Journal of Nonlinear Mathematical Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251 Journal Home Page: https://www.atlantis-press.com/journals/jnmp

Symmetry of $\operatorname{osp}(m \mid n)$ Spin Calogero-Sutherland Models

Kazuyuki Oshima

To cite this article: Kazuyuki Oshima (2010) Symmetry of osp($m \mid n$) Spin CalogeroSutherland Models, Journal of Nonlinear Mathematical Physics 17:3, 349-356, DOI: https://doi.org/10.1142/S1402925110000945

To link to this article: https://doi.org/10.1142/S1402925110000945

Published online: 04 January 2021
(c) K. Oshima

DOI: 10.1142/S1402925110000945

SYMMETRY OF $\operatorname{osp}(m \mid n)$ SPIN CALOGERO-SUTHERLAND MODELS

KAZUYUKI OSHIMA
Center for General Education
Aichi Institute of Technology
1247 Yachigusa, Yakusa Cho, Toyota City
Aichi Prefecture, 470-0392, Japan
oshima@aitech.ac.jp

Received 1 October 2009
Accepted 3 February 2010

Abstract

We introduce $\operatorname{osp}(m \mid n)$ spin Calogero-Sutherland models and find that the models have the symmetry of $\operatorname{osp}(m \mid n)$ half-loop algebra or Yangian of $\operatorname{osp}(m \mid n)$ if and only if the coupling constant of the model equals to $\frac{2}{m-n-4}$.

Keywords: Calogero-Sutherland model; spin generalization; Lie superalgebra; half-loop algebra symmetry; Yangian symmetry.

2000 Mathematics Subject Classification: 70H06, 81R12, 17B70

1. Introduction

The Calogero-Sutherland models are one-dimensional many particle systems with long range interactions. We denote by L and λ the number of particles and the coupling constant which determines the strength of the interaction, respectively. The Hamiltonian of the model is expressed as

$$
\begin{equation*}
H=-\sum_{j=1}^{L} \frac{\partial^{2}}{\partial x_{j}^{2}}+2 \lambda \sum_{j<k}(\lambda-1) V\left(x_{j}-x_{k}\right) \tag{1.1}
\end{equation*}
$$

where the potential $V(r)$ is $1 / r^{2}$ (rational), $1 / \sin ^{2} r$ (trigonometric), and $\wp(r)$ (elliptic). We often call the rational case and the trigonometric case the Calogero model and the Sutherland model respectively. There are various generalizations to the Calogero-Sutherland models. One of the generalizations is the spin generalization, namely, we consider models for which particles have $g l(N)$ spin as an internal degree of freedom. The Hamiltonian is

$$
\begin{equation*}
H=-\sum_{j=1}^{L} \frac{\partial^{2}}{\partial x_{j}^{2}}+2 \lambda \sum_{j<k}\left(\lambda-P_{j k}\right) V\left(x_{j}-x_{k}\right) \tag{1.2}
\end{equation*}
$$

where $P_{j k}$ is a permutation operator in a spin space, and exchanges the spin state of the j-th particle and the k-th particle. The symmetries of the models turn to be the half-loop
algebra or the Yangian of $g l(N)[2,6,7,3]$. This $g l(N)$ spin Calogero-Sutherland models have supersymmetric extensions, which are what we call $g l(m \mid n)$ spin Calogero-Sutherland models $[1,8,9]$. It is also proved that the $g l(m \mid n)$ spin Calogero-Sutherland models have the Yangian $Y(g l(m \mid n))$ symmetry. Recently new interactions between the internal degree of freedom were introduced in [4]. These interaction are defined in terms of the fundamental representation of the generators of Lie algebra $s o(N)$ or $s p(N)$. Then we call these models $s o(N)$ or $s p(N)$ spin Calogero-Sutherland models. It is shown that the $s o(N)$ or $s p(N)$ spin Calogero-Sutherland models have symmetry algebras if and only if the coupling constant takes a particular value.

