Journal of Nonlinear Mathematical Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251
Journal Home Page: https://www.atlantis-press.com/journals/jnmp

A Weil Representation of $s p(4)$ Realized by Differential Operators in the Space of Smooth Functions on $S^{2} \times S^{1}$
 H. Fakhri

To cite this article: H. Fakhri (2010) A Weil Representation of $s p(4)$ Realized by Differential Operators in the Space of Smooth Functions on $S^{2} \times S^{1}$, Journal of Nonlinear Mathematical Physics 17:2, 137-144, DOI:
https://doi.org/10.1142/S1402925110000660
To link to this article: https://doi.org/10.1142/S1402925110000660

Published online: 04 January 2021

A WEIL REPRESENTATION OF $s p(4)$ REALIZED BY DIFFERENTIAL OPERATORS IN THE SPACE OF SMOOTH FUNCTIONS ON $S^{2} \times S^{1}$

H. FAKHRI
Department of Theoretical Physics and Astrophysics Faculty of Physics, University of Tabriz
P. O. Box 51666-16471, Tabriz, Iran
and
Institute for Studies in Theoretical Physics and Mathematics (IPM) P.O. Box 19395-5531, Tehran, Iran
hfakhri@tabrizu.ac.ir

Received 5 September 2008
Accepted 4 December 2009

Abstract

In the space of complex-valued smooth functions on $S^{2} \times S^{1}$, we explicitly realize a Weil representation of the real Lie algebra $s p(4)$ by means of differential generators. This representation is a rare example of highest weight irreducible representation of $\operatorname{sp}(4)$ all whose weight spaces are 1-dimensional. We also show how this space splits into the direct sum of irreducible $s l(2)$-submodules. Selected applications: complete classification of yrast-band energies in eveneven nuclei, the dynamical symmetry in some collective models of nuclear structure, the mapping methods for simplifying initial problem Hamiltonians.

Keywords: Lie groups; Lie algebra; Weil representation.
Mathematics Subject Classification: 20C33, 22E15, 22E60

1. Introduction

In what follows, the ground field is that of real numbers, but the functions are complexvalued ones. Applications of explicit realizations of $s p(4)$-modules are related, e.g., to the complete classification of yrast-band energies in even-even nuclei [1], to the dynamical symmetry in some collective models of nuclear structure [2], and to the mapping methods [3] for simplifying initial problem Hamiltonians [4]. In [2], it has been shown that there are two non-equivalent Weil representations of $s p(4 k)$ in the Fock space \mathcal{H}_{F} constructed as the module over the Heisenberg Lie algebra $h:=h(2 n)$ with generators $a^{+}=\left(a_{1}^{+}, \ldots, a_{n}^{+}\right)$and $a=\left(a_{1}, \ldots, a_{n}\right)$. Monomials of degree 2 and 0 in these creation and annihilation operators, considered as elements of the enveloping algebra $U(h)$, span the (trivial) central extension of the Lie algebra $s p(2 n)$ with respect to the bracket. Thus the representation of h in the Fock space $\mathcal{H}_{F}:=\mathbb{R}\left[a^{+}\right]$naturally generates the representation of the Lie algebra $s p(2 n)$ of
outer derivations of h in the same space. The authors of [2] have studied this representation for the case $n=2 k$. This representation is reducible and decomposes into the direct sum of irreducible Weil representations: $\mathcal{H}_{F}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$(for Weil representations, see [5, Sec. 12.3]).

For a non-negative integer l and an integer m such that $-l \leq m \leq l$, we define the vectors

$$
\begin{equation*}
|l, m\rangle=\frac{\sqrt{2 l+1}}{2 \pi \sqrt{2}} e^{i l \psi+i m \phi} P_{l}^{m}(x) \tag{1.1}
\end{equation*}
$$

in terms of the Legendre functions

$$
\begin{equation*}
P_{l}^{m}(x):=\frac{(-1)^{m}}{2^{l} \Gamma(l+1)} \sqrt{\frac{\Gamma(l+m+1)}{\Gamma(l-m+1)}}\left(1-x^{2}\right)^{-\frac{m}{2}}\left(\frac{d}{d x}\right)^{l-m}\left(1-x^{2}\right)^{l} \tag{1.2}
\end{equation*}
$$

Let $\mathcal{H}_{+}:=\operatorname{span}\{|l, m\rangle\}_{l \geq 0}$ and $-l \leq m \leq l$. In what follows I realize the Weil representation of $s p(4)$ in the space \mathcal{H}_{+}by differential operators.

