1x2 = 0, ϕ1t + x2ϕ1x1 = ϕ2ϕ
2
2x2
,

ϕ2t + x2ϕ2x1 − bx2ϕ2x2 + σ2

2 ϕ2x2x2 = −bϕ2ϕ
2
2x2
.
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3.2. Deterministic change of Brownian motion

Considering (2.13) as a system of equations,

dX1 = f(X1)dt + g(X1)dBt,

dX2 = dBt,

where we have set X1 = X, one can include Brownian motion into the transformation (2.6).
Equations (3.2) become

ϕ1t + fϕ1x1 + g2

2 ϕ1x1x1 + gϕ1x1x2 + 1
2ϕ1x2x2 = f(ϕ1)(gϕ2x1 + ϕ2x2)

2,

ϕ2t + fϕ2x1 + g2

2 ϕ2x1x1 + gϕ2x1x2 + 1
2ϕ2x2x2 = 0,

gϕ1x1 + ϕ1x2 = g(ϕ1)(gϕ2x1 + ϕ2x2),

η = gϕ2x1 + ϕ2x2 .

For example, for geometric Brownian motion,

ϕ1t + µx1ϕ1x1 + σ2x2
1

2 ϕ1x1x1 + σx1ϕ1x1x2 + 1
2ϕ1x2x2 = µϕ1(σx1ϕ2x1 + ϕ2x2)

2,

ϕ2t + µx1ϕ2x1 + σ2x2
1

2 ϕ2x1x1 + σx1ϕ2x1x2 + 1
2ϕ2x2x2 = 0,

σx1ϕ1x1 + ϕ1x2 = σϕ1(σx1ϕ2x1 + ϕ2x2),

η = σx1ϕ2x1 + ϕ2x2 .

One solution of these equations is

ϕ1 = eσ(k1x2+k2)q(z), ϕ2 = k1x2 + k2 + k3z
1−γ ,

where ki (i = 1, 2, 3) are arbitrary constants, z = x1e
−σx2 , and the function q(z) is a solution

of the linear second-order Euler-type equation

z2q′′ + γzq′ − γk2
1q = 0.

For this solution,

η = k1.

In particular, if k1 = 1, k2 = k3 = 0, this transformation becomes

ϕ1 = c1x1 + c2x
−γ
1 eσ(γ+1)x2 , ϕ2 = x2,

where ci (i = 1, 2) are arbitrary constants.

4. Admitted Lie Groups of Transformations

In this section we show how a Lie group of transformations can be associated to an
autonomous stochastic ordinary differential equation.
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4.1. Lie group of transformations

Consider a general system of stochastic ordinary differential equations:

dXi = fi(t,X)dt + gik(t,X)dBk (i = 1, . . . , n; k = 1, . . . , r). (4.1)

Assume further that the set of transformations

t̄ = H(t, x, a), x̄i = ϕi(t, x, a) (4.2)

composes a one-parameter Lie group with the infinitesimal generator

h(t, x)∂t + ξi(t, x)∂xi .

Since the initial point in the Riemann and Itô integrals is fixed (t = 0), then it has to be
invariant under admitted transformations. This gives

h(0, x) = 0 (4.3)

as one of the conditions for the group to be admitted. This requirement can be omitted if
one allows changes of the initial point in the integrals.

According to Lie’s theorem, the functions H(t, x, a) and ϕ(t, x, a) satisfy the Lie
equations

∂H

∂a
= h(H,ϕ),

∂ϕi

∂a
= ξi(H,ϕ) (4.4)

and the initial conditions for a = 0:

H(t, x, 0) = t, ϕi(t, x, 0) = xi. (4.5)

Using the functions ϕi(t, x, a), one can define a transformation X̄(t̄) of a stochastic process
X(t) by

X̄(t̄) = ϕ(α(t̄, X, a), X(α(t̄, X, a)), a), (4.6)

where the functions β(t,X, a) and α(t̄, X, a) are as in formulae (2.4) and (2.5), but with
η = η(t, x, a). This gives an action of Lie group (4.2) on the set of stochastic processes.
Replacing t̄ by β(t,X, a), one obtains

X̄(β(t,X, a)) = ϕ(t,X(t), a).