It is natural to ask if the $s o(N)$ or $s p(N)$ spin Calogero-Sutherland models have supersymmetric extensions. The purpose of this paper is to extend the $s o(N)$ or $s p(N)$ spin Calogero-Sutherland models to the Lie superalgebra $\operatorname{osp}(m \mid n)$ case, namely the particles carry the internal degree of freedom which is described in terms of a representation of the orthosymplectic Lie superalgebra $\operatorname{osp}(m \mid n)$. We show that our models have the half-loop algebra of $\operatorname{osp}(m \mid m)$ or the Yangian of $\operatorname{osp}(m \mid n)$ as the symmetry algebra when the coupling constant equals to $\frac{2}{m-n-4}$.

This paper is organized as follows. In Sec. 2, we define the orthosymplectic Lie superalgebra $\operatorname{osp}(m \mid n)$. Then we introduce a new model called $\operatorname{osp}(m \mid n)$ spin Calogero model in Sec. 3. We find the symmetry of the osp $(m \mid n)$ spin Calogero models in Sec. 4. In Sec. 5, we consider the trigonometric case, that is, $\operatorname{osp}(m \mid n)$ spin Sutherland models. Finally we show that the $\operatorname{osp}(m \mid n)$ spin Sutherland models have super Yangian $Y(\operatorname{osp}(m \mid n))$ symmetry.

2. Orthosymplectic Lie Superalgebra

In this section we will give the fundamental notations of the Lie superalgebras. For details, see $[5,10]$ for example. Throughout this paper, we assume n is even. Let $e^{a b}$ be the standard generators of $g l(m \mid n)$, the $(m+n) \times(m+n)$-dimensional general linear Lie superalgebra, obeying the graded commutation relations

$$
\begin{equation*}
\left[e^{a b}, e^{c d}\right]=\delta_{b c} e^{a d}-(-1)^{([a]+[b])([c]+[d])} \delta_{d a} e^{c b} \tag{2.1}
\end{equation*}
$$

where $[a]$ is the \mathbb{Z}_{2} grading defined as

$$
[a]= \begin{cases}0, & a=1, \ldots, m \\ 1, & a=m+1, \ldots, m+n\end{cases}
$$

The orthosymplectic Lie superalgebra $\operatorname{osp}(m \mid n)$ is a subsuperalgebra of the general linear Lie superalgebra $g l(m \mid n)$. Using the generators $e^{a b}$ of $g l(m \mid n)$, we can construct $\operatorname{osp}(m \mid n)$ as follows. For any $a=1, \ldots, m+n$, we introduce a sign ξ_{a}

$$
\xi_{a}= \begin{cases}+1, & 1 \leq a \leq m+\frac{n}{2} \\ -1, & m+\frac{n}{2}+1 \leq a \leq m+n\end{cases}
$$

and a conjugate \bar{a}

$$
\bar{a}= \begin{cases}m+1-a, & a=1, \ldots, m \\ 2 m+n+1-a, & a=m+1, \ldots, m+n\end{cases}
$$

Note that

$$
\begin{equation*}
\xi_{a}^{2}=1, \quad \xi_{a} \xi_{\bar{a}}=(-1)^{[a]} . \tag{2.2}
\end{equation*}
$$

Then we choose an even non-degenerate supersymmetric metric $g_{a b}$ as follows,

$$
\begin{equation*}
g_{a b}=\xi_{a} \delta_{a \bar{b}} \tag{2.3}
\end{equation*}
$$

with inverse metric

$$
\begin{equation*}
g^{b a}=\xi_{b} \delta_{b \bar{a}} \tag{2.4}
\end{equation*}
$$

As generators of the orthosymplectic Lie superalgebra $\operatorname{osp}(m \mid n)$ we take

$$
\begin{equation*}
\sigma^{a b}=g_{a k} e^{k b}-(-1)^{[a][b]} g_{b k} e^{k a}=-(-1)^{[a][b]} \sigma^{b a} \tag{2.5}
\end{equation*}
$$

which satisfy the graded commutation relations

$$
\begin{align*}
{\left[\sigma^{a b}, \sigma^{c d}\right]=} & g_{c b} \sigma^{a d}-(-1)^{([a]+[b])([c]+[d])} g_{a d} \sigma^{c b} \\
& -(-1)^{[c][d]}\left(g_{d b} \sigma^{a c}-(-1)^{([a]+[b])([c]+[d])} g_{a c} \sigma^{d b}\right) . \tag{2.6}
\end{align*}
$$

