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Novikov super-algebras are related to quadratic conformal super-algebras which correspond to
Hamiltonian pairs and play fundamental role in completely integrable systems. In this paper, we
focus on quadratic Novikov super-algebras, which are Novikov super-algebras with associative non-
degenerate super-symmetric bilinear forms. We show that quadratic Novikov super-algebras are
associative and the associated Lie-super algebras of quadratic Novikov super-algebras are 2-step
nilpotent. Moreover, we give some properties on quadratic Novikov super-algebras and classify the
associated Lie-super algebras of quadratic Novikov super-algebras up to dimension 7.

Keywords: Novikov super-algebra; Novikov algebra; quadratic Novikov super-algebra; quadratic
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1. Introduction

Novikov super-algebras are super variant of Novikov algebras. They are closely connected
to popular algebraic objects such as conformal super-algebras [5], vertex operator super-
algebras [8] and super Gelfand–Dorfman bialgebras [7], which play important role in quan-
tum field theory and the theory of completely integrable systems.

A Novikov super-algebra A is a Z2-graded vector space A = A0 + A1 with a bilinear
product (x, y) �→ xy for any x ∈ Ai, y ∈ Aj, z ∈ A satisfying

(x, y, z) = (−1)ij(y, x, z), (1.1)

(zx)y = (−1)ij(zy)x, (1.2)
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where (x, y, z) = (xy)z − x(yz). The even part of a given Novikov super-algebra is
what is said to be a Novikov algebra introduced in connection with the Poisson brack-
ets of hydrodynamic type [1] and Hamiltonian operators in the formal variational calculus
[2–4,9, 10].

The super-commutator

[x, y] = xy − (−1)ijyx, for any x ∈ Ai, y ∈ Aj

makes any Novikov super-algebra A a Lie-super algebra denoted g(A) in what follows. We
call g(A) the associated Lie-super algebra of A. As usual, a form f : A × A → F is said to
be super-symmetric if

f(x, y) = (−1)ijf(y, x), for any x ∈ Ai, y ∈ Aj , (1.3)

and non-degenerate if

f(x, y) = 0 for any y ∈ A ⇒ x = 0 and f(y, x) = 0 for any y ∈ A ⇒ x = 0, (1.4)

and even if

f(x, y) = 0, for any x ∈ A0, y ∈ A1. (1.5)

In this paper, we introduce the term quadratic Novikov super-algebra for denoting the
pair (A, f) where A is a Novikov super-algebra and the bilinear form f on A is non-
degenerate, super-symmetric and associative, i.e.,

f(xy, z) = f(x, yz), for any x, y, z ∈ A. (1.6)

The motivation for studying quadratic Novikov super-algebras comes from the fact that Lie
or associative algebras with forms have important applications in several areas of mathemat-
ics and physics, such as the structure theory of finite-dimensional semi-simple Lie algebras,
the theory of complete integrable Hamiltonian systems and the classification of statistical
models over two-dimensional graphs.

The main goal of this paper is to study quadratic Novikov super-algebras and their
associated Lie-super algebras. The paper is organized as follows. In Sec. 2, we show that
A is associative and the associated Lie-super algebra g(A) is 2-step nilpotent if (A, f) is
a quadratic Novikov super-algebra. Also we show that (g(A), f) is a quadratic Lie-super
algebra. In Sec. 3, assume that f is even. We obtain some properties on quadratic Novikov
super-algebras and their associated Lie-super algebras. In Sec. 4, we give the classification
of the associated Lie-super algebras of quadratic Novikov super-algebras with even forms
up to dimension 7.

Throughout this paper we assume that the algebras are of finite dimension over C.

2. Quadratic Novikov Super-Algebras

Firstly, we give some definitions. Let A be a Novikov super-algebra. Define Z(A) = {x ∈
A|xy = yx = 0, for any y ∈ A}. As usual, the pair (g, f) is called a quadratic Lie-super
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algebra if g is a Lie-super algebra and the bilinear form f on g is non-degenerate, super-
symmetric and g-invariant, i.e.,

f(x, [y, z]) = f([x, y], z), for any x, y, z ∈ g.

Let (g, f) be a quadratic Lie-super algebra and H be an ideal of g. As usual, H is said to
be isotropic if f |H×H = 0 and non-degenerate if f |H×H is non-degenerate.

Theorem 2.1. Let (A, f) be a quadratic Novikov super-algebra. Then A is associative.

Proof. For any x, y, z, d ∈ A,

f((x, y, z), d) = f((xy)z − x(yz), d)

= f((xy)z, d) − f(x(yz), d)

= f(xy, zd) − f(x, (yz)d)

= f(x, y(zd) − (yz)d)

= −f(x, (y, z, d)).