The starting point is a realization of the recurrence relations with respect to both parameters l and m of the Legendre functions $P_{l}^{m}(x)$ (see, e.g., [5, 6]). For a fixed m, set

$$
\begin{align*}
A_{+}^{l} P_{l-1}^{m}(x) & =\sqrt{(l-m)(l+m)} P_{l}^{m}(x) \tag{1.3}\\
A_{-}^{l} P_{l}^{m}(x) & =\sqrt{(l-m)(l+m)} P_{l-1}^{m}(x) \tag{1.4}
\end{align*}
$$

the operators $A_{ \pm}^{l}$ can be realized as

$$
\begin{equation*}
A_{ \pm}^{l}= \pm\left(1-x^{2}\right) \frac{d}{d x}-l x \tag{1.5}
\end{equation*}
$$

For a fixed l, set

$$
\begin{align*}
B_{+}^{m} P_{l}^{m-1}(x) & =\sqrt{(l-m+1)(l+m)} P_{l}^{m}(x) \tag{1.6}\\
B_{-}^{m} P_{l}^{m}(x) & =\sqrt{(l-m+1)(l+m)} P_{l}^{m-1}(x) \tag{1.7}
\end{align*}
$$

the operators $B_{ \pm}^{m}$ can be realized as

$$
\begin{equation*}
B_{ \pm}^{m}= \pm \sqrt{1-x^{2}} \frac{d}{d x}+\frac{\left(m-\frac{1}{2} \mp \frac{1}{2}\right) x}{\sqrt{1-x^{2}}} \tag{1.8}
\end{equation*}
$$

For a given m, the Legendre functions are orthogonal on the interval $-1 \leq x \leq 1$ with respect to the inner product with the measure $d x$:

$$
\begin{equation*}
\int_{-1}^{+1} P_{l}^{m}(x) P_{l^{\prime}}^{m}(x) d x=\frac{2}{2 l+1} \delta_{l l^{\prime}} \tag{1.9}
\end{equation*}
$$

2. Irreducible $\operatorname{sl}(2)$-submodules of \mathcal{H}_{+}

One can show that in the overlapping region of both north and south coordinate patches (θ, ϕ) of the sphere we have (here $Y_{l}^{m}(\theta, \phi)$ with $0 \leq \theta \leq \pi$ and $0 \leq \phi<2 \pi$ are the
spherical harmonics, see $[5])$, so the vectors $|l, m\rangle$, where $x=-\cos \theta$, are smooth functions on $S^{2} \times S^{1}$:

$$
\left.|l, m\rangle\right|_{x=-\cos \theta}=\frac{e^{i l \psi}}{\sqrt{2 \pi}} Y_{l}^{m}(\theta, \phi) .
$$

By choosing an appropriate decomposition $s p(4)=\mathfrak{g}^{+} \oplus \mathfrak{h} \oplus \mathfrak{g}^{-}$, where \mathfrak{h} is the Cartan subalgebra, we show that \mathcal{H}_{+}is an $s p(4)$-module with highest weight. We realize the root vectors of $s p(4)$ depicted by the diagram

by the following differential operators obtained from (1.5) and (1.8) under the change of variable $x=-\cos \theta$:

$$
\begin{align*}
& J_{0+}=e^{i \phi}\left(\sqrt{1-x^{2}} \frac{\partial}{\partial x}-i \frac{x}{\sqrt{1-x^{2}}} \frac{\partial}{\partial \phi}\right) \\
& J_{0-}=e^{-i \phi}\left(-\sqrt{1-x^{2}} \frac{\partial}{\partial x}-i \frac{x}{\sqrt{1-x^{2}}} \frac{\partial}{\partial \phi}\right) \tag{2.2}\\
& J_{+0}=e^{i \psi}\left(\left(1-x^{2}\right) \frac{\partial}{\partial x}+i x \frac{\partial}{\partial \psi}-x\right) \\
& J_{-0}=e^{-i \psi}\left(-\left(1-x^{2}\right) \frac{\partial}{\partial x}+i x \frac{\partial}{\partial \psi}\right) \tag{2.3}
\end{align*}
$$

The space \mathcal{H}_{+}can be split into the direct sums of the $s l(2)$-submodules in four different ways in accordance with the four ways select the $s l(2)$-subalgebra in $s p(4)$: the horizontal, vertical and two diagonal ones, see (2.1) (here the symbol [] means the integer part of a given number):

$$
\begin{array}{ll}
\mathcal{H}_{+}=\oplus_{l=0}^{\infty} \mathcal{H}_{l,}, & \mathcal{H}_{l,}=\operatorname{span}\{|l, m\rangle\}_{-l \leq m \leq l} \\
\mathcal{H}_{+}=\oplus_{m=-\infty}^{+\infty} \mathcal{H}_{, m}, & \mathcal{H}_{, m}=\operatorname{span}\{|l, m\rangle\}_{l \geq|m|} \\
\mathcal{H}_{+}=\oplus_{k=0}^{\infty} \mathcal{H}_{k}^{+}, & \mathcal{H}_{k}^{+}=\operatorname{span}\{|l, l-k\rangle\}_{l \geq\left[\frac{k+1}{2}\right]} \\
\mathcal{H}_{+}=\oplus_{k=0}^{\infty} \mathcal{H}_{k}^{-}, & \mathcal{H}_{k}^{-}=\operatorname{span}\{|l,-l+k\rangle\}_{l \geq\left[\frac{k+1}{2}\right]} \tag{2.7}
\end{array}
$$

Due to analyticity of the Legendre functions $P_{l}^{m}(x)$, the infinite-dimensional representations of $s l(2)$ can be realized in the space of functions on the sphere instead of those on the hyperbolic plane [7]. The well-known generators of rotation about the x - and y-axes can be described as $J_{x}=\frac{1}{2}\left(J_{0+}+J_{0-}\right)$ and $J_{y}=\frac{i}{2}\left(J_{0-}-J_{0+}\right)$, respectively. Clearly, $J_{z}=J_{03}$ is the generator of rotation about the z-axis. In this case, the matrix elements of the rotation operator $\mathfrak{D}(R)$ are given by $2 \pi \mathfrak{D}_{m m^{\prime}}^{(l)}(R)=\langle l, m| \exp (-i \alpha \vec{n} \cdot \vec{J})\left|l, m^{\prime}\right\rangle$, where the unit vector \vec{n} and the angle α describe the rotation R (see $[8,9]$).

Proposition 2.1. The differential operators J_{0+}, J_{0-} and $J_{03}=-i \frac{\partial}{\partial \phi} \operatorname{span} \operatorname{sl}(2)$:

$$
\begin{equation*}
\left[J_{0+}, J_{0-}\right]=2 J_{03}, \quad\left[J_{03}, J_{0 \pm}\right]= \pm J_{0 \pm} \tag{2.8}
\end{equation*}
$$

Each of the finite-dimensional submodules \mathcal{H}_{l}, realizes an irreducible representation of the horizontal algebra sl(2):

$$
\begin{align*}
J_{0+}|l, m-1\rangle & =\sqrt{(l-m+1)(l+m)}|l, m\rangle \tag{2.9}\\
J_{0-}|l, m\rangle & =\sqrt{(l-m+1)(l+m)}|l, m-1\rangle \tag{2.10}\\
J_{03}|l, m\rangle & =m|l, m\rangle \tag{2.11}
\end{align*}
$$

