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Any locally invertible morphism of a finite-order jet space is either a prolonged point transformation
or a prolonged Lie’s contact transformation (the Lie–Bäcklund theorem). We recall this classical
result with a simple proof and moreover determine explicit formulae even for all (not necessarily
invertible) morphisms of finite-order jet spaces. Examples of generalized (higher-order) contact
transformations of jets that destroy all finite-order jet subspaces are stated with comments.

Keywords: Infinite-order jet spaces; morphisms of jets; generalized contact transformations; Lie–
Bäcklund theorem.

1. Introduction

Investigations of differential equations are as a rule carried out in the finite-order jet spaces.
The pseudogroup of all locally invertible morphisms of such spaces is rather narrow and
independent of the order, see the classical Lie–Bäcklund theorem in Sec. 3. We delete the
invertibility assumption in Sec. 4 with only little success: the family of all morphisms of
finite-order jets does not change much. However, except for the case of one independent
variable mentioned in Sec. 5, there exists an unimaginable amount of local automorphisms
of jets that destroy the hierarchy of finite-order jet spaces and we state some elementary
examples in Secs. 6 and 7 with comments in Sec. 8: the existence of such automorphisms
may compel revision of classical concepts.

For better clarity, let us point out the main intentions of this article.
The symmetries of completely integrable (systems of) differential equations (the realm of

Frobenius theorem, the solution depends on a finite number of constants) can be adequately
investigated in certain finite-dimensional spaces. Determined system of ordinary differential
equations belong to this class and the Lie’s results in this direction are well-known. However,
already the underdetermined ordinary differential equations (the Monge systems, differential
constraints in the calculus of variations) and most of the partial differential equations
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are not of this kind. Dealing with such not completely integrable equations with several
unknown functions, the Lie–Bäcklund theorem ensures that the point transformations are
quite enough if the (external) symmetry problem is investigated in the finite-order jet spaces.
In expressive terms: if the invariance of a finite-order jet space is postulated then the point
symmetries are enough (see the left-hand figure). However, there are many automorphisms
that destroy the finite-order jets (see the right-hand figure)

0th 1st 2nd · · ·

� � �

prolonged point transformations
of finite-order jet spaces

0th 1st 2nd · · ·

��
�

�
�

��
�

�
�

��
�

�
�

� � �

generalized automorphism
with uncertain jet subspaces

and they are completely neglected in this approach. It follows that the common algorithms
need not give the complete solution of the symmetry problem for the general systems of
differential equations. In order to solve the symmetry problem in full generality, rather
unorthodox approach is necessary.

The article should be regarded as a preliminary attempt. We a little improve the well-
known classical results on the mappings of finite-order jet spaces and state a few examples
of invertible mappings of infinite-order jet spaces. The latter topic was already continued
[6] and we believe that these methods will be efficient even for infinite-order jet spaces with
differential constraints in next future.

2. Jet Spaces

We do not suppose any acquitance with the common global jet mechanisms on manifolds
[1, 3, 9, 10, 16, 17, 11] based on cross-sections. They are even a little misleading for our
aims since the cross-sections prefer some groups of variables. The exposition is in principle
self-contained.

For every m,n = 0, 1, . . . we introduce the infinite-order jet space M(m,n). It is supplied
with jet coordinates

xi, wj
I (j = 1, . . . ,m; I = i1 · · · is; i, i1, . . . , is = 1, . . . , n; s = 0, 1, . . .) (2.1)

(symmetrical multiindices I) which serve as a mere technical tool, with the module Ω(m,n)
of contact forms

ω =
∑

aj
Iω

j
I

(
ωj

I = dwj
I −

∑
wj

Iidxi
)

(2.2)

(finite sum, arbitrary C
∞-smooth coefficients) and with the module H(m,n) of total deriva-

tive vector fields

X =
∑

biXi, Xi = ∂/∂xi +
∑

wj
Ii ∂/∂wj

I (i = 1, . . . , n). (2.3)



October 8, 2010 8:44 WSPC/1402-9251 259-JNMP S140292511000091X

On the Mapping of Jet Spaces 295

We use C
∞-smooth functions f = f(. . . , xi, wj

I , . . .) locally defined on M(m,n), each
depending on a finite number of coordinates (2.1). The obvious identity

df =
∑

Xifdxi +
∑ ∂f

∂wj
I

ωj
I

will be currently applied.
We are interested in (local) mappings (morphisms) m :M(m,n)→M(m,n) defined by

certain equations

m∗xi = Fi(. . . , xi′ , wj′
I′ , . . .), m∗wj

I = F j
I (. . . , xi′ , wj′

I′ , . . .) (2.4)

in terms of coordinates (2.1), where Fi and F j
I are given C

∞-smooth functions. We suppose
that the jet structure is preserved in the following sense: the inclusion

m∗Ω(m,n) ⊂ Ω(m,n) (2.5)

holds true and the differentials

m∗dx1 = dF1, . . . ,m∗dxn = dFn

are linearly independent modulo Ω(m,n). One can see that inclusion (2.5) is equivalent to
the (implicit) recurrences

XiF
j
I =

∑
F j

Ii′XiFi′ (2.6)

for the functions F j
I and the independence of differentials dFi to the inequality

det(XiFi′) �= 0 (i, i′ = 1, . . . , n). (2.7)

(Hint: Congruence

m∗ωj
I = dF j

I −
∑

F j
Iidxi ∼=

∑(
Xi′F

j
I −

∑
F j

IiXi′Fi

)
dxi′ (mod Ω(m,n))

ensures the equivalence of (2.5) and (2.6). Analogously the congruence dFi′ ∼=
∑

XiFi′dxi

implies (2.7).) It follows that functions F j (I = φ is empty) may be arbitrary and then
the remaining F j

I (I nonempty) are uniquely determined from recurrences (2.6). This is the
well-known prolongation procedure.