It is easy to check that these generators satisfy the following equations:

$$
\begin{align*}
{\left[\sigma^{a b}, \sigma^{c d}\right]=} & -(-1)^{([a]+[b])([c]+[d])}\left[\sigma^{c d}, \sigma^{a b}\right], \tag{2.7}\\
{\left[\left[\sigma^{a b}, \sigma^{c d}\right], \sigma^{e f}\right]=} & {\left[\sigma^{a b},\left[\sigma^{c d}, \sigma^{e f f}\right]\right] } \\
& -(-1)^{([a]+[b])([c]+[d])}\left[\sigma^{c d},\left[\sigma^{a b}, \sigma^{e f}\right]\right] . \tag{2.8}
\end{align*}
$$

These relations are the defining relations of the Lie superalgebras. The relation (2.8) is called the super Jacobi identity.

3. $\operatorname{osp}(m \mid n)$ Spin Calogero Model

In this section we will introduce the $\operatorname{osp}(m \mid n)$ spin Calogero models. Let V be an $m+n$ dimesional \mathbb{Z}_{2} graded vector space and $\left\{v^{a}, a=1, \ldots, m+n\right\}$ be a homogeneous basis whose grading is as same as before:

$$
[a]= \begin{cases}0, & a=1, \ldots, m \\ 1, & a=m+1, \ldots, m+n\end{cases}
$$

We consider L copies of the generators of $g l(m \mid n) e_{j}^{a b}(j=1, \ldots, L)$ that act on the j-th space of the tensor product of graded vector spaces $V_{1} \otimes \cdots \otimes V_{L}$ where the subscript j corresponds to the space $V_{j} \simeq V$ in the tensor product. With the relation

$$
\begin{equation*}
\left(e_{j}^{a b} \otimes e_{k}^{c d}\right) v_{j}^{p} \otimes v_{k}^{q}=(-1)^{([c]+[d])[p]} e_{j}^{a b} v_{j}^{p} \otimes e_{k}^{c d} v_{k}^{q}, \tag{3.1}
\end{equation*}
$$

one can show that the permutation operator $P_{j k}$ defined as

$$
\begin{equation*}
P_{j k}=\sum_{a, b=1}^{m+n}(-1)^{[b]} e_{j}^{a b} \otimes e_{k}^{b a} \tag{3.2}
\end{equation*}
$$

exchanges the spin state of the j-th particle v_{j}^{a} and the k-th particle v_{k}^{b}. Furthermore we introduce an operator $Q_{j k}$ as follows:

$$
\begin{equation*}
Q_{j k}=\sum_{a, b=1}^{m+n} \xi_{a} \xi_{b}(-1)^{[a][b]} e_{j}^{a b} \otimes e_{k}^{\bar{a} \bar{b}} \tag{3.3}
\end{equation*}
$$

The actions of these operators on $v_{j}^{a} \otimes v_{k}^{b}$ are explicitly written as

$$
\begin{align*}
P_{j k} v_{j}^{a} \otimes v_{k}^{b} & =(-1)^{[a][b]} v_{j}^{b} \otimes v_{k}^{a}, \tag{3.4}\\
Q_{j k} v_{j}^{a} \otimes v_{k}^{b} & =\delta_{a \bar{b}} \sum_{c=1}^{m+n} \xi_{c} \xi_{\bar{a}} v_{j}^{c} \otimes v_{k}^{\bar{c}} . \tag{3.5}
\end{align*}
$$

They satisfy the usual properties $P_{j k}=P_{k j}$ and $Q_{j k}=Q_{k j}$. Now we consider the following Hamiltonian

$$
\begin{equation*}
H^{(m \mid n)}=-\sum_{j=1}^{L} \frac{\partial^{2}}{\partial x_{j}^{2}}+2 \lambda \sum_{j<k} \frac{\left(\lambda-\left(P_{j k}-Q_{j k}\right)\right)}{\left(x_{j}-x_{k}\right)^{2}} \tag{3.6}
\end{equation*}
$$

