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We study the shape of inflated surfaces introduced in [3] and [12]. More precisely, we analyze profiles
of surfaces obtained by inflating a convex polyhedron, or more generally an almost everywhere flat
surface, with a symmetry plane. We show that such profiles are in a one-parameter family of curves
which we describe explicitly as the solutions of a certain differential equation.
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1. Introduction

The classical isoperimetric problem says that the sphere is the unique surface of a given area
which encloses the maximal volume (see e.g. [6]). However, when the area is substituted
with other functionals of the intrinsic metric, the uniqueness disappears and the problem
becomes very difficult and sometimes intractable.

In this paper we study the geometry of inflated surfaces, defined as the surfaces Σ of
maximal volume among all embedded surfaces homeomorphic to a sphere whose intrinsic
metric is a submetric to the intrinsic metric of Σ. In other words, we require that for every
surface Σ′ homeomorphic to Σ if all geodesic distances between points in Σ′ are less or equal
to the geodesic distances between the corresponding points in Σ, then the volume of Σ′ is
less or equal to that of Σ. This notion was originally introduced by Bleecker [3], and further
studied in [12].

Of course, every sphere is an inflated surface, since the smaller geodesic distances imply
smaller surface area. However, not every convex surface is an inflated surface; in fact, very
few of them are. For example, it was shown in [4] that not all ellipsoids with distinct axes
are inflated surfaces, and possibly none of them are. To see an example of this phenomenon,
consider a nearly flat ellipsoid Σ, with two large equal axes and one very small one. Think
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of the surface of Σ as of non-stretchable closed balloon and blow some air into it. Although
the resulting surface is non-convex, it is still isometric to Σ and encloses a larger volume,
implying that Σ is not an inflated surface.

The idea behind inflated surfaces is to start with a given surface S and blow air into it
until no longer possible. The resulting surface Σ = Σ(S) will be the inflated surface, and
will typically be non-convex and not everywhere smooth even if S was convex and smooth.
Also, in the limit the geodesic distances can (and typically do) become smaller in Σ than
in S, so the inflated surface Σ (perhaps, counterintuitively) has larger volume and smaller
area than S. See Secs. 6, 7 and [12] for many examples and conjectures on inflated surfaces.

Unfortunately, little is known about uniqueness and regularity of inflated surfaces, even
in the most simple cases. We are motivated by [15] (see also [11]), where the shape of a
Mylar balloon was computed, defined as the inflated surface of a doubly covered disc (glued
along the boundary circle). In this case the symmetry can be utilized to obtain a complete
profile by solving a one-dimensional variational problem. We consider a large class of almost
everywhere flat convex surfaces with a plane symmetry. Examples include doubly covered
regular polygons, cubes (or more general brick surfaces), other Platonic and Archimedean
solids, etc. We then use tools from classical differential geometry and certain heuristic
assumptions to compute the profile of the corresponding inflated surfaces, defined as the
shape of the curve in the symmetry plane. We show that there is essentially one parametric
family of such profiles, which are all solutions of a special third order differential equation.
Given the variety of examples which include the Mylar balloon, this result may again seem
counterintuitive. This is the first result on the shape of general inflated surfaces.

The rest of this paper is structured as follows. In the next section we give formal defini-
tions and state the main theorem. In Sec. 3, we present a heuristic argument on the metric
of the inflated surfaces.a We use these results in Sec. 4 to write explicit equations on the
curvature of inflated surfaces obtained by an inflation of a nearly flat surfaces. In Sec. 5 we
use the plane symmetry to prove the main result. In the following section (Sec. 6) we discuss
a number of special cases and make a special emphasis on the regularity assumptions. We
conclude with final remarks in Sec. 7.

2. Definitions and Main Results

Let S be a closed compact surface embedded in R
3 and homeomorphic to a sphere. Through-

out the paper we assume our surfaces S are C5 smooth everywhere except on a finite union
of curves in S. We further discuss the regularity assumptions in Sec. 7.