Infinite-dimensional spaces cause some difficulties, therefore the finite-order jet spaces
denoted here M(m,n)S(S = 0, 1, . . .) with coordinates (2.1) restricted by |I| = |i1 · · · is| =
s ≤ S frequently appear in common practice. If functions Fi, F

j
I (|I| ≤ S) occuring in

transformation formulae (2.4) depend only on coordinates on the space M(m,n)S , then we
clearly have a certain mapping mS : M(m,n)S →M(m,n)S defined by the same formulae
(2.4). (In more detail

m∗
Sxi = Fi(. . . , xi′ , wj′

I′ , . . .), m∗
Swj

I = F j
I (. . . , xi′ , wj′

I′ , . . .) (|I|, |I ′| ≤ S) (2.8)

by using quite transparent record.) Recurrence (2.6) and inequality (2.7) are retained without
any change, consequently the mapping (2.8) can be uniquely prolonged into a morphism
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m : M(m,n)→M(m,n) given by (2.4) (with |I|, |I ′| not restricted). In this sense, we may
identify m = mS without any risk of confusion.

In particular, if S = 0, we speak of the point transformations

m∗
0x

i = Fi(. . . , xi′ , wj′ , . . .), m∗
0w

j = F j(. . . , xi′ , wj′ , . . .). (2.9)

Analogously, if S = m = 1, we recall the Lie’s contact transformations

m∗
1x

i = Fi(. . . , xi′ , w1, w1
i′ , . . .),

m∗
1w

1 = F 1(. . . , xi′ , w1, w1
i′ , . . .), m∗

1w
1
i = F 1

i (. . . , xi′ , w1, w1
i′ , . . .)

(2.10)

where functions Fi and F 1 are of a very special kind (see Sec. 6 for explicit formulae).
In accordance with the familiar interpretation of jets, we shall (formally) speak of

independent variables xi, dependent variables wj and their derivatives wj
I of the order

|I| = |i1 · · · is| = s. Morphisms denoted mS preserve the finite-order jet space M(m,n)S
and also all spaces M(m,n)S+s (s = 1, 2, . . .) due to the prolongation procedure. Morphisms
m in general need not preserve any finite-dimensional subspace of M(m,n).

3. The Lie–Bäcklund Theorem

This is the most fundamental result of the classical jet theory. To our best knowledge,
a short correct proof was not yet available.

Theorem 1. If mS is a locally invertible morphism then either mS is the prolongation
of a point transformation (2.9) (briefly mS = m0) or the prolongation of a Lie’s contact
transformation (2.10) (hence m = 1 and mS = m1).

Proof. Due to tricky arguments, four steps are enough.

(i) Finite-order contact submodules. For every S = 0, 1, . . . , let ΩS ⊂ Ω(m,n) be the
submodule of all contact forms (2.2) where |I| ≤ S is supposed in the summation on
the right-hand side. Then ω ∈ ΩS if and only if ω ∈ Ω(m,n) and dω ∼= 0 (mod ΩS+1).
Easy verification based on the formula dωj

I =
∑

dxi ∧ ωj
Ii may be omitted here.

(ii) Every (not necessarily invertible) morphism mS satisfies m∗
SΩ0 ⊂ Ω0. Indeed, inclusion

m∗
SΩS ⊂ ΩS easily follows from (2.5) and (2.8). Assume ω ∈ ΩS−1. Then dω ∼= 0

(mod ΩS) hence dm∗
Sω ∼= 0 (mod m∗

SΩS) and therefore even (mod ΩS). This implies
m∗

Sω ∈ ΩS−1 and we have obtained m∗
SΩS−1 ⊂ ΩS−1. Repeat this procedure.

(iii) Case m = 1. Then ω1 is a basis of module Ω0, hence m∗
Sω1 = aω1 by applying (ii).

Obviously a �= 0 in the invertible case and we have just the classical definition of the
Lie’s contact transformation mS .

(iv) Case m > 1. For every fixed j = 1, . . . ,m, the decomposable form

ω1 ∧ · · · ∧ ωm ∧ (dωj)n = n!ω1 ∧ · · · ∧ ωm ∧ dx1 ∧ dwj
1 ∧ · · · ∧ dxn ∧ dwj

n (3.1)

vanishes just on the hyperplanes∑
Aj′ωj′ +

∑
Bi′dxi′ +

∑
Ci′dwj

i′ = 0
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of the tangent space. It follows that all forms (3.1), with various j = 1, . . . ,m, vanish just
on the hyperplanes ∑

Aj′ωj′ +
∑

Bi′dxi′ = 0. (3.2)

On the other hand, even all forms

ω1 ∧ · · · ∧ ωm ∧ (dωj1)n1 ∧ · · · ∧ (dωjk)nk (n1 + · · ·+ nk = n) (3.3)

vanish on the hyperplanes (3.2) which implies that the family of forms

(Ω0)m ∧ (dΩ0)n (3.4)

vanishes just on (3.2). (Direct verification: use the formulae

ω =
∑

ajωj ∈ Ω0, dω ∼=
∑

ajdωj (mod Ω0)

in order to express (3.4) by a sum of forms (3.3).) Applying invertible mS (where m∗
SΩ0 =

Ω0 hence dm∗
SΩ0 = m∗

SdΩ0 = dΩ0) it follows that family (3.4) does not change:

(m∗
SΩ0)m ∧ (dm∗

SΩ0)n = (Ω0)m ∧ (dΩ0)n.

