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The diffraction of a plane wave by a transversely inhomogeneous isotropic nonmagnetic linearly
polarized dielectric layer filled with a Kerr-type nonlinear medium is considered. The analytical
and numerical solution techniques are developed. The diffraction problem is reduced to a singular
boundary value problem for a semilinear second-order ordinary differential equation with a cubic
nonlinearity and then to a cubic-nonlinear integral equation (IE) of the second kind and to a system
of nonlinear operator equations of the second kind solved using iterations. Sufficient conditions of
the unique solvability are obtained using the contraction principle.

Keywords: Resonance scattering; Kerr-type nonlinear layer; cubic polarizability; volume singular
integral equation; generation of waves.

1. Introduction

Scattering and propagation of electromagnetic waves in layered structures filled with non-
linear media have been a subject of intense studies since the 1970s. A goal of this work
is to develop solution techniques for singular boundary value problems (BVPs) for the
Maxwell equations arising in mathematical models of the wave diffraction in nonlinear
media elaborated in [16–19, 30, 24, 25] that can be reduced to one-dimensional settings
for the Helmholtz equation on the line [16, 17]. The BVPs are formulated on infinite and
semi-infinite intervals and with transmission-type conditions and conditions at infinity that
contain the spectral parameter [30, 24, 25]. When the wave propagation in a cylindrical
dielectric waveguide filled with a nonlinear medium is considered [24, 25], the coefficient
in the equation multiplying the nonlinear term differs from zero inside a finite interval
(0, a) and the conditions are stated at the point a (continuity), at the origin (e.g. bound-
edness), and at infinity (rate of decay). The corresponding singular semilinear BVPs are
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formulated for the differential operators L(λ)u + αB(u;λ) = 0, where Lu is a linear differ-
ential operator and B(u;λ) is a nonlinear operator. An example with B(u) = u3 associated
with the study of the wave propagation in Kerr-type nonlinear fibers is considered in great
detail in [24, 25]. The method of solution employs reduction to nonlinear integral equations
(IEs) [24, 25, 18, 19, 28] constructed using Green’s function of the linear differential oper-
ator Lu; the eigenvalue problems are then replaced by the determination of characteristic
numbers of integral operator-valued functions (OVFs) that are nonlinear both with respect
to the solution and the spectral parameter. The latter problems are reduced to the func-
tional dispersion equations, and their roots give the sought-for eigenvalues. The existence
and distribution of roots on the complex plane are verified. The linearization is considered
in [18].

The reflection and transmission of electromagnetic waves at a nonlinear homogeneous,
isotropic, non-magnetic dielectric layer situated between two linear homogeneous, semi-
infinite media is of particular interest in linear optics [5]. In nonlinear optics, the Kerr-like
nonlinear dielectric film has been the focus of a number of studies [11, 7, 10, 13, 15].
In [11, 7, 10, 13], the solutions of the nonlinear Helmholtz equations have been given in
terms of various Jacobian elliptic functions. The explicit form of these functions depends
on the associated parameter regimes. As shown in [15], no classification of the solutions
with respect to different parameter regimes is necessary, since the general solution can
be presented in terms of Weierstrass’ elliptic functions containing the complete parameter
dependence. In [16], a simplified version of this result is given, generalizing the approach
applied in linear optics. Namely, a general analytical solution of the Helmholtz equation
is obtained describing the scattering of a plane, monochromatic, TE-polarized wave by a
transversely homogeneous dielectric layer (with a constant permittivity) exhibiting a local
Kerr-like nonlinearity. The layer is situated between two semi-infinite non-absorbing, non-
magnetic, isotropic, and homogeneous media. The results derived contain the conditions for
unbounded field intensities expressed in terms of the imaginary half-period of Weierstrass’
elliptic function. The reflectivity R is calculated as a function of the layer thickness and the
transmitted intensity. The critical values of R are determined.