The operator $P_{j k}-Q_{j k}$ is the exchange operator interchanging the "spins" of j-th and k-th lattice site. Note that we can write the new interactions in terms of $\operatorname{osp}(m \mid n)$ generators as follows

$$
\begin{equation*}
P_{j k}-Q_{j k}=-\frac{1}{2} \sum_{a, b=1}^{m+n} \xi_{a} \xi_{b}(-1)^{[a][b]} \sigma_{j}^{a b} \sigma_{k}^{\bar{a} \bar{b}} \tag{3.7}
\end{equation*}
$$

In this sense we call the models described by the Hamiltonian (3.6) osp $(m \mid n)$ spin Calogero models.

4. Symmetry of $\operatorname{osp}(m \mid n)$ Spin Calogero Models

In this section we will obtain the symmetry of the $\operatorname{osp}(m \mid n)$ spin Calogero models. For this purpose, we introduce the following two operators

$$
\begin{align*}
& J_{0}^{a b}=\sum_{j=1}^{L} \sigma_{j}^{a b} \tag{4.1}\\
& J_{1}^{a b}=\sum_{j=1}^{L} \sigma_{j}^{a b} \frac{\partial}{\partial x_{j}}-\lambda \sum_{j \neq k}\left(\sigma_{j} \sigma_{k}\right)^{a b} \frac{1}{x_{j}-x_{k}} . \tag{4.2}
\end{align*}
$$

Here we have used the notations,

$$
\begin{equation*}
\left(\sigma_{j} \sigma_{k}\right)^{a b}=\sum_{c=1}^{m+n} \xi_{c} \sigma_{j}^{a c} \sigma_{k}^{\bar{c} b} \tag{4.3}
\end{equation*}
$$

By simple calculation we collect various useful formulas: For $j \neq k \neq l \neq m$,

$$
\begin{align*}
& {\left[P_{j k}-Q_{j k}, \sigma_{l}^{a b}\right]=0,} \tag{4.4}\\
& {\left[P_{j k}-Q_{j k}, \sigma_{k}^{a b}\right]=-\left(\sigma_{j} \sigma_{k}\right)^{a b}+(-1)^{[a][b]}\left(\sigma_{j} \sigma_{k}\right)^{b a}} \tag{4.5}
\end{align*}
$$

$$
\begin{align*}
{\left[P_{j k}-Q_{j k},\left(\sigma_{l} \sigma_{m}\right)^{a b}\right]=} & 0 \tag{4.6}\\
{\left[P_{j k}-Q_{j k},\left(\sigma_{j} \sigma_{l}\right)^{a b}\right]=} & -\left(\sigma_{j} \sigma_{k} \sigma_{l}\right)^{a b}+\left(\sigma_{k} \sigma_{j} \sigma_{l}\right)^{a b} \tag{4.7}\\
{\left[P_{j k}-Q_{j k},\left(\sigma_{j} \sigma_{k}\right)^{a b}\right]=} & -\left(\sigma_{j} \sigma_{k} \sigma_{k}\right)^{a b}+\left(\sigma_{k} \sigma_{j} \sigma_{k}\right)^{a b} \\
& +\left(\sigma_{j} \sigma_{j} \sigma_{k}\right)^{a b}-\left(\sigma_{j} \sigma_{k} \sigma_{j}\right)^{a b} \tag{4.8}
\end{align*}
$$

where we have defined

$$
\begin{equation*}
\left(\sigma_{j} \sigma_{k} \sigma_{l}\right)^{a b}=\sum_{p, q=1}^{m+n} \xi_{p} \xi_{q} \sigma_{j}^{a p} \sigma_{k}^{\bar{p} q} \sigma_{l}^{\bar{q} b} . \tag{4.9}
\end{equation*}
$$