This family vanishes on the hyperplanes∑
Ājm∗

Sωj +
∑

B̄im∗
Sdxi = 0 (Āj = m∗

SAj , B̄i = m∗
SBi), (3.5)

therefore (3.4) and (3.5) must be identical. In particular, all differentials m∗
Sdxi = dFi

belong to (3.4), hence dFi
∼= 0 (mod dx1, . . . ,dxn,Ω0). Then the inclusion m∗

SΩ0 ⊂ Ω0

implies

dF j = m∗
Sdwj ∼= m∗

Sωj ∼= 0 (mod dx1, . . . ,dxn,Ω0).

Altogether

dFi
∼= 0, dF j ∼= 0 (mod dx1, . . . ,dxn,dy1, . . . ,dym)

and we conclude that mS indeed is a point transformation.

4. A More General Result

Our task is twofold: to delete the invertibility assumption and to obtain explicit formulae.
We deal with very nonlinear topic. The results will be valid on certain open subsets of
“generic points” where the ranks of some matrices to appear are locally constant and/or
where some implicit function theorems can be applied. Moreover a slight change of variables
(the permutations are enough) will be often tacitly employed for technical reasons. This is
indicated by the phrase “without loss of generality”.

Theorem 2. Let mS : M(m,n)S →M(m,n)S be a morphism. Three subcases may appear.
First subcase: mS = m0 is a prolonged point transformation. Otherwise, without loss of
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generality, there are certain formulae

m∗
Sxβ = gβ(. . . ,m∗

Sxα, xi′ , wj′ , . . .), m∗
Swj = f j(. . . ,m∗

Sxα, xi′ , wj′ , . . .),

(α = 1, . . . , p;β = p+1, . . . , n; j = 1, . . . ,m; 0 < p ≤ n) where the variables on the right-hand
sides are functionally independent. Second subcase: Functions f j (j = 2, . . . , n) are of the
special kind

m∗
Swl = F l(. . . ,m∗

Sxα, gβ , f1, . . .) (l = 2, . . . ,m)

where the functions m∗
Sxα (α = 1, . . . , p) are determined by the implicit system

det




Xαgp+1 . . . Xαgn Xαf1

Xp+1f
1

(Xβ′gβ) . . .

Xnf1


 = 0 (α = 1, . . . , p).

Then mS = m1 and the classical Lie’s contact transformations are involved if moreover
m = 1. Third subcase: The transformation mS is given by formulae

m∗
Sxα = gα(. . . , xi′ , wj′

I′ , . . .), m∗
Sxβ = gβ(. . . , gα, xi′ , wj′ , . . .), m∗

Swj = F j(. . . , gα, gβ , . . .)

(α = 1, . . . , p;β = p + 1, . . . , n; j = 1, . . . ,m; |I| ≤ S)

where F j may be arbitrary and the choice of functions gα, gβ is subjected only to the inequal-
ity det(Xi′Fi) �= 0. This is the only true but very degenerate higher-order transformation:
the jet space M(m,n)S is projected onto the new independent variables and the transformed
dependent variables are arbitrary functions of the projections.

Proof. Some elementary arguments, especially the implicit function theorem, will be
repeatedly applied in various but very similar situations.

(i) Preparatory reasonings. In accordance with (ii) Sec. 3, suppose

m∗
Sωj =

∑
aj

j′ω
j′ (j = 1, . . . ,m). (4.1)

Let us abbreviate f̄ = m∗
Sf for every function f. Equation (4.1) implies that every w̄j

is a function of variables x̄i′ , xi′ , wj′ (i′ = 1, . . . , n; j′ = 1, . . . ,m). However these variables
may be also functionally dependent. Altogether taken, we will asume that

w̄j = f j(. . . , x̄α, xi′ , wj′ , . . .), x̄β = gβ(. . . , x̄α, xi′ , wj′ , . . .) (4.2)

without loss of generality. We use the ranges j, j′ = 1, . . . ,m; i′ = 1, . . . , n; α = 1, . . . , p;
β = p + 1, . . . , p + q (0 ≤ p ≤ n, 0 ≤ q ≤ n, p + q = n) and the arguments on the right-hand
sides (4.2) already are functionally independent. In particular, if p = 0 (hence β = 1, . . . , n)
in formulae (4.2), we have the point transformation (2.9) and the first subcase. Let us
therefore suppose p > 0 from now on.
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Equations (4.22) imply the congruences

dx̄β −
∑ ∂gβ

∂x̄α
dx̄α −

∑
Xi′g

βdxi′ ∼= 0 (mod Ω0)

and it follows that the (n× q)-matrix (Xi′g
β) has the highest possible rank q. (Hint: oth-

erwise differentials dx̄β,dx̄α would be linearly dependent modulo Ω(m,n) which contradics
(2.7).) We may assume

det(Xβ′gβ) �= 0 (β, β′ = p + 1, . . . , n) (4.3)

without loss of generality.
One can also easily obtain identities

w̄j
α =

∂f j

∂x̄α
−
∑

w̄j
β

∂gβ

∂x̄α
, aj

j′ =
∂f j

∂w̄j′ −
∑

w̄j
β

∂gβ

∂w̄j′ (4.4)∑
w̄j

βXig
β = Xif

j (4.5)

substituting (4.2) into (4.1).