We say that the surface S′ ⊂ R
3 is submetric to S, write S′ � S, if there exists

a Lipschitz 1 homeomorphism f : S → S′, i.e. such that the geodesic distance satisfies
|f(x)f(y)|S′ ≤ |xy|S for all x, y ∈ S. In particular, if S′ is isometric to S, then it is also
submetric. Define

υ(S) = sup
S′�S

vol(S′),

where here and throughout the paper by vol(S) we denote the volume enclosed by the
surface S.

aAs we mention later on, this argument can be made rigorous under certain regularity assumptions.
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It is natural to assume, and has been explicitly conjectured in [12], that when S is
convex there is a unique (up to rigid motions) embedded surface Σ = Σ(S) which attains
the supremum: vol(Σ) = υ(S). The surface Σ is the inflated surface, and we also refer to Σ
as the inflation of S.

From now on we consider only surfaces S which are convex and almost everywhere flat.
The example include the surfaces ∂P of convex polytopes P ⊂ R

3, doubly covered convex
plane regions. Our goal is the description of Σ = Σ(S), which we assume to be uniquely
defined and satisfy the above regularity assumptions.

We are now ready to present the main result of this paper. Suppose S is symmetric
with respect to a plane H, and let C = Σ ∩H be the profile of Σ. We assume that Σ is C5

smooth in the neighborhood of C. (if C contains finitely many non-smooth points, consider
a portion of C between them). Let k = k(t) be the geodesic curvature of C, considered as
a curve in H, and parameterized by the length of C.

Theorem 2.1. The curvature k(t) of the profile C satisfies the following differential
equation:

k(t)k′′′(t) − k′(t)k′′(t) + k3(t)k′(t) = 0. (1)

As a corollary, we conclude that non-constant solutions of k(t) for which k(0) = 0 are
given by the following integral formula:

∫ k(t)

0

du√
(µ − λ2) + 4λu2 − u4

= ± t

2
,

where λ, µ ∈ R are constants.
Note that the solutions are invariant under the change k → λk, t → t/λ. This can

be seen immediately from the invariance of Eq. (1) under the same change of variables.
Therefore, there is only a one-parameter family of possible profiles, up to dilation. The
examples and other applications of the theorem will be given in Sec. 6.

3. Basic Description

Let S ⊂ R
3 be an almost everywhere flat convex surface as in the previous section. For

simplicity, the reader can always assume that S is the surface of a convex polytope, even
though our results hold in greater generality. As before, we denote by Σ the inflation of S.
We call g0 and g the metrics on S and Σ, respectively. We also call J0 and J the conformal
structures of the metrics g0 and g. By definition, g is obtained by contracting g0 in some
directions (at some points) and has maximal interior volume under this condition. Call Ω
the subset of Σ where some direction is contracted. So Ω is an open subset of Σ.

Claim 3.1. (1) At each point x ∈ Ω one direction is not contracted. We call ξ a unit vector
in the non-contracted direction, and σ the contraction factor in the direction orthogonal
to ξ.

(2) The integral curves of ξ are geodesics for g.
(3) They are also geodesics for g0.
(4) At each point of Ω, II(ξ, ξ) ≥ 0.
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Proof. For (1), note that if all directions are contracted it is possible to deform a little
the surface Σ by making a little “bump”, then g remains smaller than g0 while the interior
volume increases.

Part (2) follows from the fact that if integral curves of ξ are not geodesics in the neigh-
borhood of some point x0, then it is possible to deform Σ by adding a little “bump” while
“correcting” the variation of the integral curves of ξ by deforming them towards their con-
cave side on Σ. All those curves then keep the same length and g remains smaller than g0

while the volume increases.
For (3), let γ be a segment of integral curve of ξ, so that by (2) it is geodesic for g.