Proposition 2.2. The differential operators J_{+0}, J_{-0} and $J_{30}=-i \frac{\partial}{\partial \psi}+\frac{1}{2}$ span a copy of sl(2):

$$
\begin{equation*}
\left[J_{+0}, J_{-0}\right]=-2 J_{30}, \quad\left[J_{30}, J_{ \pm 0}\right]= \pm J_{ \pm 0} \tag{2.12}
\end{equation*}
$$

Each of the infinite-dimensional submodules $\mathcal{H}_{, m}$ realizes an irreducible representation of the vertical algebra sl(2):

$$
\begin{align*}
J_{+0}|l-1, m\rangle & =\sqrt{\frac{2 l-1}{2 l+1}(l-m)(l+m)}|l, m\rangle, \tag{2.13}\\
J_{-0}|l, m\rangle & =\sqrt{\frac{2 l+1}{2 l-1}(l-m)(l+m)}|l-1, m\rangle, \tag{2.14}\\
J_{30}|l, m\rangle & =\left(l+\frac{1}{2}\right)|l, m\rangle . \tag{2.15}
\end{align*}
$$

The generators J_{+0} and J_{-0} are deforms of certain left-invariant vector fields on the homogeneous manifold $A d S_{2}$ and, together with J_{30}, they realize a representation of the Lie algebra $s l(2)$ in the space of hyperbolic harmonics. The following two propositions are immediate.

Proposition 2.3. Set

$$
\begin{align*}
& J_{++}:=\left[J_{0+}, J_{+0}\right]=e^{i \psi+i \phi}\left(-x \sqrt{1-x^{2}} \frac{\partial}{\partial x}+\frac{i}{\sqrt{1-x^{2}}} \frac{\partial}{\partial \phi}+i \sqrt{1-x^{2}} \frac{\partial}{\partial \psi}-\sqrt{1-x^{2}}\right), \\
& J_{--}:=\left[J_{-0}, J_{0-}\right]=e^{-i \psi-i \phi}\left(x \sqrt{1-x^{2}} \frac{\partial}{\partial x}+\frac{i}{\sqrt{1-x^{2}}} \frac{\partial}{\partial \phi}+i \sqrt{1-x^{2}} \frac{\partial}{\partial \psi}\right), \tag{2.16}\\
& J_{30}+J_{03}=-i\left(\frac{\partial}{\partial \phi}+\frac{\partial}{\partial \psi}\right)+\frac{1}{2} .
\end{align*}
$$

These operators span a copy of sl(2):

$$
\begin{align*}
{\left[J_{++}, J_{--}\right] } & =-4\left(J_{30}+J_{03}\right), \tag{2.17}\\
{\left[J_{30}+J_{03}, J_{ \pm \pm}\right] } & = \pm 2 J_{ \pm \pm} . \tag{2.18}
\end{align*}
$$

Each of the infinite-dimensional submodules \mathcal{H}_{k}^{+}, where k is an arbitrary nonnegative integer, realizes an irreducible representation of the right diagonal algebra sl(2)
with $l=m+k$:

$$
\begin{align*}
J_{++}|l-1, m-1\rangle & =\sqrt{\frac{2 l-1}{2 l+1}(l+m-1)(l+m)}|l, m\rangle, \tag{2.19}\\
J_{--}|l, m\rangle & =\sqrt{\frac{2 l+1}{2 l-1}(l+m-1)(l+m)}|l-1, m-1\rangle, \tag{2.20}\\
\left(J_{30}+J_{03}\right)|l, m\rangle & =\left(l+m+\frac{1}{2}\right)|l, m\rangle . \tag{2.21}
\end{align*}
$$