(ii) Intermediate reasonings. Identities (4.5) are the most important and may be regarded
as a system of mn linear equations for the mq unknowns w̄j

β. They are “block diagonal”
with the schema of coefficients

X1g
p+1 . . . X1g

n X1f
1

. . . . . . . . .

Xngp+1 . . . Xngn Xnf1

. . . . . .

X1g
p+1 . . . X1g

n X1f
m

. . . . . . . . .

Xngp+1 . . . Xngn Xnfm.

(4.6)

The “diagonal” blocks are identical and of the maximal possible rank q, see (4.3). Then the
Cramer’s rule implies that the compatibility is expressed by

�j
α = det




Xαgp+1 . . . Xαgn Xαf j

Xp+1f
j

(Xβ′gβ) . . .

Xnf j


 = 0. (4.7)

We have mp implicit equations for p unknowns x̄α. Let us deal with the compatibility of
the system (4.7). Clearly

d�j
α =

∑ ∂�j
α

∂x̄α′ dx̄α′
+ · · ·+

∑ ∂�j
α

∂w̄j′
i′

dwj′
i′ = A + · · ·+ B = 0. (4.8)
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Complicated summands with differentials dxi′ ,dwj′ are omitted. Here

∂�j
α

∂wj′
α′

= 0 (α �= α′),

Dj
j′ =

∂�j
α

∂wj′
α

= det




∂gp+1/∂wj′ . . . ∂gn/∂wj′ ∂f j/∂wj′

Xp+1f
j

(Xβ′gβ) . . .

Xnf j


, (4.9)

and

Dj
j′αβ′ =

∂�j
α

∂wj′
β′

= det




Xαgp+1 . . . Xαgn Xαf j

Xp+1f
j

(Xβ′gβ) . . .

Xnf j


← β′ (4.10)

where the β′-th row is replaced by

∂gp+1

∂wj′ . . .
∂gn

∂wj′
∂f j

∂wj′ .

Equations (4.8) must not imply any interrelation among differentials dxi′ ,dwj′ ,dwj′
i′ there-

fore in particular

rank B ≤ rank A ≤ p.

However (4.8) again is a “block diagonal” system with p identical matrices (4.9) at the
“diagonal”. It follows that necessarily

rank D ≤ 1, rank Dα ≤ 1 (α = 1, . . . , p) (4.11)

where

D =




D1
1 . . . D1

m

. . . . . .

Dm
1 . . . Dm

m


, Dα =




D1
1 . . . D1

m . . . D1
j′αβ′ . . .

. . . . . . . . .

Dm
1 . . . Dm

m . . . Dm
j′αβ′ . . .




with the ranges j′ = 1, . . . ,m; β′ = p + 1, . . . , n in every matrix Dα.

(iii) Final result if rank D = 0. Let Dj
j′ = 0 identically. Then also

∂

∂wj1
p+1

· · · ∂

∂w
jq
n

Dj
j0

= det




∂gp+1/∂wj0 . . . ∂gn/∂wj0 ∂f j/∂wj0

. . . . . . . . .

∂gp+1/∂wjq . . . ∂gn/∂wjq ∂f j/∂wjq


 = 0 (4.12)

and therefore

rank
(

∂gβ

∂wj′
∂f j

∂wj′

)
≤ q (β = p + 1, . . . , n; j′ = 1, . . . ,m)
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for any j = 1, . . . ,m. It follows that even the inequality

rank

(
∂gβ/∂wj′ ∂f j/∂wj′

∂gβ/∂xi′ ∂f j/∂xi′

)
≤ q (4.13)

(β = p + 1, . . . , n; j′ = 1, . . . ,m; i′ = 1, . . . , n) is satisfied for any fixed j = 1, . . . ,m. (Hint:
use a slight change of variables xi′ , wj′ or a direct proof below.) However gp+1, . . . , gn,

x̄1, . . . , x̄p is a functionally independent family hence

f j = F j(. . . , x̄α, gβ , . . .) = F j(. . . , x̄α, x̄β , . . .)

are composed functions. With this result, equations �j
α = 0 became identities. Clearly

w̄j
i1··· is =

∂sF j

∂x̄i1 · · · ∂x̄is
, aj

j′ = 0, m∗
Sωj = 0

by using (4.42). So we have the transformation formulae

m∗
Sxα = gα(. . . , xi, wj

I , . . .), m∗
Sxβ = gβ(. . . , gα, xi, wj , . . .), m∗

Swj = F j(. . . , gα, gβ , . . .)

(α = 1, . . . , p;β = p + 1, . . . , n; j = 1, . . . ,m)

(4.14)

where F j may be arbitrary and the choice of functions gα, gβ is subjected only to the
inequality det(Xi′Fi) �= 0. This is the third subcase.