After replacing γ by a shorter segment if necessary, we can assume that γ is the unique
minimizing segment between its endpoints. Let γ0 be a minimizing segment for g0 between
the endpoints of γ. Denote by Lg the length for g, and by Lg0 the length for g0. Then
Lg(γ) ≤ Lg(γ0) since γ is minimizing for g, while Lg0(γ0) ≤ Lg0(γ) since γ0 is minimizing
for g0.

On the other hand, from above, metric g is obtained from g0 by contracting some
directions, so that Lg(γ0) = Lg0(γ0). Putting the above inequalities together, we obtain:

Lg(γ) ≤ Lg(γ0) ≤ Lg0(γ0) ≤ Lg0(γ).

But we also know that Lg(γ) = Lg0(γ), precisely because γ is an integral curve of ξ. It
follows from here that the three inequalities above are actually equalities, so that γ0 = γ.
This finishes the proof of part (3).

For (4), if II(ξ, ξ) < 0, then it is possible to add a small “bump” increasing the volume
and shortening all integral curves of ξ, a contradiction.

Remark 3.2. Let us note that if S and S′ are the doubly covered polygons Q and Q′,
respectively, and Q ⊂ Q′, then the surface obtained by inflating S is not necessarily con-
tained in the surface obtained by inflating S′. For example, take Q to be a square and Q′ to
be a very thin rectangle of length almost the diagonal of Q. On the other hand, the volumes
of the inflated surfaces are monotonic in this case: υ(S) ≤ υ(S′) (cf. [12, Sec. 5.1]).

4. Equations

In this section we present the equations satisfied by the data describing g and Σ as a surface
in R

3. The basic hypothesis here is that Σ is the image of S by a contracting immersion
(singular at the cone points of Σ0 of course) which is a critical point of the volume among
such contracting immersions.

Note first that the integral curves of ξ are not necessarily parallel on S; this apparently
happens a lot in interesting situations but for the moment we stick to a more general setting.
Consider such a line ∆0, and another such line ∆ very close to it. Let y be the function on
∆0 defined as the distance between ∆0 and ∆ along the normal to ∆0, and set

ρ = y′/y.

Then ρ makes sense as a limit y → 0.
To simplify notations we use a prime for derivation along ξ, i.e., for any function f on

Σ, f ′ = df(ξ). We use a dot for the derivation along J0ξ, i.e., ḟ = df(J0ξ).
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Lemma 4.1. The curvature of g is given by the following equation:

K = −σ′′/σ − 2ρσ′/σ.

Proof. The distance between ∆0 and ∆ (for g now) is σy. Since both lines are geodesics, a
basic argument on Jacobi fields on Riemannian surfaces gives that K = −(yσ)′′/(yσ), and
the result follows from y′′ = 0.

It is necessary to consider the second fundamental form of Σ, we write its coefficients in
the basis (ξ, Jξ) as

( k0δ
δ k1

)
.

Lemma 4.2. K = k0k1 − δ2.

Proof. This is the Gauss formula.

Lemma 4.3. The curvature k0 is proportional to yσ along integral curves of ξ. In other
words,

k′
0/k0 = σ′/σ + y′/y.

Proof. Consider two bumps along an integral curve of ξ, in opposite directions so that
the total length is not changed. The variation of length is proportional to k0 and to the
normal displacement, while the variation of volume is proportional to yσ times the normal
displacement. This implies the result.

Proposition 4.4. Let ∇ be the Levi-Civita connection of g. Then ∇ξξ = 0, while ∇Jξξ =
(σ′/σ + ρ)Jξ.

Proof. The first point is a direct consequence of point (3) of Claim 3.1, since ξ is a unit
vector field for g.

For the second point, let ∇0 be the Levi-Civita connection of g0. The definition of ρ

shows that ∇0
J0ξξ = ρJ0ξ, while Claim 3.1 shows that ∇0

ξ(J0ξ) = 0. Therefore

[ξ, J0ξ] = ∇0
ξ(J0ξ) −∇0

J0ξξ = −ρJ0ξ.