Thus for any x ∈ Ai, y ∈ Aj , z ∈ Ak, d ∈ Am, we have that

f((x, y, z), d) = −f(x, (y, z, d)) = (−1)1+i(j+k+m)+jkf((z, y, d), x)

= (−1)i(j+k+m)+jkf(z, (y, d, x)),

= (−1)i(j+k+m)+jk+k(i+j+m)f((y, d, x), z),

= (−1)i(j+k+m)+jk+k(i+j+m)+jmf((d, y, x), z),

= (−1)1+i(j+k+m)+jk+k(i+j+m)+jmf(d, (y, x, z)),

= (−1)1+i(j+k+m)+jk+k(i+j+m)+jm+m(i+j+k)f((y, x, z), d),

= (−1)1+i(j+k+m)+jk+k(i+j+m)+jm+m(i+j+k)+ijf((x, y, z), d),

= (−1)1+2(ij+ik+im+jk+mk+jm)f((x, y, z), d),

= −f((x, y, z), d).

It follows that (x, y, z) = 0 by the non-degeneracy of f .

Theorem 2.2. Let (A, f) be a quadratic Novikov super-algebra. Then [x, y] ∈ Z(A) for any
x, y ∈ A. In particular, [x, [y, z]] = 0 for any x, y, z ∈ A.

Proof. For any x ∈ Aj, y ∈ Ak, z ∈ A, by Theorem 2.1, we have that

z[x, y] = z(xy) − (−1)jkz(yx) = (zx)y − (−1)jk(zy)x

= (zx)y − (−1)jk+jk(zx)y = 0.

Then for any x ∈ Aj, y ∈ Ak, z ∈ Ai, d ∈ Am, we have that

f([x, y]z, d) = f([x, y], zd) = (−1)(i+m)(j+k)f(z, d[x, y]) = 0.

It follows that [x, y]z = 0 by the non-degeneracy of f . Then [x, y] ∈ Z(A) for any x, y ∈ A.
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Proposition 2.3. Let (A, f) be a quadratic Novikov super-algebra and g(A) be the associ-
ated Lie-super algebra of A. Then (g(A), f) is a quadratic Lie-super algebra.

Proof. Since (A, f) is a quadratic Novikov super-algebra, we have that

f([x, y], z) = f(xy − (−1)ijyx, z) = f(x, yz) − (−1)ij+k(i+j)f(z, yx)

= f(x, yz) − (−1)ij+k(i+j)f(zy, x) = f(x, yz) − (−1)kjf(x, zy)

= f(x, [y, z])

for any x ∈ Ai, y ∈ Aj , z ∈ Ak. Namely (g(A), f) is a quadratic Lie-super algebra.

Let C(g) denote the center of a Lie-super algebra g, i.e.,

C(g) = {x ∈ g|[x, y] = 0, for any y ∈ g}.

Proposition 2.4. Let (g, f) be a quadratic Lie-super algebra. Then we have:

(1) C(g) = [g, g]⊥.

(2) Let H be an ideal of g. Then H⊥ is an ideal of g. Furthermore, assume that H is
non-degenerate. Then H⊥ is also non-degenerate and g = H ⊕ H⊥.

3. Properties on Quadratic Novikov Super-Algebras with Even Forms

Let (A, f) be a quadratic Novikov super-algebra with f even and g(A) be the associated
Lie-super algebra of A. Let H be a subspace of A, define

H⊥ = {x ∈ A|f(x, y) = 0, for any y ∈ H}.

In the following, we assume that f is even without special statements although most of
the results exist when f is not even.

Lemma 3.1. Let (A, f) be a quadratic Novikov super-algebra. Then Z(A) = (AA)⊥.

Moreover, dimZ(A) + dim AA = dim A.

Proof. For any x ∈ Z(A) and y, z ∈ A, we have that f(x, yz) = f(xy, z) = 0. Namely,
Z(A) ⊆ (AA)⊥. For any x ∈ (AA)⊥ and y, z ∈ A, f(x, yz) = 0. So f(xy, z) = 0. It
follows that xy = 0 by the non-degeneracy of f . By f(yx, z) = f(y, xz) = 0, yx = 0.
Thus, x ∈ Z(A). Then Z(A) = (AA)⊥. Clearly dim Z(A) + dim AA = dim A since f is
non-degenerate.

Proposition 3.2. Let (A, f) be a quadratic Novikov super-algebra. Then dim g(A) ≥
2 dim[g(A), g(A)].