(iv) A complement. Inequality (4.13) can be also directly verified. Use the “incomplete case”
of identity (4.12)

∂

∂wj1
p+1

· · · ∂

∂w
jq−1
n−1

Dj
j0

= 0 (last row: Xngp+1, . . . ,Xnf j)

with linear combination of identities (4.12)

∑
w

jq
n

∂

∂wj1
p+1

· · · ∂

∂w
jq
n

Dj
j0

= 0
(

last row:
∑

w
jq
n

∂gp+1

∂wjq
, . . . ,

∑
w

jq
n

∂f j

∂wjq

)

in order to obtain matrix (4.12) but with the last row ∂gj/∂xn, . . . , ∂f j/∂xn by a
subtraction.

(v) Final result if rank D = 1. We may assume

Dl
j = λlD1

j , Dl
jαβ = λlD1

jαβ (l = 2, . . . ,m), (4.15)

for all j = 1, . . . ,m;α = 1, . . . , p;β = p + 1, . . . , n and also

D1
j′ �= 0, D1

j′αβ �= 0

for appropriate j′ without loss of generality. Then by using formulae (4.9) not involving wj
α

and (4.10) not involving wj
β′ , it follows that functions λl = λl(. . . , xi, wj , . . .) do not depend
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on higher order variables wj
I (I �= φ). With this in mind, we focus on condition (4.151)

which can be alternatively expressed as

Dl
j′ = det




0 . . . 0 1 λl

∂gp+1/∂wj′ . . . ∂gn/∂wj′ ∂f1/∂wj′ ∂f l/∂wj′

Xp+1f
1 Xp+1f

l

(Xβ′gβ) . . .

Xnf1 Xnf l




= 0.

Quite analogous reasonings with Dj
j′ in (iii) can be carried out with Dl

j′ and the final result
reads

rank

(
∂gβ/∂wj′ ∂f1/∂wj′ ∂f l/∂wj′

∂gβ/∂xi′ ∂f1/∂xi′ ∂f l/∂xi′

)
≤ q + 1

(β = p + 1, . . . , n; j′ = 1, . . . ,m; i′ = 1, . . . , n) for any fixed l = 2, . . . ,m. It follows that

f l = F l(. . . , x̄α, gβ , f1, . . .) = F l(. . . , x̄α, x̄β , w̄1, . . .)

are composed functions. With this result, equations �j
α = 0 reduce to the system �1

α = 0
of p implicit equations for p unknown functions x̄α (easy direct proof). The system (locally)
admits at most one solution. (Hint: use (4.8) with j = 1 and moreover (4.9), (4.10) where
D1

j �= 0. In more detail∑
∂ �1

1 /∂x̄α′
dx̄α′

+ · · ·+
∑

D1
j dwj

1 +
∑

D1
j1βdwj

β = 0

· · ·∑
∂ �1

p /∂x̄α′
dx̄α′

+ · · · +
∑

D1
j dwj

p +
∑

D1
jpβdwj

β = 0

and it follows that necessarily det(∂ �1
α /∂x̄α′

) �= 0.) So we have transformation formulae

m∗
Sxβ = gβ(. . . , x̄α, xi, wj , . . .), m∗

Sw1 = f1(. . . , x̄α, xi, wj , . . .),

m∗
Swl = F l(. . . , x̄α, gβ , f1, . . .) (l = 2, . . . ,m). (4.16)

Let us recall that the functions x̄α = m∗
Sxα are determined by the implicit system

�1
α = det




Xαgp+1 . . . Xαgn Xαf1

Xp+1f
1

(Xβ′gβ) . . .

Xnf1


 = 0. (4.17)

Moreover functions w̄j
i = m∗

Swj
i are uniquely determined by formulae (4.41), (4.5) therefore

they depend only on variables xi′ , wj′ , wj′
i′ and so m = m1. The second subcase is done.

Summary 1. Omitting the invertibility assumption in Lie–Bäcklund theorem, we did not
obtain much novelties: the possibly noninvertible point transformations, the contact-like
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transformations and some highly degenerate higher-order mappings. However, the setting
of the problem should be kept in mind: noninvertible mappings of differential equations (the
Bäcklund transformations) are of the highest importance. Alas, in spite of the existence of
many particular examples and important applications, general principles are not yet clear.

5. A Nonexistence Result

We have seen that the morphisms m, mS and the local automorphisms mS can be explicitly
described. On the contrary, the locally invertible morphisms m of the infinite-order jet space
M(m,n) were not systematically investigated yet. Only the following result is well-known
but not easily available in literature.

Theorem 3. Every local automorphism m of the jet space M(1, n) preserves the Pfaffian
equation ω1 = 0. Hence either m = m0 is a point transformation or m = m1 gives the
Lie’s contact transformation.

Proof. In alternative terms, we have to prove m∗Ω0 = Ω0. This is achieved as follows:
the submodule Ω0 ⊂ Ω(1, n) may be characterized in intrinsical terms (independent of the
choice of coordinates) therefore Ω0 does not change after applying the automorphism m.

We will prove that a nonvanishing contact form ω belongs to Ω0 if and only if the family
of all forms ω,LHω,L2

Hω, . . . (the Lie derivatives LX with X ∈ H,H = H(m,n) being the
space of all vector fields

∑
biXi ) generates the module Ω(1, n).

