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We introduce osp(m|n) spin Calogero—Sutherland models and find that the models have the sym-
metry of osp(m|n) half-loop algebra or Yangian of osp(m|n) if and only if the coupling constant of
the model equals to m—2n—4'
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1. Introduction

The Calogero-Sutherland models are one-dimensional many particle systems with long
range interactions. We denote by L and A the number of particles and the coupling constant
which determines the strength of the interaction, respectively. The Hamiltonian of the model
is expressed as

L
82
H=— ‘ @+2/\Z()\—1)V(1’j—l’k) (1.1)
7j=1 J i<k

where the potential V (r) is 1/72 (rational), 1/sin?r (trigonometric), and p(r) (elliptic). We
often call the rational case and the trigonometric case the Calogero model and the Suther-
land model respectively. There are various generalizations to the Calogero—Sutherland mod-
els. One of the generalizations is the spin generalization, namely, we consider models for
which particles have gl(N) spin as an internal degree of freedom. The Hamiltonian is
L g2
H= _Z@ 20 (A= PV (xj — ), (1.2)
j=1""1J j<k

where P} is a permutation operator in a spin space, and exchanges the spin state of the
j-th particle and the k-th particle. The symmetries of the models turn to be the half-loop
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algebra or the Yangian of gl(N) [2, 6, 7, 3]. This gl(N) spin Calogero—Sutherland models
have supersymmetric extensions, which are what we call gi(m|n) spin Calogero-Sutherland
models [1, 8, 9]. It is also proved that the gl(m|n) spin Calogero—Sutherland models have
the Yangian Y (gl(m|n)) symmetry. Recently new interactions between the internal degree
of freedom were introduced in [4]. These interaction are defined in terms of the fundamental
representation of the generators of Lie algebra so(IN) or sp(N). Then we call these models
so(N) or sp(NN) spin Calogero-Sutherland models. It is shown that the so(N) or sp(N) spin
Calogero—Sutherland models have symmetry algebras if and only if the coupling constant
takes a particular value.

It is natural to ask if the so(N) or sp(/N) spin Calogero-Sutherland models have super-
symmetric extensions. The purpose of this paper is to extend the so(IN) or sp(IN) spin
Calogero—Sutherland models to the Lie superalgebra osp(m|n) case, namely the particles
carry the internal degree of freedom which is described in terms of a representation of the
orthosymplectic Lie superalgebra osp(m|n). We show that our models have the half-loop
algebra of osp(m|m) or the Yangian of osp(m|n) as the symmetry algebra when the coupling
constant equals to ﬁ.

This paper is organized as follows. In Sec. 2, we define the orthosymplectic Lie super-
algebra osp(m|n). Then we introduce a new model called osp(m|n) spin Calogero model in
Sec. 3. We find the symmetry of the osp(m|n) spin Calogero models in Sec. 4. In Sec. 5, we
consider the trigonometric case, that is, osp(m|n) spin Sutherland models. Finally we show
that the osp(m|n) spin Sutherland models have super Yangian Y (osp(m|n)) symmetry.

2. Orthosymplectic Lie Superalgebra

In this section we will give the fundamental notations of the Lie superalgebras. For details,
see [5, 10] for example. Throughout this paper, we assume n is even. Let e be the standard
generators of gl(m|n), the (m + n) x (m + n)-dimensional general linear Lie superalgebra,
obeying the graded commutation relations

[, e = Spoe® — (—1)([aHN+d) 5, ocb (2.1)
where [a] is the Zg grading defined as
0, a=1,...,m
=1 "
, a=m+1....m+n.

The orthosymplectic Lie superalgebra osp(m|n) is a subsuperalgebra of the general linear
Lie superalgebra gl(m|n). Using the generators e® of gl(m|n), we can construct osp(m|n)
as follows. For any a = 1,...,m + n, we introduce a sign &,

¢ +1, 1<a<m+3
“ -1, m+g5+1<a<m+n

and a conjugate a

B m+1—a, a=1,....,m
a =
2m+n+1—a, a=m+1,...,m+n.
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Note that
E=1, &&= (-1l (2.2)
Then we choose an even non-degenerate supersymmetric metric gq; as follows,
Gab = Ealyps (2.3)
with inverse metric
9" = &0sa- (2.4)

As generators of the orthosymplectic Lie superalgebra osp(m|n) we take
0 = gare™ — (=1l gyett = —(—1)lllgt (2.5)

which satisfy the graded commutation relations

ab cd] b

0%, d _ (Zq)lal+B)(e+{d)

a c
= 9cb0 GadO

(= 1)) (g e — (— 1)) g by (2.6)

It is easy to check that these generators satisfy the following equations:

[Oab’ UCd] — _(_1)([11]4‘[5})([0]‘*‘[51})[UCd, gab], (2.7)
[[Uab70_cd]7o_ef] _ [Uab7 [Ucd70_ef“
— (— 1) B+ ped [gab e (2.8)

These relations are the defining relations of the Lie superalgebras. The relation (2.8) is
called the super Jacobi identity.