In contrast to deterministic differential equations, one notices that the functionH(t, x, a)
is not involved in the definition of the transformed stochastic process (4.6). In fact, the
time change of the stochastic process is not defined through (4.2), but is the stochastic time
change (2.3). Nevertheless, one can still relate the function η(t, x, a) with the Lie group,
in analogy with deterministic differential equations. For deterministic differential equations
the function η2 plays the role of the total derivative of the function H(t, x, a) with respect
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to t: η2 = H,t +H,iẋi. Since the stochastic process X(t) is not differentiable, other relations
need to be considered instead. The simplest relation,

H,t = η2 (4.7)

was applied in [16, 17]. Since for deterministic differential equations ẋi = fi, one may also
choose the following relation,

H,t +H,ifi = η2. (4.8)

Recall that for stochastic differential equations the Itô formula plays the role of the total
derivative. Hence, one further relation between the Lie group and the function η(t, x, a) can
be considered,

H,t +H,ifi +
1
2
gjkglkH,jl = η2. (4.9)

Since H,t(t, x, 0) = 1 and H,xi(t, x, 0) = 0, none of these choices contradicts positivity of
the right-hand side.

In calculations of an admitted Lie group of transformations for Eq. (4.1) it is useful to
introduce the function

τ(t, x) =
∂η

∂a
(t, x, 0).

If one assumes any of the relations (4.7)–(4.9), then similar to deterministic differential equa-
tions, the functions τ(t, x) and ξi(t, x) define a Lie group of transformations for stochastic
processes. In fact, if the function τ(s, x) is given, then the function h(t, x) is the unique
solution of the Cauchy problems,

h,t = 2τ, h(0, x) = 0,

h,t + h,ifi(t, x) = 2τ, h(0, x) = 0,

h,t + h,ifi +
1
2
gjkglkh,jl = 2τ, h(0, x) = 0,

(4.10)

respectively. Integrating the Lie equations (4.4) with the initial conditions (4.5), one then
finds the functions H(t, x, a) and ϕ(t, x, a). Notice that each of these Cauchy problems has
a unique solution.

4.2. Admitted Lie group

The problem which remains is to find sufficient conditions which guarantee that the trans-
formed process (4.6) is again a solution of the system (4.1). In the following we will over-
come the difficulties encountered in [16,17] for autonomous equations of form (2.13).f Our
approach is to use the admissibility condition for transformations (2.15) to define admitted
Lie groups of transformations. In particular, the stochastic time change (2.3) need not be
directly related with the time change (4.2) by the admitted Lie group.

f In [12] the authors also tried to correct [16, 17]. Their attempt led to the strong restriction: all possible
admitted transformations are fiber preserving.
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Assume that the deterministic functions ϕ(t, x, a) and H(t, x, a) compose a Lie group
of transformations G with generator

Y = h(t, x)∂t + ξ(t, x)∂x.

Then the functions ϕ(t, x, a) and H(t, x, a) satisfy the Lie equations

∂ϕ

∂a
(t, x, a) = ξ(H(t, x, a), ϕ(t, x, a)),

∂H

∂a
(t, x, a) = h(H(t, x, a), ϕ(t, x, a)), (4.11)

and the initial conditions

ϕ(t, x, 0) = x, H(t, x, 0) = t.

Requiring that ϕ(t, x, a) be admitted by the stochastic differential equation

dXt = f(Xt) dt + g(Xt) dBt, (4.12)

it has to satisfy Eq. (2.15) as well. Thus we obtain the following definition.

Definition 1. The Lie group G is admitted by the autonomous stochastic differential
equation (4.12) if it satisfies the equation

S(t, x, a) ≡ ϕt(t, x, a) + f(x)ϕx(t, x, a) +
g2(x)

2
ϕxx(t, x, a)

− f(ϕ(t, x, a))
(
g(x)ϕx(t, x, a)
g(ϕ(t, x, a))

)2

= 0. (4.13)

This definition of admitted Lie group overcomes the difficulties described in the Intro-
duction. It is similar to one of definitions of admitted Lie group for deterministic equations.

4.3. Determining equations

For finding an admitted Lie group one can directly solve Eq. (4.13). A solution ϕ(t, x, a)
of (4.13) determines the coefficient

ξ(t, x) =
∂ϕ

∂a
(t, x, 0).