In addition the following formulas are also useful. For $j \neq k \neq l$,

$$
\begin{align*}
\left(\sigma_{k} \sigma_{j}\right)^{b a}= & (-1)^{[a][b]}\left(\sigma_{j} \sigma_{k}\right)^{a b}, \tag{4.10}\\
\left(\sigma_{j} \sigma_{k} \sigma_{l}\right)^{b a}= & -(-1)^{[a][b]}\left(\sigma_{l} \sigma_{k} \sigma_{j}\right)^{a b}, \tag{4.11}\\
\left(\sigma_{k} \sigma_{k} \sigma_{j}\right)^{b a}= & (-1)^{[a][b]}\left(\sigma_{j} \sigma_{k} \sigma_{k}\right)^{a b}-(m-n-2)(-1)^{[a][b]}\left(\sigma_{j} \sigma_{k}\right)^{a b}, \tag{4.12}\\
\left(\sigma_{k} \sigma_{j} \sigma_{k}\right)^{b a}= & -(-1)^{[a][b]}\left(\sigma_{k} \sigma_{j} \sigma_{k}\right)^{a b} \\
& -g_{b a} \sum_{p, q=1}^{m+n} \xi_{p} \xi_{q}(-1)^{([a]+[q])([b]+[q])} \sigma_{k}^{\bar{q} p} \sigma_{j}^{\bar{p} q} . \tag{4.13}
\end{align*}
$$

Then the followings are results of this section.
Proposition 4.1. The generators $J_{0}^{a b}$ and $J_{1}^{a b}$ satisfy the following relations

$$
\begin{align*}
{\left[J_{0}^{a b}, J_{0}^{c d}\right]=} & g_{c b} J_{0}^{a d}-(-1)^{([a]+[b])([c]+[d])} g_{a d} J_{0}^{c b} \\
& -(-1)^{[c][d]}\left(g_{d b} J_{0}^{a c}-(-1)^{([a]+[b])([c]+[d])} g_{a c} J_{0}^{d b}\right), \tag{4.14}\\
{\left[J_{0}^{a b}, J_{1}^{c d}\right]=} & g_{c b} J_{1}^{a d}-(-1)^{([a]+[b])([c]+[d])} g_{a d} J_{1}^{c b} \\
& -(-1)^{[c][d]}\left(g_{d b} J_{1}^{a c}-(-1)^{([a]+[b])([c]+[d])} g_{a c} J_{1}^{d b}\right), \tag{4.15}\\
& (-1)^{([a]+[b])([c]+[d])}\left[J_{1}^{c d},\left[J_{0}^{a b}, J_{1}^{e f}\right]\right] \\
& +\left[\left[J_{0}^{a b}, J_{1}^{c d}\right], J_{1}^{e f}\right]-\left[J_{1}^{a b},\left[J_{0}^{c d}, J_{1}^{e f}\right]\right]=0, \tag{4.16}
\end{align*}
$$

for the following particular value of the coupling constant

$$
\begin{equation*}
\lambda=\frac{2}{m-n-4} . \tag{4.17}
\end{equation*}
$$

Proof. The first and the second relations can be shown by straightforward calculations. In order to prove the third relation, we compute $\left[J_{1}^{a b}, J_{1}^{c d}\right]$. Then we obtain that if the coupling constant λ equals to (4.17), then

$$
\begin{align*}
{\left[J_{1}^{a b}, J_{1}^{c d}\right]=} & g_{c b} J_{2}^{a d}-(-1)^{([a]+[b])([c]+[d])} g_{a d} J_{2}^{c b} \\
& -(-1)^{[c][d]}\left(g_{d b} J_{2}^{a c}-(-1)^{([a]+[b])([c]+[d])} g_{a c} J_{2}^{d b}\right), \tag{4.18}
\end{align*}
$$

