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We study a system of equations modeling the stationary motion of incompressible electrical con-
ducting fluid. Based on methods of Clifford analysis, we rewrite the system of magnetohydro-
dynamics fluid in the hypercomplex formulation and represent its solution in Clifford operator
terms.
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1. Introduction

In several situations the motion of incompressible electrical conducting fluid can be modeled
by so called equations of magnetohydrodynamics, which correspond to the Navier–Stokes’
equations coupled to the Maxwell’s equations. In the case where there is free motion of
heavy ions, not directly due to the electric field (see Schlüter [26] and Pikelner [23]), these
equations can be reduced to the following form:

− η

ρ
∆u∗ + u∗ · ∇u∗ − µ

ρ
h∗ · ∇h∗ = f∗ − 1

ρ
∇
(
p∗ +

µ

2
h∗2
)
,

− 1
µσ

∆h∗ + u∗ · ∇h∗ − h∗ · ∇u∗ = −grad w∗,

divu∗ = 0, (1.1)

divh∗ = 0,

u∗|∂Ω = 0, u∗|∂Ω = 0.
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In these equations we have assumed homogeneous boundary conditions just for simplic-
ity. In standard ways we could treat the non-homogeneous case. Here, u∗ and h∗ are respec-
tively the unknown velocity and magnetic fields; p∗ is the unknown hydrostatic pressure; w∗

is an unknown function related to the motion of heavy ions (in such way that the density
of electric current, j0, generated by this motion satisfies the relation rot j0 = −σ∇w∗); ρ is
the density of mass of the fluid (assumed to be a positive constant); µ > 0 is the constant
magnetic permeability of the medium; σ > 0 is the constant electric conductivity; η > 0 is
the constant viscosity of the fluid; f∗ is an given external force field.

In this paper, we will consider the problem of existence and uniqueness of strong solu-
tions for the problem (1.1) in a unbounded domain Ω of R

3. It is appropriate to remind
earlier works on the initial-value problems closely related to (1.1) in order to clarify the
intended contribution of the present work. The stationary problem corresponding to (1.1)
was considered by Chizhonkov [7], while the question of the (local) existence of a solution of
the evolution problems was analyzed by Lassner [19], making use of semigroup techniques
similar to ones in Fujita and Kato [10]. The more constructive spectral Galerkin method
was used by Boldrini and Rojas-Medar [3] to obtain local-time strong solutions. Also, by
using this same method in [24] the existence and uniqueness of periodic strong solutions for
the magnetohydrodynamics’s type equations have been studied.

By other hand, the nonlinear partial differential equations of mathematical physics have
been a little studied by Clifford analysis, in particular, the equations of fluid mechanics.
In fact, one of the pioneer work of boundary value problems for elliptic partial differential
equations, such as the Stokes and Navier–Stokes equations in bounded domains, was done
by Gürlebeck and Sprössing [12], where they made use of certain orthogonal decomposition
of the underlying function space in which one of the subspace is the space of null solutions of
the corresponding Dirac operator. This approach was later extended to unbounded domains
in [11], in particular Cerejeiras and Kähler [4], studied the Stokes operator by means of
the Clifford analysis, and after they applied their results to the stationary Navier–Stokes
equations. The main argument is the linearization of the nonlinear equations, where they
applied in each iteration the results for linear Stokes equations and used the argument of
Banach principle of fix point. Later, Kondrashuk, Notte-Cuello and Rojas-Medar [17], using
similar ideas, studied the stationary nonlinear equations for asymmetric fluids.

The paper is organize as follows. In Sec. 2 we present some preliminaries about the
Clifford algebras of multivectors in a more general context and make transparent the nature
of all the objects involved. In Sec. 3 we write the magnetohydrodynamics’s equation over the
Clifford formalism, recall some theorems and operators from Clifford analysis and represent
the solutions of our equation in terms these operators. In Sec. 4 we present conclusions and
comments.