If ξt = 0, then by virtue of the uniqueness of the solution of the Cauchy problem for the
Lie equations, one has that ϕt(t, x, a) = 0. Hence, ϕ(t, x, a) is a solution of the second-order
nonlinear ordinary differential equation

f(x)ϕx(t, x, a) +
g2(x)

2
ϕxx(t, x, a) − f(ϕ(t, x, a))

(
g(x)ϕx(t, x, a)
g(ϕ(t, x, a))

)2

= 0. (4.14)

In this case the function H may be chosen as the solution of the Cauchy problem

∂H

∂a
(t, x, a) = h(H(t, x, a), ϕ(t, x, a)), H(t, x, 0) = t.

Here the function h(t, x) is an arbitrary function. The choice of the function h(t, x) may
depend on additional conditions one imposes, such as (4.7) for example. If there are no
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additional conditions, then one can chose h(t, x) = 1, which gives H(t, x, a) = t. This
means that the Lie group only acts on the space variables.

If ξt �= 0, then the first equation of the Lie equations (4.11) defines the functionH(t, x, a).
As an alternative for finding an admitted Lie group, one can also use the determining

equations obtained by expanding the left-hand side of Eq. (4.13) with respect to the group
parameter a,

S(t, x, a) = aSa(t, x, 0) +
a2

2!
Saa(t, x, 0) +

a3

3!
Saaa(t, x, 0) + · · · .

By virtue of the Lie equations (4.11), the coefficients ∂kS
∂ak (t, x, 0) of this expansion can

be written through the coefficients of the infinitesimal generator. For example, the first
coefficient of the expansiong is

Sa(t, x, 0) = ξt − f(x)ξx +
g2(x)

2
ξxx +

(
2f(x)

g′(x)
g(x)

− f ′(x)
)
ξ.

Necessary conditions for S(t, x, a) = 0 are ∂kS
∂ak (t, x, 0) = 0. In case that ξt = 0 the equation

Sa(t, x, 0) = 0 is a linear second-order ordinary differential equation, in contrast to the
nonlinear equation (4.14), and its solution also gives a sufficient condition for S(t, x, a) = 0.
Conversely, in the example considered below, ∂kS

∂ak (t, x, 0) = 0 (k = 1, 2, 3) are already
sufficienth to guarantee that S(t, x, a) = 0 for general ξ.

4.4. Admitted Lie group of geometric Brownian motion

For geometric Brownian motion,

f = µx, g = σx, (µ > 0, σ > 0),

and Eq. (4.13) is

ϕt + µxϕx +
σ2x2

2
ϕxx − µx2ϕ

2
x

ϕ
= 0. (4.15)

Particular solutions of this equation were obtained in Subsec. 2.2.
Let us consider the solution (2.19),

ϕ = Cxk exp(tk(k − 1)γσ2/2). (4.16)

If k = 1, then setting C = ea, one obtains ξ = x. Since ξt = 0, then H = t. Hence, the
admitted generator is

x∂x. (4.17)

This generator was also obtained in [17] and later in [12].

gThe remaining terms of the expansion are cumbersome and not presented here.
hThere is the problem to find the minimal number N of the terms of the expansion ∂kS

∂ak (t, x, 0) = 0
(k = 1, 2, . . . , N) which guarantees that S(t, x, a) = 0.
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If k �= 1, then setting k = ea, one obtains

ξ = x(ln(x) + tγσ2/2).

Since ξt �= 0, one also finds

H(t, x, a) = te2a.

Hence, the admitted generator is

2t∂t + x(ln(x) + tγσ2/2)∂x. (4.18)

This generator was also obtained in [12].
Solutions corresponding to (2.23) do not satisfy the property

ϕ(t, x, 0) = x.

Let us study the possibility that the solutions corresponding to (2.24),

ϕ = (c1 + cox
−k1e−k1λtσ2/2)−1/γ , k1 = γ + λ (4.19)

compose a Lie group. Assume that c1 = c1(a), co = co(a), λ = λ(a). Since for a Lie group
ϕ(t, x, 0) = x, then

c1(0) = 0, co(0) = 1, λ(0) = 0.

The coefficient of the infinitesimal generator is obtained by differentiating (4.19) with
respect to the group parameter a and setting it to zero:

ξ =
λ′(0)
γ

x(ln(x) + tγσ2/2) − c′o(0)
γ

x− c′1(0)
γ

xγ+1.