By definition of σ, g(J0ξ, J0ξ) = σ2, so that J0ξ = σJξ, so that

[ξ, Jξ] =
[
ξ,

1
σ

J0ξ

]
=

1
σ

[ξ, J0ξ] +
(

ξ.
1
σ

)
J0ξ = − ρ

σ
J0ξ − ξ.σ

σ2
J0ξ = −ρJξ − σ′

σ
Jξ,

and the result follows.

Lemma 4.5. The Codazzi equation can be written as:

δ′ − k̇0/σ + 2δ(σ′/σ + ρ) = 0, and

k′
1 − δ̇/σ + (k1 − k0)(σ′/σ + ρ) = 0.

Proof. Let B be the shape operator of Σ, i.e., II(u, v) = I(Bu, v). Then the Codazzi
equation is

(∇uB)(v) − (∇vB)(u) = 0,
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where ∇ is the Levi-Civita connection on Σ, and u, v are any two vector fields. Writing this
for ξ, Jξ we get:

∇ξ(BJξ) − B(∇ξ(Jξ)) −∇Jξ(Bξ) + B(∇Jξξ) = 0.

Now expressing this in terms of the coefficients of II, we obtain:

∇ξ(δξ + k1Jξ) −∇Jξ(k0ξ + δJξ) + B((σ′/σ + ρ)Jξ) = 0.

Therefore,

δ′ξ+k′
1Jξ−dk0(Jξ)ξ−k0(σ′/σ+ρ)Jξ−dδ(Jξ)Jξ+δ(σ′/σ+ρ)ξ+(σ′/σ+ρ)(δξ+k1Jξ) = 0.

On the other hand, σJξ = J0ξ, so dδ(Jξ) = δ̇/σ, and similarly dk0(Jξ) = k̇0/σ. Separating
the terms in ξ and in Jξ gives

δ′ − k̇0/σ + δ(σ′/σ + ρ) + (σ′/σ + ρ)δ = 0.

We conclude:

k′
1 − k0(σ′/σ + ρ) − δ̇/σ + (σ′/σ + ρ)k1 = 0,

which implies the result.

5. Lines of Symmetry

In this section we consider a special case as in the main theorem (Theorem 2.1), when S has
a symmetry plane H. Consider an integral curve of ξ ⊂ Σ∩H, which means that it is a line
of symmetry of the inflated surface. For example, in a Mylar balloon, all segments going
through the center are such lines of symmetry. Other examples include the case when S is
the doubly covered regular polygon or a rectangle. In each case plane H is orthogonal to
the polygon and is a symmetry plane of both S and Σ.

We consider the case of a regular polygon for simplicity; as the reader will see the general
case follows by the same argument. Let Q be a regular n-gon, made by gluing n copies of
a triangle T = (OAB). The copies of T are all glued so that their vertices O are glued
together. Moreover the triangle is symmetric with respect to the line orthogonal to AB

going through O. Denote by E be the midpoint of AB.
As before, we assume that there is a unique surface Σ which has maximal volume and

is submetric to S. It follows from uniqueness that this surface has all the symmetries of Σ0.
So it sufficient to study the quantities describing the situation on T .

The equations above simplify somewhat when considered on an axis of symmetry, for
instance on the segment OE of the triangle considered above. Then δ = 0, and k̇0 = k̇1 = 0.
Such lines are lines of curvature (integral lines of the curvature directions), we suppose that
the corresponding principal curvature is k0. In that case the three basic equations reduce
to the following:

• for the Gauss equation,

k0k1 = −(σy)′′

σy
, (2)



August 5, 2010 16:25 WSPC/1402-9251 259-JNMP 00057

Profiles of Inflated Surfaces 151

• for the Codazzi equation,

k′
1 =

(
σ′

σ
+

y′

y

)
(k0 − k1), (3)

• for the “conservation of curvature”,

k′
0

k0
=

σ′

σ
+

y′

y
. (4)

One can use this last expression in the previous two to get

k0k1 = −(σy)′′

σy
= −

(
(σy)′

σy

)′
−

(
(σy)′

σy

)2

= −
(

k′
0

k0

)′
−

(
k′

0

k0

)2

= −k′′
0

k0
,

k0k
′
1 = (k0 − k1)k′

0.