2. Preliminaries over the Clifford Algebra Approach

Let V be a vector space over the real field R of finite dimension, i.e., dim V = n, n ∈ N. By
V ∗ we denote the dual space of V. We remind that the space of k-tensors (denoted Tk(V ∗))
are the set of all k-linear mappings τk such that

τk : V ∗ × · · · × V ∗ → R
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and a multitensor τ of order m ∈ N is an element of T (V ) where

T (V ) ≡
∞∑

k=0

⊕Tk(V ∗)

of the form τ =
∑m

k=0 ⊕τk, with τk ∈ Tk(V ∗), such that all the components τk ∈ Tk(V ∗) of
τ are null for k > m. T (V ) is called the space of multitensors.

The Clifford algebra Cl(V, g) of a metric vector space (V, g) is defined as the quotient
algebra

Cl(V, g) =
T (V )
Jg

,

where Jg ⊂ T (V ) is the bilateral ideal of T (V ) generated by the elements of the form
u⊗v +v⊗u−2g(u, v), with u, v ∈ V ⊂ T (V ). The elements of Cl(V, g) are sometime called
Clifford numbers.

Let ρg : T (V ) → Cl(V, g) be the natural projection of T (V ) onto the quotient algebra
Cl(V, g). Multiplication in Cl(V, g) is called Clifford product and defined as

AB = ρg(A ⊗ B),

for all A,B ∈ Cl(V, g). In particular, for u, v ∈ V ⊂ Cl(V, g), we have

u ⊗ v =
1
2
(u ⊗ v − v ⊗ u) + g(u, v) +

1
2
(u ⊗ v + v ⊗ u) − g(u, v)

and then

ρg(u ⊗ v) ≡ uv =
1
2
(u ⊗ v − v ⊗ u) + g(u, v) = u ∧ v + g(u, v). (2.1)

From here we get the standard relation characterizing the Clifford algebra Cl(V, g),

uv + vu = 2g(u, v).

In that follows we take V = R
n, and we denote by R

p,q (n = p + q) the real vector
space R

n endowed with a non-degenerated metric g : R
n × R

n → R, such that, if {ei},
(i = 1, 2, . . . , n) is an orthonormal basis of R

p,q, we have

g(ei, ej) = gij = gji =




+1, i = j = 1, . . . , p

−1, i = j = p + 1, . . . , p + q = n

0, i 	= j.

The Clifford algebra Cl(Rp,q, g) = Rp,q = Clp,q, is the Clifford algebra over R, generated
by 1 and the {ei}, (i = 1, 2, . . . , n) such that e2

i = g(ei, ej), eiej = −ejei (i 	= j), and
eA = e1e2 · · · en 	= ±1.

Therefore the universal Clifford algebra Clp,q has the dimension 2n. Henceforth, each
element a ∈ Clp,q shall be written in the form

a =
∑
A

aAeA

where the coefficients aA are real numbers. For details on this formalism see [25].
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Let Ω ⊂ R
n and Γ = ∂Ω. Then functions u defined in Ω with values in Cl0,n (p = 0 and

q = n) are considered. These functions may be written as

u(x) =
∑
A

eAuA(x), x ∈ Ω,

where uA(x) ∈ R. Properties such as continuity, differentiability, integrability, and so on,
which are ascribed to u have to be possessed by all components uA(x). In this way, the usual
Banach space of these functions are denoted by Cα(Ω, Cl0,n),Lq(Ω, Cl0,n) and Wk

q (Ω, Cl0,n)
or in abbreviated form Cα(Ω),Lq(Ω) and Wk

q (Ω).
Let us now introduce the Dirac operator by

D =
n∑

K=1

ek
∂

∂xk

is easy prove that D2 = −∆, where ∆ is the Laplacian operator.
We remind that the subspace of Cl0,n generated by the basic element eA with

equal length k is denoted by Clk0,n. Its elements are called k-vectors. It follows that
Cl10,n is isomorphic to R

n (Cl10,n ≈ R
n). In this sense, we can identify each vector

u(x) ∈ R
n with

u(x) = u1(x)e1 + · · · + un(x)en ∈ Cl10,n ↪→ Cl0,n.