Proposition 2.4. Set

$$
\begin{align*}
& J_{+-}:=\left[J_{0-}, J_{+0}\right]=e^{i \psi-i \phi}\left(x \sqrt{1-x^{2}} \frac{\partial}{\partial x}+\frac{i}{\sqrt{1-x^{2}}} \frac{\partial}{\partial \phi}-i \sqrt{1-x^{2}} \frac{\partial}{\partial \psi}+\sqrt{1-x^{2}}\right) \\
& J_{-+}:=\left[J_{-0}, J_{0+}\right]=e^{-i \psi+i \phi}\left(-x \sqrt{1-x^{2}} \frac{\partial}{\partial x}+\frac{i}{\sqrt{1-x^{2}}} \frac{\partial}{\partial \phi}-i \sqrt{1-x^{2}} \frac{\partial}{\partial \psi}\right), \tag{2.22}\\
& J_{30}-J_{03}=-i\left(\frac{\partial}{\partial \psi}-\frac{\partial}{\partial \phi}\right)+\frac{1}{2} .
\end{align*}
$$

These operators span a copy of $\operatorname{sl}(2)$:

$$
\begin{align*}
{\left[J_{+-}, J_{-+}\right] } & =-4\left(J_{30}-J_{03}\right), \tag{2.23}\\
{\left[J_{30}-J_{03}, J_{ \pm \mp}\right] } & = \pm 2 J_{ \pm \mp} . \tag{2.24}
\end{align*}
$$

Each of the infinite-dimensional submodules \mathcal{H}_{k}^{-}, where k is an arbitrary nonnegative integer, realizes an irreducible representation of the left diagonal algebra sl(2) with $l=m+k$:

$$
\begin{align*}
J_{+-}|l-1, m\rangle & =\sqrt{\frac{2 l-1}{2 l+1}(l-m)(l-m+1)}|l, m-1\rangle, \tag{2.25}\\
J_{-+}|l, m-1\rangle & =\sqrt{\frac{2 l+1}{2 l-1}(l-m)(l-m+1)}|l-1, m\rangle, \tag{2.26}\\
\left(J_{30}-J_{03}\right)|l, m\rangle & =\left(l-m+\frac{1}{2}\right)|l, m\rangle . \tag{2.27}
\end{align*}
$$

The irreducible submodules \mathcal{H}_{l}, and $\mathcal{H}_{, m}$ of the horizontal and vertical subalgebras $s l(2)$ are separately spanned by the basis elements $|l, m\rangle$ with the given values for the first and the second labels of the vectors, respectively. Moreover, the submodules \mathcal{H}_{k}^{+}and \mathcal{H}_{k}^{-} constructed by all basis vectors $|l, m\rangle$ with given values for $l-m$ and $l+m$, constitute irreducible representations for the diagonal subalgebras $s l(2)$. Therefore, the module \mathcal{H}_{+}is completely reducible over each of the four $s l(2)$-subalgebras.

Let us now fix bases in each of the four $s l(2)$-subalgebras. Since the submodules over the horizontal $s l(2)$-algebra are finite-dimensional, they have both highest and lowest weight vectors. Set

$$
\begin{equation*}
H^{h}:=2 J_{03}, \quad X_{ \pm}^{h}:=J_{0 \pm} . \tag{2.28}
\end{equation*}
$$

Modules over the other three copies of $s l(2)$ (vertical, left and right diagonal) are infinitedimensional. Set:

$$
\begin{array}{ll}
H^{v}:=-2 J_{30}, & X_{ \pm}^{v}:= \pm J_{\mp 0}, \\
H^{r d}:=-\left(J_{30}+J_{03}\right), & X_{ \pm}^{r d}:=\mp \frac{1}{2} J_{\mp \mp}, \\
H^{l d}:=J_{03}-J_{30}, & X_{ \pm}^{l d}:= \pm \frac{1}{2} J_{\mp \pm} . \tag{2.31}
\end{array}
$$

It remains only to identify the $\operatorname{sl}(2)$-submodules $\mathcal{H}_{l,}, \mathcal{H}_{, m}, \mathcal{H}_{k}^{+}$and \mathcal{H}_{k}^{-}with the modules T_{ρ} with highest weight ρ :

$$
\begin{equation*}
\mathcal{H}_{l,} \approx T_{2 l}, \quad \mathcal{H}, m \approx T_{-2|m|-\frac{1}{2}}, \quad \mathcal{H}_{2 j+1}^{ \pm} \approx T_{-\frac{3}{2}}, \quad \mathcal{H}_{2 j}^{ \pm} \approx T_{-\frac{1}{2}} . \tag{2.32}
\end{equation*}
$$