Replacing k1 in those equations, we find after simple computations that k0 satisfies equa-
tion (1), which we recall for convenience:

k k′′′ − k′ k′′ + k3 k′ = 0. (5)

As we mentioned in Sec. 3, this equation is invariant under the transformation k �→ λk,
t �→ t/λ, which makes sense since this homogeneity condition on k2 corresponds to the
invariance of the class of inflated surfaces under scaling.

The other key quantities describing the surface at the symmetry line can then be recov-
ered from k. Setting u = σy, we get:

u′

u
=

k′

k
.

From here we see that u is proportional to k, while

k1 = −k′′

k2
.

Finally, let us mention that Eq. (5) can be solved implicitly in the following cases. The
proof is straightforward.

Proposition 5.1. The solutions of (5) vanishing at t = 0 are k = 0, and the functions
defined implicitly by

∫ k(t)

0

ds√
(µ − λ2) + 4λs2 − s4

= ± t

2
, (6)

with constants λ, µ ∈ R. The solutions of (5) with k(0) = k′(0) = 0 are z = 0, and the
functions defined by

∫ k(t)

0

ds√
λs2 − s4

= ± t

2
. (7)
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Proof. Let k be a solution of (5), defined on an interval I ⊂ R. Then
(

kk′′ − (k′)2 +
k2

4

)′
= 0,

so that

kk′′ − (k′)2 +
k2

4
= a

for some constant a ∈ R. Let y be the inverse function of k (on a subinterval J of I where
k is monotonous), then k′ ◦ y = 1/y′ and y′2k′′ ◦ y + y′′k′ ◦ y = 0, so that

− ty′′(t)
y′(t)3

− 1
y′(t)2

+
t4

4
= a.

Set u(t) = ty′(t), then, on the sub-interval where u(t) �= 0,

u′(t)
u(t)3

=
(

t

4
− a

t3

)

so that there exists b ∈ R such that

1
u(t)2

=
(

a

t2
− t2

4

)
+ b,

for some b ∈ R, and

u(t) = ± 2|t|√
4a − t4 + 4bt2

.

Therefore,

y(t) = ±
∫ t 2ds√

4a − s4 + 4bs2
.

Since y(k(r)) = r by definition of y, k satisfies the equation
∫ k(r) 2ds√

4a − s4 + 4bs2
= ±r

2
,

which is equivalent to (6) by a simple change of the constants.
The solutions such that k(0) = 0 correspond to taking the primitive equal to 0 at 0,

and those solutions have vanishing derivative at 0 if and only if the integrand goes to ∞ at
s = 0, that is, if and only if a = 0.

Remark 5.2. Taking into account the invariance under homotheties, the proposition
implies that there is a one-parameter family of possible “profiles”, which we call Cν . For
all the cases with planar symmetry obtained from a doubly covered convex figure, we have
k′ = 0 at the “equator”. In addition to this, for the Mylar balloon we have k = 0 at the
“pole”, which determines the curvature k uniquely. For the other examples, however, there
is no reason to believe that k = 0 at the “pole” so k is completely really determined, we
still need one more boundary condition.
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6. Examples

6.1. The Mylar balloon

Consider a Mylar balloon, defined as above by gluing two copies of a disk. Both Theorem 2.1
and Proposition 5.1 can be applied in this case (see also Remark 5.2), and this determines
the balloon profile in terms of curvature (see below). In fact, this is the only case when the
profile was already computed [11,15], but described in a different manner.

Paulsen [15] showed that the intersection with the upper right quadrant of the profile
of the Mylar balloon is the graph of the function f : [0, a] → R given by

f(x) =
∫ a

x

u2du√
a4 − u4

, (8)

where a is the radius of the inflated balloon. This profile can be characterized by the
following simple geometric property, which can be found (implicitly at least) in [11]. We
provide a direct proof here for the reader’s convenience.