Then we can calculate Du(x) when u(x) ∈ Cl10,3 ↪→ Cl0,3, as follows

Du(x) = Sc(Du) + biv(Du),

where Sc(Du) and biv(Du) are the scalar part and bivector part of Du, respectively.

3. Magnetohydrodynamics’s Type Equations over Clifford Formalism

We consider the stationary magnetohydrodynamical systems (1.1) for u∗,h∗ : R
3 → R

3 and
p∗, w∗ : R

3 → R, which is written as

−∆u∗ +
ρ

η
(u∗ · ∇)u∗ − µ

η
(h∗ · ∇)h∗ +

1
η
∇π∗ =

ρ − µ

2η
f̄∗,

−∆h∗ + µσ(u∗ · ∇)h∗ − µσ(h∗ · ∇)u∗ = −µσ grad w∗, (3.1)

divu∗ = 0; divh∗ = 0,

where π∗ = p∗ + µ
2h

∗2 and we set ρ−µ
2η f̄∗ instead of ρ

η f
∗ to facilitate the computations.

For this system we consider the following boundary conditions

u∗(x) = 0, h∗(x) = 0 on ∂Ω = Γ. (3.2)

Now, we can write the system (3.1)–(3.2) in the Clifford formalism with

u(x),h(x), f̄ (x) ∈ Cl10,3 ↪→ Cl0,3



October 8, 2010 8:53 WSPC/1402-9251 259-JNMP S1402925110000933

Magnetohydrodynamics’s Equations 341

as

DDu +
ρ

η
M(u) − µ

η
M(h) +

1
η
Dπ = 0

DDh + µσN(u,h) − µσN(h,u) = Dw

ScDu = 0; ScDh = 0

u = 0, h = 0 on ∂Ω = Γ.

(3.3)

where π = p + µ
2h

2, −∆ = DD = D2 and M(u), N(u,h) are the operators defined by

M(u) = [Sc(uD)]u − f̄/2; N(u,h) = [Sc(uD)]h.

3.1. Operators from Clifford analysis

Now, we recall without proof the theorems and operators considered, by example
in [4, 11,12]. Let a fixed point z lying in the complement of the closure of Ω, which contains
a non-empty open set. Then we can consider the operator

T̃ f(y) =
∫

Ω
Kz(x, y)f(x)dΩx, (3.4)

with Kz(x, y) = G(x − y) − G(x − z), and where G(x) is the so-called generalized Cauchy
kernel, the Green function of the Dirac operator. Due to the property that G(x) is a fun-
damental solution of D, we have that Kz(x, y) is a monogenic function for x ∈ Ω, then
DT̃f(y) = f(y) for f ∈ Lq(Ω), 1 < q < ∞. The operator given in (3.4) is a continuous
mapping of Wk

q (Ω) in Wk+1
q (Ω), 1 < q < ∞, k = 0, 1, ... and is bounded operator of

W−1
q (Ω) in Lq(Ω), 1 < q < ∞, for details see [4, 11,12].

Theorem 1 (Borel-Pompeiu’s formula). If f ∈ W1
q (Ω), 1 < q < ∞, then we have

F̃Γf = f − T̃Df,

with

F̃Γf =
∫

Γ
Kz(x, y)α(x)f(x)dΓx

where α(x) is the outward pointing normal unit vector to Γ at the point x.

Proposition 1. If k ∈ N then the operator

F̃Γ : Wk−1/q
q (Γ) → Wk

q (Ω) ∩ ker D

is a continuous operator.

Theorem 2 (Plemelj-Sokhotzki’s formula). If f ∈ W1
q (Γ), 1 < q < ∞, l > 0, then we

have

trF̃Γf =
1
2
f +

1
2
S̃Γf,

whereby

S̃Γf = 2
∫

Γ
Kz(x, y)α(x)f(x)dΓx

is the singular integral operator of Cauchy type over the boundary.
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Theorem 3. The space Lq(Ω), 1 < q < ∞, allows the direct decomposition

Lq(Ω) = ker D(Ω) ∩ Lq(Ω) ⊕ D

(
0
W

1

q(Ω)

)
.