In [19] the approach set forth in [16, 17] is applied to the analysis of the problems of
the wave diffraction by layers filled both with linear and nonlinear dielectric media having
constant and variable permittivities. The plane wave diffraction problem is reduced in [19]
to a nonlinear Volterra IE and its solution is obtained as a limit of a certain function
sequence. The sufficient conditions for the IE unique solvability are obtained by estimating
the norms of the associated nonlinear operator.

In this paper the approaches developed in [24, 25] and [30, 21, 23] are applied to the
solution of singular semilinear BVPs arising in a mathematical model of the wave diffrac-
tion from a transversely inhomogeneous dielectric layer having a variable permittivity. The
approach employs Fredholm-type IEs with complex-valued kernels derived on the basis of
the method proposed in [30] and differs thus from the technique [16, 19, 28] based on the
reduction to nonlinear Volterra IEs. On the other hand, the sufficient solvability conditions
presented in this study are different from those reported in [19]; in fact, these conditions are
obtained explicitly in terms of the problem parameters. Next, in this paper we apply the
solution technique based on the analysis of cubic-nonlinear IEs to prove the unique solv-
ability of the diffraction problem for a lossy weakly nonlinear layer with a complex-valued
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permittivity function. We note in this respect [28] where this problem is solved for a layer
filled by linear and nonlinear lossy media using a general approach which enables one
to evaluate the solutions in terms of uniformly convergent sequences of iterations of the
Volterra IEs.

The results obtained in this work form a basis for analytical and numerical investigations
of the resonance scattering of waves by weakly nonlinear layered objects (with Kerr-type
nonlinearity of the medium) when multiple-frequency harmonics in the nonlinear medium
are neglected. Using the present approach one can also analyze and solve numerically the
problems of diffraction by layered structures with cubic polarization of the media taking
into consideration the harmonics excited at multiple frequencies. This analysis, which can
be performed by reducing to a conservative system of BVPs similar to that considered in
this paper, enables one to study the process of generation of harmonics.

2. Maxwell Equations and Wave Propagation in Nonlinear Media

Nonlinear processes in electrodynamics and optics are described by the Maxwell equations

∇× �E(�r, t) = −1
c

∂ �B(�r, t)
∂t

, ∇× �H(�r, t) =
1
c

∂ �D(�r, t)
∂t

,

∇ · �D(�r, t) = 0, ∇ · �B(�r, t) = 0.

(1)

Here �E(�r, t), �H(�r, t), �D(�r, t), and �B(�r, t) are the vectors of, respectively, electric and mag-
netic field intensities, electric displacement, and magnetic induction. This system is com-
plemented by material equations

�D(�r, t) = �E(�r, t) + 4π �P (�r, t),

�B(�r, t) = �H(�r, t) + 4π �M (�r, t),
(2)

where �P (�r, t) and �M(�r, t) are the vectors of, respectively, polarization and magnetic
moment.

The polarization vector �P (�r, t) = F̂ [ �E(�r, t)], where F̂ denotes a certain nonlinear oper-
ator, is generally nonlinear (with respect to the intensity) and nonlocal both in time and
space. In this work, we will limit the analysis, following [2], to nonlinear media having spa-
tially nonlocal response function. In this case the polarization vector can be expanded [4]
in terms of the electric field components

Pi(�r, t) ≡ χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + · · · . (3)

Here Pi and Ei are the components of the polarization and electric vectors, respectively
and coefficients χ are lower terms of the expansion for nonlinear susceptibility.