where we define

$$
\begin{align*}
J_{2}^{a b} & =\sum_{j=1}^{L} \sigma_{j}^{a b} \frac{\partial^{2}}{\partial x_{j}^{2}}-\lambda \sum_{j \neq k}\left(\sigma_{j} \sigma_{k}\right)^{a b} \frac{1}{x_{j}-x_{k}}\left(\frac{\partial}{\partial x_{j}}+\frac{\partial}{\partial x_{k}}\right) \\
& +\lambda \sum_{j \neq k}\left\{-\lambda \sigma_{j}^{a b}-\lambda \sigma_{k}^{a b}+\left(\sigma_{j} \sigma_{k} \sigma_{j}\right)^{a b}-(-1)^{[a][b]}\left(\sigma_{k} \sigma_{j} \sigma_{k}\right)^{a b}\right\} \frac{1}{\left(x_{j}-x_{k}\right)^{2}} \\
& +\lambda^{2} \sum_{j \neq k \neq l}\left(\sigma_{j} \sigma_{k} \sigma_{l}\right)^{a b} \frac{1}{x_{j}-x_{k}} \frac{1}{x_{k}-x_{l}} . \tag{4.19}
\end{align*}
$$

Consequently the super Jacobi identity (2.8) assures the third relation of the proposition.

Remark 4.1. The above proof is not workable in case of $m-n-4=0$. Therefore we assume that $m-n-4$ is not equal zero hereafter.

Equation (4.16) is called Serre relation for the loop algebra. Thanks to (4.16) we can define the higher level generators $J_{2}^{a b}, J_{3}^{a b}, \ldots$ recursively:

$$
\begin{equation*}
J_{\nu}^{a b}=\frac{1}{\left|f_{c d, e f, a b} f_{e f, c d, a b}\right|} f_{c d, e f, a b}\left[J_{1}^{c d}, J_{\nu-1}^{e f}\right] \tag{4.20}
\end{equation*}
$$

where $f_{a b, c d, e f}$ are the structure constants of $\operatorname{osp}(m \mid n)$, namely

$$
\begin{equation*}
\left[\sigma^{a b}, \sigma^{c d}\right]=f_{a b, c d, e f} \sigma^{e f} \tag{4.21}
\end{equation*}
$$

These relations (4.14)-(4.16) imply the generators $J_{\nu}^{a b}(\nu \geq 0)$ form the half loop algebra associated to the $\operatorname{osp}(m \mid n)$,

$$
\begin{align*}
{\left[J_{\mu}^{a b}, J_{\nu}^{c d}\right]=} & g_{c b} J_{\mu+\nu}^{a d}-(-1)^{([a]+[b])([c]+[d])} g_{a d} J_{\mu+\nu}^{c b} \\
& -(-1)^{[c][d]}\left(g_{d b} J_{\mu+\nu}^{a c}-(-1)^{([a]+[b])([c]+[d])} g_{a c} J_{\mu+\nu}^{d b}\right) . \tag{4.22}
\end{align*}
$$

The next proposition shows that the generators of the $\operatorname{osp}(m \mid n)$ half loop algebra $J_{\nu}^{a b}$ are conserved operators for the $\operatorname{osp}(m \mid n)$ spin Calogero model.

Proposition 4.2. The operators $J_{0}^{a b}$ and $J_{1}^{a b}$ commute with the Hamiltonian of osp $(m \mid n)$ spin Calogero model $H^{(m \mid n)}$:

$$
\begin{equation*}
\left[H^{(m \mid n)}, J_{0}^{a b}\right]=0, \quad\left[H^{(m \mid n)}, J_{1}^{a b}\right]=0 \tag{4.23}
\end{equation*}
$$

for the coupling constant λ equals to (4.17).
Therefore we conclude that the symmetry algebra of the model described by the Hamiltonian (3.6) is the half-loop algebra associated to $\operatorname{osp}(m \mid n)$ if and only if the coupling constant λ equals to $\frac{2}{m-n-4}$.