Proposition 6.1. The profile of the Mylar balloon is characterized by the fact that its
curvature is a linear function of x : k(x) = −2x/a2, where a is the radius of the balloon.

Proof. Recall that the curvature of the graph of a function f : R → R is given by

k(x) =
f ′′(x)

(1 + f ′(x)2)3/2
.

Here

f ′(x) = − x2

√
a4 − x4

,

so that
√

1 + f ′(x)2 =
a2

√
a4 − x4

.

Similarly,

f ′′(x) = −2x(a4 − x4) + 2x3 · x2

(a4 − x4)3/2
=

−2xa4

(a4 − x4)3/2
,

and the result follows.

Fig. 1. Pictures of two party balloons.
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With this proposition in mind it is easy to check that the curvature of the profile of the
Mylar balloon is precisely the solution of (5) which vanishes at t = 0 — corresponding to
the north pole of the balloon — and with vanishing derivative at the equator, corresponding
to x = a. Note that we switch between a parameterization by the x coordinate, in (8) and in
Proposition 6.1, to a parameterization by arclength, which is used in the description of the
curvature as solution of (5). For this reason we will denote by k the curvature of the profile
as a function of x, keeping the notation k for the curvature as a function of the arclength
parameter t.

We will now check that the profile in (8) corresponds to the solution of (5) obtained by
choosing λ = 0, µ = 16/a4 in (6). For this we use Proposition 6.1, which shows that

∫ k(x)

0

1√
16/a4 − s4

ds =
∫ −2x/a2

0

1√
16/a4 − s4

ds = −1
2

∫ x

0

a2

√
a4 − u4

du,

where the last equality uses the change of variables s = −2u/a2. Consider the arclength
parameter t on the profile, as a function of x. Then

t(x) =
∫ x

0

√
1 + f ′(x)2dx =

∫ x

0

a2

√
a4 − u4

du.

As a consequence we obtain that
∫ k(x)

0

s2√
16/a4 − s4

ds = − t(x)
2

,

so that the profile in (8) corresponds to (6) for λ = 0, µ = 16/a4.
This profile has two prominent features.

• k(0) = 0, this clearly follows from (4), since y′/y → ∞ at the north pole.
• k′(t) = 0 for t corresponding to x = a, that is, to the equator of the Mylar balloon. This

is clear since x′(t) → ∞ as x → a, while k
′ is bounded at that value of x because k is a

linear function of x. This condition should apply to the profile of the Mylar balloon for
a clear symmetry reason.

Those two conditions characterize, up to dilation, the profile of the Mylar balloon among
solutions of (5).

6.2. The square and rectangular pillow

A rectangular pillow is the surface obtained by inflating the doubly covered rectangle. We
call v± the centers of the two copies of the rectangle, and vi, 1 ≤ i ≤ 4 its vertices. The
rectangular pillow is thus the union of eight triangles, of vertices v±, vi, vi+1. The square
pillow is the special case of rectangular pillow for which the doubly covered rectangle which
is inflated is a square. We make the following natural regularity hypothesis: The square
pillow is C5 on the interior of each of the eight triangles.

Clearly each of the triangles in the square pillow are congruent, by the general hypoth-
esis at the beginning of the section. We consider one of them, say (v+, v1, v2). Let w be
the midpoint of (v1, v2). (v+, w) is a line of symmetry of the triangle, therefore a line of
curvature, and the corresponding principal curvature satisfies (5).
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Fig. 2. Computer simulation of the square pillow and the inflated cube.

To have a better understanding of this profile of the square pillow, we can make a
heuristically attractive hypothesis, which should be compared with experimental data: we
suppose that the surface is C3 at w. It then follows from symmetry that the derivative of
k at w along (v+, w) is zero.