The above theorem allows to obtain the projections

P : Lq(Ω) → ker D(Ω) ∩ Lq(Ω)

and

Q : Lq(Ω) → D

(
0
W

1

q(Ω)

)
,

for q = 2 these projections are orthoprojections. It was also proven in [4]

Qf = D∆−1
0 Df

where ∆−1
0 , is the solution operator of the Dirichlet problem of the Poisson equation with

homogeneous boundary data

−∆u = f in Ω,

u = 0 on Γ

for f ∈ W−1
q (Ω), 1 < q < ∞.

Theorem 4. Suppose f ∈ W−1
q (Ω), π ∈ Lq(Ω, R), 1 < q < ∞; then any solution of the

system (3.3) has the representation

u +
ρ

η
T̃QT̃M(u) − µ

η
T̃QT̃M(h) +

1
η
T̃Qπ = 0

h + µσT̃QT̃N(u,h) − µσT̃QT̃N(h,u) − µσT̃Qw = 0

ρ

η
Sc(QT̃M(u)) − µ

η
Sc(QT̃M(h)) +

1
η
Sc(Qπ) = 0

Sc(QT̃N(u,h)) − Sc(QT̃N(h,u)) − Sc(Qw) = 0.

(3.5)

Proof. These equations follow the decomposition of the space Lq(Ω), see for example [4,16].
In fact, recall that Qf = D∆−1

0 Df and DT̃f(y) = f(y), and the Borel–Pompeiu’s formula
imply

T̃Du = u− F̃Γu = u, u ∈
0
W

1

q(Ω)

thus, we can write

T̃QT̃DDu = T̃ (D∆−1
0 D)T̃DDu = T̃D∆−1

0 DDu = T̃Du = u. (3.6)

Then by applying the T̃QT̃ operator to system (3.3) and using the formula (3.6) we obtain
the expected result.
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Lemma 1. (1) Let n/2 ≤ q < ∞. Then the operator M :
◦

W1
q (Ω) → W−1

q (Ω) is a continuous
operator and we have

‖[Sc(uD)]u‖W−1
q (Ω) ≤ C2‖u‖2

W1
q (Ω).

(2) Let n/2 ≤ q < ∞. Then the operator N :
◦

W1
q (Ω) ×

◦
W1

q (Ω) → W−1
q (Ω) is a continuous

operator and we have

‖[Sc(uD)]h‖W−1
q (Ω) ≤ C2‖u‖W1

q (Ω)‖h‖W1
q (Ω).

Proof. The proof of (1) appear in [4] and (2) is similar, in fact as Lq(Ω) ↪→ W−1
q (Ω), if

r = nq/(n + q) and suppose 1
s + 1

t = 1, then the Hölder’s inequality results in∫
Ω
|ui∂jhj |rdΩ ≤ ‖|uj |r‖Ls‖|∂jhj |r‖Lt

≤ ‖uj‖Lst‖∂jhj‖Ltr .

From q = tr we have t = (n + q)/n, s = (n + q)/q and sr = n. Now, due to the embedding
◦

W1
q (Ω) ↪→ Ln(Ω) for q ≥ n/2 we can write∫

Ω
|ui∂jhj |rdΩ ≤ C1‖u‖W1

q (Ω)‖h‖W1
q (Ω),

where C1 is a constant.

On the other hand, we have the following estimates

‖Du‖Lq(Ω) +
1
η
‖Qπ‖Lq(Ω) ≤ C

∥∥∥∥ρ

η
T̃M(u) − µ

η
T̃M(h)

∥∥∥∥
Lq(Ω)

and

‖Dh‖Lq(Ω) + µσ‖Qw‖Lq(Ω) ≤ C‖µσT̃N(u,h) − µσT̃N(h,u)‖Lq(Ω).