The isomorphisms $\mathcal{H}_{, 0} \approx \mathcal{H}_{2 j}^{ \pm}$(for any $j=0,1,2, \ldots$) immediately follow from (2.32). Indeed,

$$
\begin{equation*}
H^{r d}|m+2 j+1, m\rangle=-\left(2 m+2 j+\frac{3}{2}\right)|m+2 j+1, m\rangle \tag{2.33}
\end{equation*}
$$

So, for the smallest $m=-j$, the highest weight (independent of j) is equal to $-\frac{3}{2}$. The same applies to the last two isomorphisms in (2.32).

3. The Weil Representation \mathcal{H}_{+}of the Lie Algebra $\operatorname{sp}(4)$

Between the 10 generators of $s p(4)$ there can be $(10 \times 9) / 2=45$ commutation relations. In addition to the commutation relations obtained in (2.8), (2.12), (2.16), (2.17), (2.22) and (2.23), there are only the following nonzero commutation relations:

$$
\begin{array}{lll}
{\left[J_{30}, J_{ \pm \pm}\right]= \pm J_{ \pm \pm}} & {\left[J_{03}, J_{ \pm \pm}\right]= \pm J_{ \pm \pm}} & {\left[J_{+-}, J_{0+}\right]=-2 J_{+0}} \\
{\left[J_{30}, J_{ \pm \mp}\right]= \pm J_{ \pm \mp}} & {\left[J_{03}, J_{ \pm \mp}\right]=\mp J_{ \pm \mp}} & {\left[J_{+-}, J_{-0}\right]=-2 J_{0-}} \\
{\left[J_{++}, J_{-0}\right]=-2 J_{0+}} & {\left[J_{++}, J_{0-}\right]=-2 J_{+0}} & {\left[J_{-+}, J_{+0}\right]=2 J_{0+}} \tag{3.1}\\
{\left[J_{--}, J_{+0}\right]=2 J_{0-}} & {\left[J_{--}, J_{0+}\right]=2 J_{-0}} & {\left[J_{-+}, J_{0-}\right]=2 J_{-0}}
\end{array}
$$

Equation (3.1) completes the proof of the following proposition:
Proposition 3.1. The ten differential operators $J_{0+}, J_{0-}, J_{03}, J_{+0}, J_{-0}, J_{30}, J_{++}$, J_{--}, J_{+-}and J_{-+}in the space \mathcal{H}_{+}of smooth functions on $S^{2} \times S^{1}$ satisfy the same commutation relations of the basis elements of the Lie algebra sp(4) as in Eqs. (2.8), (2.12), (2.16), (2.17), (2.22), (2.23) and (3.1). The generators $\left\{J_{30}, J_{03}\right\}$ constitute the Cartan subalgebra. The sp(4)-module \mathcal{H}_{+}is irreducible with highest weight $\left(0,-\frac{1}{2}\right)$ with respect to $H_{1}:=2 J_{03}$ and $H_{2}:=-\left(J_{03}+J_{30}\right)$.

This representation is a rare example of highest weight irreducible representation of $s p(4)$ all whose weight spaces are 1-dimensional.

Proof. Take α_{1} and α_{2} for simple roots. Therefore the subalgebra \mathfrak{g}^{+}is generated by $X_{1}^{+}:=J_{0+}$ and $X_{2}^{+}:=J_{--}$and \mathfrak{g}^{-}is generated by $X_{1}^{-}:=J_{0-}$ and $X_{2}^{-}:=J_{++}$. Now the weight $\omega(|l, m\rangle)$ of the vector $|l, m\rangle$ with respect to H_{1} and H_{2} is equal to $\left(2 m,-m-l-\frac{1}{2}\right)$. So the weight of the highest weight vector $|0,0\rangle$ of the representation is $\omega(|0,0\rangle)=\left(0,-\frac{1}{2}\right)$.