First, let 0 �= ω = aω1 ∈ Ω0. Then

LXiω = · · · + aω1
i , LXiLX′

i
ω = · · ·+ aω1

ii′ , . . .

and such forms generate the total space Ω(1, n).
Second, let 0 �= ω �∈ Ω0 hence

ω =
∑

aIω
1
I = · · ·+ aω1

J (a = aJ �= 0;J = j1 . . . jS ;S > 0)

with the highest-order term where we moreover use the lexicographic ordering of multi-
indices I. Our task is to prove that the family of forms

b0ω + b1LHω + · · ·+ bkLk
Hω (k = 0, 1, . . .)

does not involve all contact forms. However, any form of this family can be uniquely repre-
sented by the sum

Bω + Bi1LXi1
ω + · · · + Bi1···ikLXi1

· · · LXik
ω =

∑
BILXI

ω

with lexicographically ordered multiindices I. (Hint: apply the commutativity rule
[Xi,Xi′ ] = 0 to the Lie derivatives.) Clearly∑

BILXI
ω = · · ·+ a

∑
BIω1

JI

and it follows that the top term is nonvanishing therefore the resulting form never
belongs to Ω0.
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6. The Generalized Contact Transformations

Let us state without proof that the (local) inverse m−1 given by certain formulae

(m−1)∗xi = F̄i(. . . , xi′ , wj′
I′ , . . .), (m−1)∗wj

I = F̄ j
I (. . . , xi′ , wj′

I′ , . . .) (6.1)

to a morphism (2.4) exists if and only if ωj ∈ m∗Ω(m,n) for j = 1, . . . ,m. We will not
use this powerful result [6] here and instead again turn to a somewhat tricky tools. Passing
to details, we recall coordinates (2.1), contact forms (2.2), total derivatives (2.3) and the
prolongation procedure (2.6) in the space M(m,n). We moreover introduce the “space
M̄(m,n) with bars” with coordinates x̄i, w̄j

I , contact forms ω̄j
I = dw̄j

I −
∑

w̄j
Iidx̄i and total

derivatives X̄i = ∂/∂x̄i +
∑

w̄j
Ii∂/∂w̄j

I . Functions on the product space M̄(m,n)×M(m,n)
will appear.

Theorem 4. Let

f s(x̄1, . . . , x̄n, w̄1, . . . , w̄m, x1, . . . , xn, w1, . . . , wm) (s = 1, . . . , S; 1 ≤ S) (6.2)

be given functions where

m + n = S + (n− C)(R− C) (6.3)

for appropriate integers R,C(1 ≤ R ≤ S, 0 ≤ C < min(n,R)). Let the system of m + n

equations

f s = 0, ∆j
i = det




X1f
1 . . . X1f

C X1f
j

. . . . . . . . .

XCf1 . . . XCfC XCf j

Xif
1 . . . Xif

C Xif
j




(s = 1, . . . , S; i = C + 1, . . . , n; j = C + 1, . . . , R) (6.4)

admits a solution

x̄i = Fi(. . . , xi′ , wj′ , wj′
i′ , . . .), w̄j = F j(. . . , xi′ , wj′ , wj′

i′ , . . .)

(i = 1, . . . , n; j = 1, . . . ,m; det(XiFi′) �= 0) (6.5)

by applying the implicit function theorem (the nonvanishing Jacobian). Analogously assume
that the dashed system

f s = 0, ∆̄j
i = det




X̄1f
1 . . . X̄1f

C X̄1f
j

. . . . . . . . .

X̄Cf1 . . . X̄CfC X̄Cf j

X̄if
1 . . . X̄if

C X̄if
j




(s = 1, . . . , S; i = C + 1, . . . , n; j = C + 1, . . . , R) (6.6)

admits a solution

xi = F̄i(. . . , x̄i′ , w̄j′ , w̄j′
i′ , . . .), wj = F̄ j(. . . , x̄i′ , w̄j′ , w̄j′

i′ , . . .)

(i = 1, . . . , n; j = 1, . . . ,m; det(X̄iF̄i′) �= 0). (6.7)
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Then formulae (6.5) and (6.7) provide mutually inverse morphisms m and m−1 given by
(2.4) and (6.1), respectively. (More in detail: applying prolongation (2.6) we obtain func-
tions F j

I (I �= φ) hence the complete formulae (2.4), analogously the “dashed prolongation”
provides formulae (6.1)).

Proof. The idea is as follows. Without loss of generality, equations ∆j
i = 0 read

rank




X1f
1 . . . X1f

R

. . . . . .

Xnf1 . . . XnfR


 = C. (6.8)

Since C < min(n,R), there are nontrivial multipliers λ1, . . . , λR satisfying

Xi

∑
λrf

r =
∑

λrXif
r = 0 (i = 1, . . . , n). (6.9)

Assuming (6.5) hence (6.4, 6.8, 6.9), we shall soon prove that X̄i
∑

λrf
r = 0. This implies

(6.8) with bars over Xi, consequently (6.6) and (6.7). Altogether (6.5) implies (6.7) and the
converse is obvious from the symmetry of assumptions. We indeed have inverse mappings.