This norm estimate gives us the possibility to solve our problem by iteration

ui =
µ

η
T̃QT̃M(hi−1) − ρ

η
T̃QT̃M(ui−1) − 1

η
T̃Qπi

hi = µσT̃QT̃N(hi,ui) − µσT̃QT̃N(ui,hi) + µσT̃Qwi

1
η
Sc(Qπi) =

µ

η
Sc(QT̃M(hi−1)) − ρ

η
Sc(QT̃M(ui−1))

Sc(Qwi) = Sc(QT̃N(ui,hi)) − Sc(QT̃N(hi,ui)).

(3.7)

Now, we will prove the convergence of the iterative method. From the first equation of (3.7)
we obtain

‖ui − ui−1‖W1
q (Ω) ≤

ρ

η
‖T̃QT̃ (M(ui−1) − M(ui−2))‖W1

q

+
∥∥∥∥ρ

η
T̃QT̃ (M(hi−1) − M(hi−2)) +

1
η
T̃Q(πi − πi−1)

∥∥∥∥
W1

q
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and by making use of third equation of (3.7), we obtain

‖ui − ui−1‖W1
q (Ω) ≤ 2C1‖M(ui−1) − M(ui−2)‖W−1

q

where

C1 =
(

ρ

η

)
‖T̃‖[Lq∩imQ,W1

q ]‖Q‖[Lq ,Lq∩imQ]‖T̃‖[W−1
q ,Lq].

Now, due to the above lemma, we have

‖[Sc(uD)]u‖W−1
q (Ω) ≤ C2‖u‖2

W1
q (Ω)

‖[Sc(uD)]h‖W−1
q (Ω) ≤ C2‖u‖W1

q (Ω)‖h‖W1
q (Ω)

then, in a manner similar to [4], this results in

‖M(ui−1) − M(ui−2)‖W−1
q

≤ C2‖ui−1 − ui−2‖W1
q (Ω)(‖ui−1‖W1

q (Ω) + ‖ui−2‖W1
q (Ω)).

With Li = 2C1C2(‖ui−1‖W1
q (Ω) + ‖ui−2‖W1

q (Ω)) we obtain

‖ui − ui−1‖W1
q (Ω) ≤ Li‖ui−1 − ui−2‖W1

q (Ω).

Furthermore, we have

‖ui‖W1
q (Ω) ≤

ρ

η
‖T̃QT̃M(ui−1)‖W1

q (Ω) +
∥∥∥∥µ

η
T̃QT̃M(hi−1) − 1

η
QT̃πi

∥∥∥∥
W1

q (Ω)

≤ ρ

η
‖T̃QT̃M(ui−1)‖W1

q (Ω) +
ρ

η
‖T̃‖W1

q
‖QT̃M(ui−1)‖W1

q (Ω)

≤ 2ρ
η
‖T̃QT̃M(ui−1)‖W1

q (Ω)

≤ 2C1C2‖ui−1‖2
W1

q (Ω) + 2C1
ρ

η
‖f̄‖W−1

q (Ω).

Thus, using arguments similar to [4, p. 97], to ensure that ‖ui‖W1
q (Ω) ≤ ‖ui−1‖W1

q (Ω), we
must have that (ρ/η)‖f̄‖W−1

q (Ω) ≤ (16C2
1C2

2 )−1 then

∣∣∣∣‖ui−1‖W1
q (Ω) −

1
4C1C2

∣∣∣∣ ≤ W

with W = [(4C1C2)−2−ρ‖f̄‖W−1
q (Ω)/(ηC2)]1/2. As a consequence of this inequality we obtain

the estimate

‖ui−1‖W1
q (Ω) ≤

∣∣∣∣W +
1

4C1C2

∣∣∣∣ ≡ R.

This inequality is valid for any i. Finally, it can be shown that

‖ui − ui−1‖W1
q (Ω) ≤ (1 − 4C1C2W )‖ui−1 − ui−2‖W1

q (Ω)

with the condition Li ≤ (1 − 4C1C2W ) ≡ L < 1.
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On the other hand, hi is calculated by the second equation of (3.7) setting

hj
i = µσT̃QT̃N(hj−1

i ,ui) − µσT̃QT̃N(ui,h
j−1
i ) + T̃Qwi.