Under this hypothesis, the principal curvature k along (v+, w) is a solution of (5) with
vanishing derivative at w. We conclude that the intersection of the rectangular pillow with
a plane of symmetry containing v−, v+ but none of the vi is the union of two copies of
the profiles Cν for some ν, obtained from Eq. (6) by a simple integration once only one
additional parameter is known — for instance the curvature of the profile at v+. If this
curvature were zero at v+, it would imply that this curve is the same (up to dilation) as
the profile of the Mylar balloon.

Let us note that, to understand the more general case of rectangular pillows, it would
be useful to determine the dependence of parameters λ, µ on the rectangle aspect ratio.
The case of a square pillow is particularly attractive, and known as the teabag problem in
recreational literature [9]. Let us also mention the simulations by Gammel [8] (see Fig. 2),
and physical experiments by Robin for the conjectured formula for the volume [16].

6.3. Doubles of polygons

It is also possible to consider doubly covered regular n-gons (cf. Fig. 1). We still call v± the
centers of the two copies of the regular polygon, and vi, 1 ≤ i ≤ n their vertices (pairwise
identified). The inflated double n-polygon is the copy of 2n triangles, each of which is
(v±, vi, vi+1). We make the same hypothesis as for the square pillow, and obtain a profile
shape which again only depends on one parameter, for instance the curvature of the profile
at v±, as for the square pillow (which is obviously a special case).

6.4. The inflated cube

Let us start now with the surface S = ∂P or a unit cube P . Using the same analysis, each
face of the inflated cube is cut into four triangles and we can assume that each of them is
C5 smooth. Under this hypothesis we find that the intersection of the inflated cube with a
plane of symmetry containing no vertex is the union of four arcs of Cν , for some ν.

7. Final Remarks

7.1. Why is this a proper mathematical model?

There is a rather subtle point that needs to be made in favor of the relevance of the model
studied here for the physical problem of understanding inflated surfaces.
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It might appear at first sight that the model considered here, based on contracting
embeddings of a surface with maximal volume, is quite different from what happens for
true inflated surfaces. Indeed for those surfaces there is no contraction of the metric on
the surface, but rather some “plaids” appear (see the wrinkles in Fig. 1). One feature of
those plaids is that they are necessarily along geodesics on the surface, and this seems to
impose a constraint not present in the mathematical model. However, there is a very good
fit between the mathematical models and the inflated surfaces as they are observed.

We believe that the resolution of this apparent paradox lies in parts (2) and (3) of
Claim 3.1. These parts state precisely that the integral curves of the non-contracted direc-
tions are geodesics on the surface. In other terms, there is a mathematical constraint,
coming from the maximality of the surface, which happens to coincide precisely with the
physical constraints that the plaids have to be along lines. For this reason the “mathemat-
ical” inflated surfaces are very close to the observed ones, in spite of apparently different
constraints on their geometry.

7.2. Future directions

Perhaps the main open problem is to show that the inflated surfaces are well defined and
uniquely determined (see [12] for a complete statement). Presumably, this would imply the
symmetry assumptions we made throughout the paper. Unfortunately, even in the case of
the Mylar balloon or rectangular pillow this is completely open. It would also be important
to prove the regularity conditions, in particular a formal proof of Claim 3.1.

Even under the uniqueness and regularity conditions, this paper goes only so far towards
understanding of the inflated pillow shapes. Although we do not wish to suggest that in the
case of rectangular pillows the shape of the surface can be expressed by means of classical
functions, as in the case of the Mylar balloon [11], it is perhaps possible that it is a solution of
an elegant problem which completely defines it. For example, the linearity of the curvature
as in Proposition 6.1 completely characterizes the Mylar balloon. It would be interesting if
the shape of rectangular pillows has a similar characterization.

Finally, the crimping density and crimping ratio (the ratio of the area of inflated over
non-inflated surface defined in [12]) are interesting notions with potential applications to
material science. Exploring them in the case of rectangular pillows would be of great interest.
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