Proof. By Proposition 2.4, we have dim C(g(A)) + dim[g(A), g(A)] = dim g. By
Theorem 2.2, [g(A), g(A)] ⊆ C(g(A)). Then the theorem follows.

Proposition 3.3. Let (A, f) be a quadratic Novikov super-algebra. Then [g(A), g(A)] ⊆
AA ⊆ C(g(A)) and [g(A), g(A)] ⊆ Z(A) ⊆ C(g(A)).
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Proof. We only need to prove that AA ⊆ C(g(A)). For any x, y, z, d ∈ A,

f(x, [y, zd]) = f([x, y], zd]) = f([x, y]z, d]) = 0.

It follows that [y, zd] = 0 by the non-degeneracy of f . So AA ⊆ C(g(A)).

Proposition 3.4. Let (A, f) be a quadratic Novikiv super-algebra. If C(g(A)) is isotropic,
then [g(A), g(A)] = C(g(A)) and Z(A) = AA. Furthermore dim g(A) is even.

Proof. If C(g(A)) is isotropic, then C(g(A)) ⊆ C(g(A))⊥ = [g(A), g(A)]. By
Proposition 3.3, we have [g(A), g(A)] = C(g(A)) and Z(A) = AA. Then dim g(A) is even by
Proposition 2.4.

4. The Associated Lie-super Algebras of Quadratic Novikov
Super-algebras

By Theorem 2.2, we know that the associated Lie-super algebra of a quadratic Novikov
super-algebra is 2-step nilpotent. On the other hand:

Theorem 4.1. Let (g, f) be a 2-step nilpotent quadratic Lie-super algebra. Then g admits
a quadratic Novikov super-algebra structure.

Proof. Define a bilinear product on g by xy = 1
2 [x, y]. Under the product, g is a Novikov

super-algebra since g is 2-step nilpotent as a Lie-super algebra. Moreover for any x, y, z ∈ g,
f(xy, z) = f(1

2 [x, y], z) = f(x, 1
2 [y, z]) = f(x, yz). Namely, g admits a quadratic Novikov

super-algebra structure.

Thus to get the classification of associated Lie-super algebras of quadratic Novikov
super-algebras, it is enough to get the classification of 2-step nilpotent quadratic Lie-super
algebras. By Proposition 2.4, we have:

Statement 1. Let (A, f) be a quadratic Novikov super-algebra. Then its associated Lie-
super algebra g(A) is a direct sum g(A) = ga ⊕ gi, where ga is an Abelian ideal with
non-degenerate restriction f on it and gi is an ideal with an isotropic center.

The statement 1 formulated above shows that the classification under consideration
reduces to classification of quadratic Lie-super algebra with isotropic center. In the following,
we will discuss the classification up to dimension 7 with even forms. Firstly, we have a well-
known fact:

Statement 2. Let g = g0 + g1 be a Lie-super algebra and x = x0 + x1 be an element of
C(g) with x0 ∈ g0, x1 ∈ g1. Then x0, x1 ∈ C(g).

Theorem 4.2. Let (A, f) be a quadratic Novikov super-algebra with f even and dimA ≤ 7
such that the center of the associated Lie-super algebra g is isotropic. Then g is one of the
following cases:

(1) dim g = 4 and there exists a basis {e1, e2, e3, e4} of g such that [e4, e4] = e1, [e2, e4] =
−[e4, e2] = e3, where e1, e2 ∈ g0 and e3, e4 ∈ g1;

(2) dim g = 6 and there exists a basis {e1, e2, e3, e4, e5, e6} of g such that [e2, e5] =
e3, [e2, e6] = e4, [e5, e5] = e1, [e6, e6] = ke1, where e1, e2 ∈ g0 and e3, e4, e5, e6 ∈ g1;
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(3) dim g = 6 and there exists a basis {e1, e2, e3, e4, e5, e6} of g = g0 such that [e1, e2] =
e4, [e2, e3] = e5, [e3, e1] = e6.

Proof. Since C(g) is isotropic, we have that dim g is even by Proposition 3.4. That is,
dim g = 2, 4 or 6.

Case 1. It is easy to check that dim g 	= 2.
Case 2. dim g = 4. Since C(g) is isotropic, we have that dimC(g) = 2.
If dim C(g) ∩ g0 = 0, then C(g) ⊆ g1. Since f is non-degenerate on g1, we have that

dim g1 = 4. Then [g, g] = 0 which contradicts to dimC(g) = dim[g, g] = 2.
Assume that dimC(g) ∩ g0 = 2. Then C(g) ⊆ g0. Similarly, we have that dim g0 = 4

since f is non-degenerate on g0. Then g0 is a 2-step nilpotent Lie algebra, that is, g is
Abelian. It contradicts to dimC(g) = 2.