Passing to the proof proper, we start with the identity

dF =
∑

X̄iFdx̄i +
∑

Fw̄j ω̄j +
∑

XiFdxi +
∑

Fwjωj (6.10)

applied to the function F =
∑

λrf
r. There is

dF = 0, XiF = 0, m∗ωj = ω̄j ∈ Ω(m,n) (i = 1, . . . , n; j = 1, . . . ,m)

by virtue of (6.41, 6.9) and the prolongation (2.6). Obviously

dx̄i = dF i ∼=
∑

Xi′Fidxi′ (mod Ω(m,n)).

Therefore

dF ∼=
∑(

X̄iF ·
∑

Xi′Fidxi′
)

=
∑∑

(X̄iF ·Xi′Fi)dxi′ (mod Ω(m,n))

which implies
∑

(X̄iF ·Xi′Fi) = 0 (i′ = 1, . . . , n), consequently X̄iF = 0 (i = 1, . . . , n). The
proof is done.

Example 1. In order to illustrate Theorem 4, we may suppose

m = 3, n = 2, S = R = 3, C = 1.

Let us abbreviate

x = x1, y = x2, u = w1, v = w2, w = w3

and choose

f1 = ww̄ − 1, f2 = x̄ + x− uū, f3 = ȳ + y − vv̄.

Then

∆2
2 = (wx + Av̄)w̄, ∆3

2 = (wy + Bū)w̄ (A = vxwy − vywx, B = −(uxwy − uywx))
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and, assuming w,A,B �= 0, we obtain the (involutive) morphism

x̄ = −x− uwy

B
, ȳ = −y − vwx

A
, ū = −wy

B
, v̄ = −wx

A
, w̄ =

1
w

.

Remark 1. In the meantime, we have also obtained the identity∑
Fw̄j ω̄j +

∑
Fwjωj = 0

(
F =

∑
λrf

r
)

(6.11)

for all multipliers λ1, . . . , λR satisfying (6.9). This provides a link to the classical approach.
Indeed, assume S = R,C = R− 1. Then Eq. (6.3) implies m = 1 and identity (6.11) reads∑

λrf
r
w̄1ω̄

1 +
∑

λrf
r
w1ω

1 = 0.

Therefore ω̄1 is a multiple of ω1 which is exactly the Lie’s classical definition of contact trans-
formations. Also a close link to Theorem 2 is worth mentioning. In Theorem 2, we assumed
identities (4.1) for all forms m∗ωj = ω̄j which yields the “contact conditions (4.17)” and
not necessarily invertible morphism m = m1 (the second subcase). In Theorem 4, we have
conversely started with “contact formulae (6.4)” for the invertible mapping m which provide
a mere vague family of identities (6.11) as an unimportant by-product.

Morphism m in Theorem 4 is of the order 1, see formulae (6.5) and (6.7). Invertible
morphisms of higher order can be easily obtained by composition. However, we state another
example.

Theorem 5. Let (6.2) be given functions where

m + n = S + nR +
n(n + 1)

2
T, 1 ≤ T ≤ R ≤ S

and let the system of m + n equations

f s = 0, Xif
r = 0, XiXjf

t = 0

(r = 1, . . . , R; s = 1, . . . , S; t = 1, . . . , T ; i, j = 1, . . . , n) (6.12)

admits a solution

x̄i = Fi(. . . , xi′ , wj′ , wj′
i′ , w

j′
i′i′′ , . . .), w̄j = F j(. . . , xi′ , wj′ , wj′

i′ , w
j′
i′i′′ , . . .)

(i = 1, . . . , n; j = 1, . . . ,m; det(XiFi′) �= 0) (6.13)

by applying the implicit function theorem. Analogously assume that the dashed system

f s = 0, X̄if
r = 0, X̄iX̄jf

t = 0

(r = 1, . . . , R; s = 1, . . . , S; t = 1, . . . , T ; i, j = 1, . . . , n) (6.14)

admits a solution

xi = F̄i(. . . , x̄i′ , w̄j′ , w̄j′
i′ , w̄

j′
i′i′′ , . . .), wj = F̄ j(. . . , x̄i′ , w̄j′ , w̄j′

i′ , w̄
j′
i′i′′ , . . .)

(i = 1, . . . , n; j = 1, . . . ,m; det(X̄iF̄i′) �= 0). (6.15)

Then formulae (6.13) and (6.15) provide mutually inverse morphisms m and m−1 given by
(2.4) and (6.1) after the prolongation.
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Proof. The multipliers will not occur and the arguments are duplicated but much easier.
Assuming (6.12), one can prove X̄jf

r = 0. Then, employing Xjf
t = XiXjf

t = 0, one can
prove X̄iXjf

t = XjX̄if
t = 0. At last X̄jf

t = 0 and XiX̄jf
t = 0 implies X̄iX̄jf

t = 0 and
we are done. See also [6] for the case n = 1.

Example 2. In order to illustrate Theorem 5, we may suppose

m = 2, n = 1, S = R = T = 1.

Let us abbreviate

x = x1, y = w1, z = w2

and then choose

f1 = (x̄− x)2 + (ȳ − y)2 + (z̄ − z)2 − t2 = 0 (t ∈ R is a constant).

We obtain just the example of “parallel curves” in the subsequent Sec. 7 where additional
“geometrical” parametrization by arclengths is moreover employed.