Below, we assume that the medium is nonmagnetic, �M(�r, t) ≡ 0. Resolving equations
(1) and (2) with respect to �H(�r, t) we reduce them to one vector equation

∇2 �E(�r, t) −∇[∇ · �E(�r, t)] − 1
c2

∂2

∂t2
�D(L)(�r, t) − 4π

c2

∂2

∂t2
�P (NL)(�r, t) = 0, (4)
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where �D(L) = �E + 4π �P (L) = ε̂ �E, �P (L) = χ̂(1) �E, and ε̂ = ε(L) are the linear terms of the
electric displacement and polarization vectors and permittivity tensor, respectively (here
D

(L)
i = ε

(L)
ij Ej, P

(L)
i ≡ χ

(1)
ij Ej , and ε

(L)
ij = 1 + 4πχ

(1)
ij ); �P (NL) is the nonlinear part of

the polarization vector (according to (3), P
(NL)
i ≡ χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + · · · ); and

χ
(1)
ij , χ

(2)
ijk, χ

(3)
ijkl, are the respective components of the medium susceptibility tensors χ̂(1),

χ̂(2), χ̂(3).
Equation (4) is of general character and is used, together with material equations (2),

in electrodynamics and optics; in every particular case, specific assumptions are made that
enable one to simplify its form. Note, for example, that in the majority of important prob-
lems the longitudinal field components (along the z-axis) are negligible [2]. The second
term in (4) ∇[∇ · �E(�r, t)] (where the inner product can be written, using the condition
∇ · �D = 0, in the form ∇ · �E = −[ �E · (∇ε̂)/ε̂]) contains both longitudinal and transverse
field components and may be ignored in a number of cases.

Assuming that the medium is weakly nonlinear (when the so-called weakly-waveguide
approximation holds), i.e. ∣∣∣ε(NL)

ij

∣∣∣ � ∣∣∣ε(L)
ij

∣∣∣ , (5)

where ε
(NL)
ij = 4πχ

(3)
ijklEkE

∗
l is governed by nonlinear terms in (4) (see [2, 29]), one can

generalize weakly-waveguide approximation [27] and take into account the effect of nonlinear
self-canalization [12]. In this case one can ignore the second term in (4), which is equivalent
to ignoring the longitudinal field components, and vectors �E and �P will have only transverse
components [2].

3. Diffraction Problem

3.1. General assumptions leading to the problem statement

Consider the diffraction of a stationary electromagnetic wave [∼ exp(−iω̃t)] by a weakly
nonlinear object. Perform a transition to the frequency domain using the direct and inverse
Fourier transforms 


�̇E(�r, ω̃)

�̇D(L)(�r, ω̃)

�̇P (NL)(�r, ω̃)


 =

∫ ∞

−∞




�E(�r, t)
�D(L)(�r, t)
�P (NL)(�r, t)


 eiω̃tdt,




�E(�r, t)
�D(L)(�r, t)
�P (NL)(�r, t)


 =

1
2π

∫ ∞

−∞




�̇E(�r, ω̃)

�̇D(L)(�r, ω̃)

�̇P (NL)(�r, ω̃)


 e−iω̃tdω̃.

Applying formally the Fourier transform to Eq. (4) we obtain the following representa-
tion in the frequency domain

∇2 �̇E(�r, ω̃) −∇[∇ · �̇E(�r, ω̃)] +
ω2

c2
�̇D(L)(�r, ω̃) +

4πω2

c2
�̇P (NL)(�r, ω̃) = 0. (6)
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A stationary [∼ exp(−iω̃t)] electromagnetic wave propagating in a weakly nonlinear
dielectric structure gives rise to a field containing all frequency harmonics, see [1, 29].
Therefore, the quantities describing the electromagnetic field in the time domain subject to
Eq. (4) can be represented as Fourier series

�E(�r, t) =
1
2

∞∑
n=−∞

�E(�r, nω) exp(−inωt),

�D(L)(�r, t) =
1
2

∞∑
n=−∞

�D(L)(�r, nω) exp(−inωt),

�P (NL)(�r, t) =
1
2

∞∑
n=−∞

�P (NL)(�r, nω) exp(−inωt).