So we must have that dim C(g) ∩ g0 = 1. Thus there exists a basis {e1, e2, e3, e4} of g

such that f(e1, e2) = f(e2, e1) = 1 and f(e3, e4) = −f(e4, e3) = 1, where e1, e3 ∈ C(g),
e1, e2 ∈ g0 and e3, e4 ∈ g1. We have that [e4, e4] = ae1 since [e4, e4] ∈ g0 and g is 2-step
nilpotent. Similarly, [e2, e4] = ce3. Thus

a = f(e2, [e4, e4]) = f([e2, e4], e4) = f(ce3, e4) = c.

Moreover a = c 	= 0 since dim[g, g] = 2. We can assume that a = c = 1 by replacing e1 by
ae1 and e3 by ae3.

Case 3. dim g = 6. Since C(g) is isotropic, we have that dimC(g) = 3.
If dim C(g)∩g0 = 0, then C(g) ⊆ g1. Thus dim g1 = 6 since f is even and non-degenerate

on g1. It is a contradiction.
Support that dimC(g)∩ g0 = 1. Since f is even and non-degenerate on g, we have that

there exists a basis {e1, e2, . . . , e6} such that

f(e1, e2) = f(e2, e1) = 1, f(e3, e5) = −f(e5, e3) = f(e4, e6) = −f(e6, e4) = 1,

where e1, e3, e4 ∈ C(g), e1, e2 ∈ g0 and e3, . . . , e6 ∈ g1. Let V be a vector subspace of g1

extended by e5 and e6. Assume that [x, x] = 0 for any x ∈ V . Then for any y, z ∈ V ,

[y, z] = [z, y] =
1
2
([y + z, y + z] − [y, y] − [z, z]) = 0.

It contradicts C(g) = [g, g]. Thus there exists a basis {η5, η6} of V such that

[η5, η5] = e1, [η5, η6] = [η6, η5] = 0, [η6, η6] = ke1.

At this time, [e2, η5] = a1e3 + a2e4, [e2, η6] = b1e3 + b2e4. Since dim[g, g] = 3, we have
that η3 = [e2, e6], η4 = [e2, e5] are linear independent. That is, {e1, e2, η3, η4, η5, η6} is a
basis of g.

If dim C(g) ∩ g0 = 2, then dim g0 = 4 since f is non-degenerate and even. Thus g0 is a
2-step nilpotent quadratic Lie algebra of dimension 4. Then g0 is Abelian. It follows that
dim[g, g] ≤ 2. It contradicts to dim[g, g] = 3.

If dim C(g) ∩ g0 = 3, then dim g0 = 6. Namely, g = g0 is a 2-step nilpotent quadratic
Lie algebra. Moreover g is not Abelian since dim[g, g] = 3. Clearly, there exists a basis
{e1, . . . , e6} such that [e1, e2] = e4, [e2, e3] = e5, [e3, e1] = e6.
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By Theorem 4.2 and Statement 1, it is easy to classify the associated Lie-super algebras
of quadratic Novikov super-algebras with even forms up to dimension 7.

5. Further Discussion

Propositions 3.2–3.4 mean that if C(g) is isotropic, then it is a maximal isotropic subspace in
g and C(g) = [g, g]. Together with even form f , we can choose a basis v1, . . . , vn, w1, . . . , wn

in g such that wi ∈ C(g) for any i, the subspace spanned by v1, . . . , vn is isotropic, and

f(vi, wj) = δij = (−1)p(vi)f(wj, vi),

where p(v) denotes the parity of v. Then [vi, vj ] =
∑

s cs
ijws, where ck

ij = −(−1)p(vi)p(vj)ck
ji

and ck
ij 	= 0 only if p(vi) + p(vj) = p(vk). Since f is g-invariant, we have the following

equalities:

f([vi, vj ], vk) = (−1)p(vk)ck
ij = f(vi, [vj , vk]) = ci

jk = −(−1)p(vj )p(vk)ci
kj

or ck
ij = −(−1)(p(vk)+1)p(vj )ci

kj.
Then the classification of quadratic Lie-super algebras with isotropic center reduces to

a problem of Linear Super-algebra on a canonical form of a non-degenerate tensor ck
ij on

a linear super-space V with certain symmetry of each pair of indices. In particular, in the
presence of a non-degenerate form on V , the symmetric in the purely even cases reduces to
classification of 3-vectors, i.e., antisymmetric indices tensors cijk. This problem is completely
solved in [6]. But it remains unknown in the absence of a non-degenerate form on V .
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