7. Concluding Remarks

We can only briefly comment three quite simple examples in order to point out some rather
anxious aspects of general automorphisms. Just as Bäcklund at his time, we shall restrict
ourselves to the jet space M(2, 1), i.e., to the curves in three-dimensional space. Then the
simplified notation

x = x1, ys = w1
I , zs = w2

I (I = 1 . . . 1, s terms)

may be employed. Automorphisms m = m(t) depending on parameter t will occur.

(i) Triangular transformations [6, 11]. Let us mention the morphisms m(t) :M(2, 1) →
M(2, 1), −∞ < t <∞, defined by

m(t)∗x = x, m(t)∗ys = ys, m(t)∗zs = zs + tys+1

with the infinitesimal generator

G =
∑

ys+1
∂

∂zs
.

Every differential equation

F (x, y, y′, . . . , y(r), (z/y′)′, . . . , (z/y′)(r)) = 0

admits the symmetry group m(t) which can be directly verified. However, this group cannot
be obtained as a result of the common algorithms on the finite-order jet spaces since m(t)
and the generator G are not defined on such spaces.

One can easily find many examples of such morphisms for the case of several independent
variables. They destroy many classical concepts. For instance, the common definitions of
degenerate variational problems become insufficient since they employ the hierarchy of finite-
order jets.
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(ii) Non-triangular transformations [6] can be illustrated as follows. We put

m(t)∗x = x, m(t)∗ys = ys + tzs, m(t)∗zs = zs + tys+1 + t2zs+1 (−∞ < t <∞)

(not a group) with the infinitesimal transformation limt→0
1
t (m(t)−m(0)). It is expressed

by the vector field

G =
∑

zs
∂

∂ys
+
∑

ys+1
∂

∂zs
.

The automorphisms m(t) with t �= 0 do not preserve any finite-dimensional subspace on
M(2, 1) and G does not generate a group (we omit the proof here). We occur out of the
classical theory.

(iii) Parallel curves [5] appear by intersection of wave fronts.

Let p(s) = (x(s), y(s), z(s)), p̄(s̄) = (x̄(s̄), ȳ(s̄), z̄(s̄)) be two curves in R
3 parametrized by

the arclengths s and s̄. Assume the identities

(p− p̄)2 = t2, (p− p̄)
dp
ds

= 0, (p− p̄)
d2p
ds2

+
(

dp
ds

)2

= 0 (7.1)

(−∞ < t <∞, scalar products). Then the counterparts

(p̄− p)2 = t2, (p̄− p)
dp̄
ds̄

= 0, (p̄− p)
d2p̄
ds̄2

+
(

dp̄
ds̄

)2

= 0 (7.2)

with p, p̄ interchanged can be easily obtained by repeated derivative of Eq. (7.1). Employing
the Frenet formulae, (7.1) is equivalent to

p̄ = p +
1
κ
N±

√
t2 − 1

κ2
B (7.3)

where κ = κ(s) is the curvature, N = N(s) and B = B(s) are the normal and binormal
vectors to the curve p. Formula analogous to (7.3) holds if p, p̄ are interchanged and it
follows that the relationship between p and p̄ is involutory and therefore locally invertible
(for appropriate choice of ± branch).

The geometrical sense of Eq. (7.1) is worth mentioning. Equation (7.11) represents
a spherical wave of points p̄ (moving center p = p(s), radius t). Then (7.11,2) is inter-
section of two infinitesimally close waves and (7.11,2,3) the intersection of three waves, the
focusing point p̄. So we deal with an invertible “second-order contact transformation” of
curves in three-dimensional space. The ancient dream of Lie [1, 12] becomes eventually true,
however, in the infinite order jet spaces.

8. Comments

The Lie–Bäcklund theorem was predicted in [12] and proved in [2] for the particular case
M(2, 1)2. Despite its fundamental importance, it is not easily available in literature. We
refer to interesting historical comments in [1] and to a rather long proof in [11] employing
some global concepts (πk,ε-connected domains, maximal solutions of the Pfaffian system
ΩS = 0), see [11] Theorem 4.4.5. Also our Theorem 4 is available with analogous restrictions,
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see [11] Theorem 6.3.7. In current literature, the symmetries and equivalences of differential
equations are investigated in finite-order jet spaces, see [3, 9, 10, 16, 17] and numerous
references therein.

Higher-order equivalence transformations of differential equations occasionally appear
if the independent variables are preserved. We mention the ancient Laplace substitution
w̄ = wx + bw in the theory of linear hyperbolic equations uxy + aux + buy + cu = M with
extensive applications in differential geometry [21] and the ingenious variant [10]. They
serve as a prototype for differential substitutions w̄ = g(x,w,wx, . . . , wx···x) in the theory of
nonlinear hyperbolic and evolutional equations [15, 19, 20] with one unknown function of
two independent variables. These are extremely important but only a mere particular and
isolated achievements.

In this article, we are interested in transformations of the total jet spaces. Therefore the
internal symmetries [10, 11], multivalued Bäcklund correspondences [1, 18] and Darboux–
type transformations [8, 13, 14, 18] of general systems of differential equations are hitherto
lying beyond our scope. We do not deal with the generalized (or: Lie–Bäcklund) higher–
order infinitesimal symmetries where the relevant infinitesimal version of the Lie–Bäcklund
theorem is proved in [1]. Alas, such vector fields are always regarded as a mere formal series
not related to the true mappings of spaces in current literature, see [9, 10, 16, 11].
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