3. osp(m|n) Spin Calogero Model

In this section we will introduce the osp(m|n) spin Calogero models. Let V' be an m + n
dimesional Zy graded vector space and {v®,a = 1,..., m+n} be a homogeneous basis whose
grading is as same as before:
0, a=1,...,m
[a] =

1, a=m+1,...,m+n.

We consider L copies of the generators of gl(m|n) e?b(j = 1,...,L) that act on the j-th
space of the tensor product of graded vector spaces Vi ® --- ® Vi, where the subscript j
corresponds to the space V; ~ V' in the tensor product. With the relation

(G?b ® eid)vﬁi Q UIZ — (_1)([5}‘1'[‘1])[17}6?5’0? ® eidvg7 (31)
one can show that the permutation operator Pj; defined as

m—+n

P = 3 (~1)Hlett @ o (3.2)
a,b=1
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exchanges the spin state of the j-th particle v;’ and the k-th particle vz. Furthermore we
introduce an operator () as follows:

m4+n

Qjk = Y &&(-1) )lelltleab ® e (3.3)

a,b=1

The actions of these operators on v}-’ ® vz are explicitly written as

Pipvt @ v = (—1)llb @ o, (3.4)
m—+n B

Qjkv ® Ve =6, Z £c€avj @ v, (3.5)
c=1

They satisfy the usual properties Pj;, = Py; and Q) = Qr;. Now we consider the following
Hamiltonian

~

Hmlm Z > 2/\2 "“_%f’“)). (3.6)

j=1 i<k B ch)

The operator Pj; — @, is the exchange operator interchanging the “spins” of j-th and k-th
lattice site. Note that we can write the new interactions in terms of osp(m|n) generators as
follows

1 m4+n

Pt = Qjk = —3 > &alp(-1)l lo®af, (3.7)

a,b=1

In this sense we call the models described by the Hamiltonian (3.6) osp(m|n) spin Calogero
models.

4. Symmetry of osp(m|n) Spin Calogero Models

In this section we will obtain the symmetry of the osp(m|n) spin Calogero models. For this
purpose, we introduce the following two operators

L
=> o, (4.1)
=1

L
0 1
Jfb:Zajb% —)\Z(ajak)abx — (4.2)
i=1 Ik F
Here we have used the notations,
m+n
(ojor)" Z §eoioy, b, (4.3)

By simple calculation we collect various useful formulas: For j # k # [ # m,

[Pjk = Qjk, 0i"] = 0, (4.4)
[Pix — Qjk, o) = —(008)™ + (— 1)1l (50, )b (4.5)
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[Pj1, — Qjk (010)™) = 0,
[Pjk — Qji, (0j01)™) = —(0j03,00) ™ + (o000)*,
[Pj, — Qji, (0j01)™) = —(0j0k03)* + (o)0j0%)™

+ (0joj01)™ — (7j040;)™,

where we have defined

m-+n
ap _pq _qb
(ojoror)” g fpgqa ooy

p,q=1
In addition the following formulas are also useful. For j # k # [,
ba _ (_1)[11][17] (O’jO’k)ab,

ba _ _(_1)[11}[1)} (O'lo'ko'j)aba

(O'kO'jO’k ba _ _(_1)[&}[5} (Ukajak)ab
m—+n
e 3 Gy (1) (D@D g
P,q=1

Then the followings are results of this section.
Proposition 4.1. The generators J(‘)lb and Jfb satisfy the following relations
[J8b, J§Y = gopJgd — (—1)al+ D+ g yeb
— (=)l (g J9¢ — (—1) D+l g gy,

L8P, Jf) = gepJf — (—1)(lelH D+ g 7
— (=)l (g a0e — (—1)Uel+BDA+d) g gy,

(—1) e+ PN+ ged [ gab, Jff”
+ (8", 5 ) = L st ) = o,

for the following particular value of the coupling constant

2

A= ———.
m—n—4

)
)

(oxo0y)" = (=)W (050404)™ — (m — n —2)(=1)1"P(0;0),
)

(4.6)
(4.7)

(4.10)
(4.11)
(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

Proof. The first and the second relations can be shown by straightforward calculations. In
order to prove the third relation, we compute [J ab, de]. Then we obtain that if the coupling

constant A equals to (4.17), then

[Jilb> JICd] = gchéld - (_1)([a]+[b})([C]+[d])gad‘]28b
— (=)l (ggg9¢ — (—1)(ad+ DA+ g dby,

(4.18)
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where we define

L
o2 o 0
ab ab
J2 = R DL i — (axj * axk>

7j=1 J J#k
a a a a “ !
+ /\Z{—)\ajb = Mo + (0j0k05)" — (~1)! (o40502) "} (zj — xp)?
i7k
+ A2 Z (0j0k01)" ! : ' (4.19)
‘ J Tj— Tp T — Xy
ERA