5. $\operatorname{osp}(m \mid n)$ Spin Sutherland Models

We naturally expect that $\operatorname{osp}(m \mid n)$ spin Sutherland model, whose Hamiltonian given by

$$
\begin{equation*}
H_{\text {Suth }}^{(m \mid n)}=-\sum_{j=1}^{L} \frac{\partial^{2}}{\partial \xi_{j}^{2}}+\frac{\lambda}{2} \sum_{j<k} \frac{\left(\lambda-\left(P_{j k}-Q_{j k}\right)\right)}{\sin ^{2}\left[\left(\xi_{j}-\xi_{k}\right) / 2\right]} \tag{5.1}
\end{equation*}
$$

have the symmetry of Yangian $Y(\operatorname{osp}(m \mid n))$. In order to see this we first rewrite the Hamiltonian (5.1) in terms of the variables $x_{j}=\exp \left(\sqrt{-1} \xi_{j}\right)$. Then we have

$$
\begin{equation*}
\widehat{H}_{\text {Suth }}^{(m \mid n)}=\sum_{j=1}^{L}\left(x_{j} \frac{\partial}{\partial x_{j}}\right)^{2}-2 \lambda \sum_{j<k}\left(\lambda-\left(P_{j k}-Q_{j k}\right)\right) \frac{x_{j} x_{k}}{\left(x_{j}-x_{k}\right)^{2}} . \tag{5.2}
\end{equation*}
$$

Next we introduce a new set of operators as follows:

$$
\begin{align*}
K_{0}^{a b} & =\sum_{j=1}^{L} \sigma_{j}^{a b} \tag{5.3}\\
K_{1}^{a b} & =\sum_{j=1}^{L} \sigma_{j}^{a b}\left(x_{j} \frac{\partial}{\partial x_{j}}\right)-\frac{\lambda}{2} \sum_{j \neq k}\left(\sigma_{j} \sigma_{k}\right)^{a b} \frac{x_{j}+x_{k}}{x_{j}-x_{k}} \tag{5.4}
\end{align*}
$$

Then we obtain the following results for the $\operatorname{osp}(m \mid n)$ spin Sutherland models.
Proposition 5.1. The generators $K_{0}^{a b}$ and $K_{1}^{a b}$ satisfy the following commutation relations when the coupling constant λ equals to (4.17).

$$
\begin{align*}
& {\left[K_{0}^{a b}, K_{0}^{c d}\right]=} g_{c b} K_{0}^{a d}-(-1)^{([a]+[b])([c]+[d])} g_{a d} K_{0}^{c b} \\
&-(-1)^{[c][d]}\left(g_{d b} K_{0}^{a c}-(-1)^{([a]+[b])([c]+[d])} g_{a c} K_{0}^{d b}\right), \tag{5.5}\\
& {\left[K_{0}^{a b}, K_{1}^{c d}\right]=} g_{c b} K_{1}^{a d}-(-1)^{([a]+[b])([c]+[d])} g_{a d} K_{1}^{c b} \\
&-(-1)^{[c][d]}\left(g_{d b} K_{1}^{a c}-(-1)^{([a]+[b])([c]+[d])} g_{a c} K_{1}^{d b}\right), \tag{5.6}\\
&(-1)^{([a]+[b])([c]+[d])}\left[K_{1}^{c d},\left[K_{0}^{a b}, K_{1}^{e f}\right]\right]+\left[\left[K_{0}^{a b}, K_{1}^{c d}\right], K_{1}^{e f}\right]-\left[K_{1}^{a b},\left[K_{0}^{c d}, K_{1}^{e f}\right]\right] \\
&= \frac{\lambda^{2}}{4}\left\{(-1)^{([a]+[b])([c]+[d])}\left(K_{0} K_{0} K_{0}\right)^{[c d,[a b, e f]]]}\right. \\
&\left.+\left(K_{0} K_{0} K_{0}\right)^{[[a b, c d]], e f]}-\left(K_{0} K_{0} K_{0}\right)^{[a b,[c d, e f]]]}\right\} . \tag{5.7}
\end{align*}
$$

Here we use the following notations.