Irreducibility of this representation follows easily from the fact that for any given weight $\omega \in \mathfrak{h}^{*}$, the space \mathcal{H}^{ω} of vectors of weight ω in \mathcal{H}_{+}is just 1-dimensional, and derived from the theory of Verma modules. So, on an abstract level, the representation is the irreducible quotient-module of the Verma module $M_{(0,-1 / 2)}$.

Let us equip the space \mathcal{H}_{+}with the inner product (bar is for the complex conjugation)

$$
\begin{align*}
& \left\langle l, m \mid l^{\prime}, m^{\prime}\right\rangle= \\
& \quad \int_{x=-1}^{1} \int_{\psi=0}^{2 \pi} \int_{\phi=0}^{2 \pi} \overline{\left(\frac{\sqrt{2 l+1}}{2 \pi \sqrt{2}} e^{i l \psi+i m \phi} P_{l}^{m}(x)\right)}\left(\frac{\sqrt{2 l^{\prime}+1}}{2 \pi \sqrt{2}} e^{i l^{\prime} \psi+i m^{\prime} \phi} P_{l^{\prime}}^{m^{\prime}}(x)\right) d \phi d \psi d x . \tag{3.2}
\end{align*}
$$

Using the orthogonality relation (1.9), one can conclude that the basis of \mathcal{H}_{+}constitutes an orthonormal set with respect to both indices l and m :

$$
\begin{equation*}
\left\langle l, m \mid l^{\prime}, m^{\prime}\right\rangle=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{3.3}
\end{equation*}
$$

4. Concluding Remarks

Propositions 2.1 and 2.2 unite representations of the horizontal and vertical subalgebras $s l(2)$ in the spaces of functions on the sphere and hyperbolic plane into the representation on functions on the space $S^{2} \times S^{1}$. The Lie algebra of differential operators generated by both horizontal and vertical subalgebras lead to a larger Lie algebra with a representation in an infinite-dimensional space. Propositions 2.3 and 2.4 together with the commutation relations (3.1) show that this larger algebra is isomorphic to $s p(4)$. From Fig. 1 on [2, p. 1186], representing the reduction of the representations \mathcal{H}_{+}and \mathcal{H}_{-}with respect to the maximal subalgebra $s u(2) \times u(1)$, and by comparing Proposition 3.1 with the Bose representations embedded in the \mathcal{H}_{F}, one sees immediately that the representation (2.9), $(2.10),(2.11),(2.13),(2.14),(2.15),(2.19),(2.20),(2.25)$ and (2.26) for $s p(4)$ is equivalent to the irreducible Weil representation \mathcal{H}_{+}realized in the space of smooth functions on $S^{2} \times S^{1}$.

Acknowledgment

I would like to express my gratitude to the very generous referee who changed my text and made it understandable.

References

[1] S. Drenska, A. Georgieva, V. Gueorguiev, R. Roussev and P. Raychev, Phys. Rev. C 52 (1995) 1853-1863.
[2] A. I. Georgieva, M. I. Ivanov, P. P. Raychev and R. P. Roussev, Int. J. Theor. Phys. 25 (1986) 1181-1191.
[3] A. Klein and E. Marshalek, Rev. Mod. Phys. 63 (1991) 375-558.
[4] R. M. Asherova, D. V. Fursa, A. Georgieva and Y. F. Smirnov, J. Phys. G: Nucl. Phys. 19 (1993) 1887-1901.
[5] N. Ja. Vilenkin and A. U. Klimyk, Representations of Lie Groups and Special Functions, Vol. II (Dordrecht, Kluwer, 1993).
[6] H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. I (McGraw-Hill, New York, 1953).
[7] Y. Alhassid, F. Gürsey and F. Iachello, Ann. Phys. 148 (1983) 346-380.
[8] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (John Wiley \& Sons, New York, 1974).
[9] R. Gilmore, Lie Groups, Physics, and Geometry (Cambridge University Press, New York, 2008).