Consequently the super Jacobi identity (2.8) assures the third relation of the proposition.
O

Remark 4.1. The above proof is not workable in case of m —n — 4 = 0. Therefore we
assume that m —n — 4 is not equal zero hereafter.
Equation (4.16) is called Serre relation for the loop algebra. Thanks to (4.16) we can

define the higher level generators J;b, Jgb ... recursively:
ab 1
Jl/ fcd ef,ab[Jl 7<],/ 1] (420)
|fcd ef, abfef cd ab|

where fop cd.cfr are the structure constants of osp(m|n), namely

ab

[0 ,UCd] = fab,cd’efaef. (4.21)

These relations (4.14)—(4.16) imply the generators J%(v > 0) form the half loop algebra
associated to the osp(m|n),

[Jsb,Jsd] gchZg’l_V (— 1)([a}+[b])([c}+[d])gadjﬁljry
_ (_1)[ c][d] (gdbjzgry _ (_1)([a}+[b])([6]+[d])gacjgljry)_ (4.22)

The next proposition shows that the generators of the osp(m|n) half loop algebra J are
conserved operators for the osp(m|n) spin Calogero model.

Proposition 4.2. The operators J§* and J® commute with the Hamiltonian of osp(m|n)
spin Calogero model H (™).

[Hm | geb) =0,  [HM™M | g = o, (4.23)
for the coupling constant \ equals to (4.17).

Therefore we conclude that the symmetry algebra of the model described by the
Hamiltonian (3.6) is the half-loop algebra associated to osp(m|n) if and only if the coupling

constant A\ equals to m_zn_ i
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5. osp(m|n) Spin Sutherland Models

We naturally expect that osp(m|n) spin Sutherland model, whose Hamiltonian given by
In) L 6 k - Q k))
(min) _ — 2 5.1
Hg e Z:: ]2 Z sin?[(&; — &) /2] (5.1)

have the symmetry of Yangian Y (osp(m|n)). In order to see this we first rewrite the
Hamiltonian (5.1) in terms of the variables x; = exp(y/—1¢;). Then we have

L 2
~ 0 TjTk
A =37 (@i ) =202 (0= (P = Q) . (5.2)
; Iz ; (zj — 2x)
Jj=1 i<k
Next we introduce a new set of operators as follows:
L
Kg' =Y o, (5.3)
j=1
L 0 A i+
=Y ot <:c —) — 53 (ojop) LR (5.4)
J J . J A
j=1 6.7}] 2 o -75] Tk

Then we obtain the following results for the osp(m|n) spin Sutherland models.

Proposition 5.1. The generators Kgb and be satisfy the following commutation relations
when the coupling constant A equals to (4.17).

(K8, K64 = g Kad — (—1)(a+ED(d+d) g peeh
_ (_1)[C][d] (ga g€ — (_1)([a}+[b])([c}+[d])gaCKgb)7 (5.5)
(K8, K = gep K14 — (—1) (el DU+ gy pef?
(=)l (g g — (—1) LD g, (5.6)

(—1) (DA e [xev Feyl]) + [[Kgh, K¢, K] — (K, [k K]
— _{ Y@+ D+ (R, Ko I ) ledlabed ]
+ (KQKQKo)[[ab’Cd]’ef] — (KoKQKo)[ab’[Cd’ef”}. (57)

Here we use the following notations.

(KoKoKo)l“ledelll = g.4(Ko Ko Ko)™!
_ (_1)([C}+[d])([8}+[ﬂ)gcf(KOKOKO)ab,ed
_ (_1)[e][ﬂgfd(KOKOKo)ab,ce
+ (_1)[6][ﬂ+([6]+[d})([e]+[f])gce(KOKOKO)ab,fd7 (5.8)
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and

(KoKoKo)®™ = (—1)1l (K, I ) o Kb

+ (—1)0 [C]+[a][b]+[a][c}K6:b(K0K0)ad

_ (_1)[6}[C]+[a][b]+[a][c}(KOKO)chgd

+ (_1)[b}[C]+[a][c}+[b][d]K§a(K0K0)db. (5.9)
The relations (5.5)—(5.7) are the defining relations of the super Yangian Y (osp(m|n)).

We call the equation (5.7) the deformed Serre relation for the super Yangian.
One then directly show the next proposition.

Proposition 5.2. The operators Kgb and K& are conserved operators for the osp(m|n)
min)

spin Sutherland model, that is, they commute with the Hamiltonian I:Téuth :

A Kgh =0, A K =0, (5.10)
if the coupling constant X\ equals to (4.17).

In conclusion, we find that the osp(m|n) spin Sutherland models have the super Yangian

symmetry Y (osp(m|n)) when the coupling constant A equals to —2—.
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