Thus, from (3.7) we can write the following inequality:

‖hj
i − hj−1

i ‖W1
q (Ω) ≤ µσ‖T̃QT̃ (N(hj−1

i ,ui) − N(hj−2
i ,ui))‖W1

q

+ µσ‖T̃QT̃ (N((ui,h
j−1
i ) − N(ui,h

j−2
i ))‖W1

q

≤ 2P1‖ui‖W1
q
‖hj−1

i − hj−2
i ‖W1

q

where P1 = P1C, with

P1 = µσ‖T̃ ‖[Lq∩imQ,W1
q ]‖Q‖[Lq,Lq∩imQ]‖T̃ |[W−1

q ,Lq]
.

Then, if 2P1R ≤ 1, we have that the sequence {hj
i} converges in W1

q (Ω).
Consequently, we have proved the following result.

Theorem 5. If f̄ ∈ W−1
q (Ω) satisfies

(ρ/η)‖f̄‖W−1
q (Ω) ≤ (16C2

1C2
2 )−1

with C1 = (ρ
η )‖T̃‖[Lq∩imQ,W1

q ]‖Q‖[Lq,Lq∩imQ]‖T̃‖[W−1
q ,Lq]

and n
2 ≤ q < ∞, then the system

(3.3) has a unique solution (u, p,h, w) ∈
◦

W1
q (Ω) ∩ Ker div × Lq(Ω) ×

◦
W1

q (Ω) ∩ Ker div×
Lq(Ω).

4. Conclusion and Discussion

In this paper we studied the equations of stationary magneto-hydrodynamics in Clifford
algebra formalism and using the toolkit of Clifford analysis. The instationary case can
be treated in analogous way as in [5]. The classical linear partial differential equations
of nonrelativistic mathematical physics, as is well known are constructed on the basis of
important physical laws. It has recently been found that all these equations can be set in the
context of Clifford analysis. Manipulating with derivatives, it is possible to generate many
equations, in particular all the physical laws are among them [25]. It is for this reason that
Clifford analysis represents one of the most remarkable fields of modern mathematics. This
formalism can be applied to the relativistic case without curvature too. Also, we can use
the generalization of this formalism to the spaces with curvature [22]. Knowing how to work
in space with curvature in framework of Clifford formalism we can treat the phenomena of
holography.

In particular, it has been discovered that quantum field theory processes in the horizon of
black holes which is described by N = 4 supersymmetric quantum field theory in a special
limit used in [20] are dual to phenomena of classical fluids dynamics in the AdS space
without taking into account any quantum effects. Fluid dynamics is similar to gravitational
dynamics [14]. The investigation on the quantum field theory side is complicate procedure
because of many computational difficulties typical for this discipline [1, 2, 18, 27], however
by making use this duality between Navier–Stokes equation and quantum processes one
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can study quantum physics phenomena without making detailed calculation of quantum
corrections. In such a case, quantum equations written in relativistic formulation for four-
dimensional theory can be converted in relativistic Navier–Stokes equation for the fluid [21].
Then, the non-relativistic limit for Navier–Stokes equation can be taken. The main technical
issue is to compare the energy-momentum tensor in the four-dimensional conformal field
theory lying in the horizon and the energy-momentum tensor of the five-dimensional fluid
inside the black hole [21]. The fluid model considered in this paper in analogy with Navier–
Stokes equation can have its dual on the gravity side.

Another approach to derive non-relativistic equations from the string theory was pro-
posed in [9, 13]. Non-relativistic Schrodinger equation appears due to the conformal group
technique in the plane wave limit of AdS space. Schrodinger equation has the same group
of symmetry as the Navier–Stokes equation has [15]. This suggests that Navier–Stokes
equation can be derived from string theory too, based on conformal group technique. Non-
relativistic Schrodinger equation can be treated in the Clifford analysis. For example, insta-
tionary equations have been investigated in [5, 6], in particular instationary Navier–Stokes
and Schrödinger equations. To our knowledge, at present there is no investigation dedicated
to the development of Clifford formalism in string theory. Our research suggests that such
links can be found, at least in the plane wave limit of AdS space.
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