$$
\begin{align*}
\left(K_{0} K_{0} K_{0}\right)^{[a b,[c d, e f]]}= & g_{e d}\left(K_{0} K_{0} K_{0}\right)^{a b, c f} \\
& -(-1)^{[[c]+[d])([e]+[f])} g_{c f}\left(K_{0} K_{0} K_{0}\right)^{a b, e d} \\
& -(-1)^{[e][f]} g_{f d}\left(K_{0} K_{0} K_{0}\right)^{a b, c e} \\
& +(-1)^{[e][f]+([c]+[d])([e]+[f])} g_{c e}\left(K_{0} K_{0} K_{0}\right)^{a b, f d} \tag{5.8}
\end{align*}
$$

and

$$
\begin{align*}
\left(K_{0} K_{0} K_{0}\right)^{a b, c d}= & (-1)^{[b][c]}\left(K_{0} K_{0}\right)^{a c} K_{0}^{b d} \\
& +(-1)^{[b][c]+[a][b]+[a][c]} K_{0}^{c b}\left(K_{0} K_{0}\right)^{a d} \\
& -(-1)^{[b][c]+[a][b]+[a][c]}\left(K_{0} K_{0}\right)^{c b} K_{0}^{a d} \\
& +(-1)^{[b][c]+[a][c]+[b][d]} K_{0}^{c a}\left(K_{0} K_{0}\right)^{d b} . \tag{5.9}
\end{align*}
$$

The relations (5.5)-(5.7) are the defining relations of the super Yangian $Y(o s p(m \mid n))$. We call the equation (5.7) the deformed Serre relation for the super Yangian.

One then directly show the next proposition.
Proposition 5.2. The operators $K_{0}^{a b}$ and $K_{1}^{a b}$ are conserved operators for the osp $(m \mid n)$ spin Sutherland model, that is, they commute with the Hamiltonian $\widehat{H}_{\text {Suth }}^{(m \mid n)}$:

$$
\begin{equation*}
\left[\hat{H}_{\text {Suth }}^{(m \mid n)}, K_{0}^{a b}\right]=0, \quad\left[\hat{H}_{\text {Suth }}^{(m \mid n)}, K_{1}^{a b}\right]=0 \tag{5.10}
\end{equation*}
$$

if the coupling constant λ equals to (4.17).
In conclusion, we find that the $\operatorname{osp}(m \mid n)$ spin Sutherland models have the super Yangian symmetry $Y(\operatorname{osp}(m \mid n))$ when the coupling constant λ equals to $\frac{2}{m-n-4}$.

Acknowledgement

I am grateful to Professors Hidetoshi Awata, Hiroyuki Yamane and Ken Ito for their kind encouragements and helpful comments.

References

[1] C. Ahn and W. M. Koo, $g l(n \mid m)$ color Calogero-Sutherland models and super yangian algebra, Phys. Lett. B365 (1996) 105-112.
[2] D. Bernard, M. Gaudin, F. D. M. Haldane and V. Pasquier, Yang-Baxter equation in long-range interacting systems, J. Phys. A: Math. Gen. 26 (1993) 5219-5236.
[3] D. Bernard, K. Hikami and M. Wadati, The Yangian Deformation of the W-algebras and the Calogero-Sutherland System, Proc. 6th Nankai Workshop (1995).
[4] N. Crampé, New spin generalization for long range interaction models, Lett. Math. Phys. 77 (2006) 127-137.
[5] M. D. Gould and Y. Z. Zhang, Quasispin graded-fermion formalism and $g l(m \mid n) \downarrow \operatorname{osp}(m \mid n)$ branching rules, J. Math. Phys. 40 (1999) 5371-5386.
[6] K. Hikami and M. Wadati, Infinite symmetry of the spin systems with inverse square interactions, J. Phys. Soc. Japan 62 (1993) 4203-4217.
[7] K. Hikami and M. Wadati, Integrable systems with long-range interactions, W_{∞} algebra, and energy spectrum, Phys. Rev. Lett. 73 (1994) 1191-1194.
[8] G. Ju, J. Cai, H. Guo, K. Wu and S. Wang, Super-Yangian $Y(g l(1 \mid 1))$ and its oscillator realization, J. Phys. A30 (1997) 6155-6161.
[9] G. Ju, D. Wang and K. Wu, The algebraic structure of the $g l(n \mid m)$ color Calogero-Sutherland models, J. Mod. Phys. 39 (1998) 2813-2820.
[10] M. Wakimoto, Infinite-Dimensional Lie Algebras, Translations of Mathmatical Monographs 195 (2001).