Forming a linear combination with the generators (4.17) and (4.18) one obtains only one
additional generator,

xγ+1∂x. (4.20)

This generator was also obtained in [17], taking into account the additional condition (4.10).
It is worth to notice that since solutions (2.19), (2.23) and (2.24) are particular solutions

of Eq. (4.15), the generators (4.17), (4.18) and (4.20) do not exhaust the set of admitted
generators.

Let us employ the determining equations ∂kS
∂ak (t, x, 0) = 0, (k = 1, 2, . . .) for finding an

admitted Lie group. The first determining equation is

2ξt − 2µxξx + σ2x2ξxx + 2µξ = 0

or

2ξt + σ2(x2ξxx − (γ + 1)xξx + (γ + 1)ξ) = 0. (4.21)

If ξt = 0, then the general solution of this equation is

ξ = C1x+ C2x
γ+1.



August 5, 2010 16:26 WSPC/1402-9251 259-JNMP 00070

194 S. V. Meleshko & E. Schulz

If ξt �= 0, then from the equations Sa = 0 and Saa = 0 one can find ξt and ht. Substituting
them into Saaa = 0, one obtains the equation

∂5ξ

∂x5
hhx + Φ

(
x, ξ, ξx, . . . ,

∂4ξ

∂x4
, h, hx, . . . ,

∂3h

∂x3

)
= 0. (4.22)

Further study depends on the value of hx.
If hx = 0, then

ht = 2(ξx − ξ/x).

The general solution of this equation is

ξ =
x

2
(ht ln(x) + 2h1),

where h1 = h1(t) is an arbitrary function of the integration. Substituting this solution
into (4.21), and splitting it with respect to x, one finds

htt = 0, h′1 = (γ + 1)σ2/4.

This gives that

h = c1t+ c0, h1 = t(γ + 1)σ2/4 + c2,

where c0, c1 and c2 are arbitrary constants. The requirementi (4.3) forces the constant c0
to vanish and one thus obtains the generators (4.17) and (4.18).

If hx �= 0, then Eq. (4.22) gives ∂5ξ
∂x5 . The equations

∂5

∂x5

(
∂ξ

∂t

)
=

∂

∂t

(
∂5ξ

∂x5

)

and ∂kS
∂ak (t, x, 0) = 0 (k = 1, 2, . . .) are satisfied.j Since, there are no other equations for the

function h(t, x), there is an infinite number of linearly independent admitted generators.

Remark 1. In [17] the admitted Lie group

ϕ(t, x, a) = (a+ x−γ)−1/γ , H(t, x, a) = t(1 + axγ)−2

for geometric Brownian motion was presented as an example. In the context of the present
paper, this group arises from transformation (4.19) with λ = co = 0 and the additional
relation (4.7).

iIn [12] the constant c0 is mistakenly kept.
jUsing symbolic calculations on computer we checked equations ∂kS

∂ak (t, x, 0) = 0, k ≤ 7. It is likely that this
identity holds for all large k.
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Another example considered in [17] is the equation

dXt = µdt+ dBt,

where µ > 0 is constant. Here Eq. (4.13) becomes

ϕt + µϕx +
1
2
ϕxx − µϕ2

x = 0.

One easily verifies that the function obtained in [17],

ϕ(t, x, a) = x− 1
2µ

ln(1 − 2µae2µx)

solves this equation. The additional relation (4.7) then yields

H(t, x, a) = t(1 − 2µae2µx)−2

as already obtained in [17]. This confirms that the examples of transformations considered
in [17] are correct, contrary to what [12] claims.

5. Conclusion

We have shown how one may associate a Lie group of transformations to a stochastic
differential equation in a way which allows the stochastic process to be included in the time
change. In case of autonomous equations, the change of time is determined solely by the
change of the spatial variable. We thus were able to formulate sufficient conditions for a Lie
group of transformations to be admitted.

While the transformations determined by the Lie group map solutions of the stochastic
differential equation to solutions, the change of time in the stochastic process no longer
coincides with the change of time by the Lie group. Hence, there is no need to apply Itô’s
formula to the latter, removing a restriction imposed in [12].
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[14] G. Ünal and J. Q. Sun, Symmetries conserved quantities of stochastic dynamical control sys-
tems, Nonlinear Dynam. 36 (2004) 107–122.
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