(7)

Applying to (7) the Fourier transform we obtain


�̇E(�r, ω̃)

�̇D(L)(�r, ω̃)

�̇P (NL)(�r, ω̃)


 =

∫ ∞

−∞




�E(�r, t)
�D(L)(�r, t)
�P (NL)(�r, t)


 eiω̃tdt

=
1
2

∫ ∞

−∞

∞∑
n=−∞




�E(�r, nω)
�D(L)(�r, nω)
�P (NL)(�r, nω)


 e−inωteiω̃tdt

=
√

2π
2




�E(�r, nω)
�D(L)(�r, nω)
�P (NL)(�r, nω)


 δ(0)|ω̃=nω, (8)

where δ(s) = 1√
2π

∫ ∞
−∞ exp(ist)dt is the Dirac delta-function.

Substituting (8) into (6), we obtain an infinite equation system with respect to the
sought-for Fourier amplitudes of the electromagnetic of the weakly nonlinear structure in
the frequency domain,

∇2 �E(�r, nω) −∇[∇ · �E(�r, nω)] +
(nω)2

c2
�D(L)(�r, nω)

+
4π(nω)2

c2
�P (NL)(�r, nω) = 0, n = 0,±1,±2, . . . . (9)

For linear electrodynamic objects the equations in the system (9) are independent. In a
nonlinear structure, the presence of functions �P (NL)(�r, nω) makes them coupled since every
harmonic depends on a series of �E(�r, nω). Indeed consider a three-component electromag-
netic field E = (Ex, 0, 0)T, H = (0,Hy,Hz)T, where the symbol T denotes the transposition.
The fact that the field E = (Ex, 0, 0)T has one component enables one to consider (9) as a
system of scalar equations with respect to Ex. Take lower terms in the expansion (3) in the
vicinity of the zero value of the electric field intensity. Then the only nonzero component of
the polarization vector �P = (Px, 0, 0)T is determined by the third-order susceptibility tensor
χ̂(3), which is characteristic for the Kerr-type medium. In the time domain, this component
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can be represented in the form (cf. (3) and (7)):

�P (NL)
x (�r, t) =

1
2

∞∑
s=−∞

�P (NL)
x (�r, sω) exp(−iωst) ≡ χ(3)

xxxxEx(�r, t)Ex(�r, t)Ex(�r, t)

=
1
8

∞∑


n, m, p, s = −∞
n + m + p = s

χ(3)
xxxx(sω;nω,mω, pω)Ex(�r, nω)Ex(�r,mω)

×Ex(�r, pω)e−iω(n+m+p)t. (10)

Applying to (10) the Fourier transform with respect to time (8) we obtain an expansion
in the frequency domain

�P (NL)
x (�r, sω) =

1
4

∞∑


n, m, p = −∞
n + m + p = s

χ(3)
xxxx(sω;nω,mω, pω)Ex(�r, nω)Ex(�r,mω)Ex(�r, pω)

=
1
4

∞∑
j=0

3χ(3)
xxxx(sω; jω,−jω, sω)|Ex(�r, jω)|2Ex(�r, sω)

+
1
4

∞∑
8>><
>>:

n, m, p = −∞
n �= −m, p = s
m �= −p, n = s
n �= −p, m = s
n + m + p = s

χ(3)
xxxx(sω;nω,mω, pω)Ex(�r, nω)Ex(�r,mω)Ex(�r, pω).

(11)

The addends in the first sum of (11) are usually called the phase self-modulation (PSM)
terms [2]. We obtained them taking into account the property of the Fourier coefficients
Ex(�r, jω) = E∗

x(�r,−jω); factors 3 appear as a result of permutations {jω,−jω, sω} of three
last parameters in the terms χ

(3)
xxxx(sω; jω,−jω, sω).

When particular nonlinear effects are considered, one can limit the analysis to finitely
many equations of system (9), leaving in the formulas (11) for the polarization coefficients
separate terms that characterize the physical problem in question. For example, considering
nonlinear effects associated with the excitation of not more than 3 harmonics in the nonlin-
ear medium by a strong wave field of frequency ω (when the influence of higher harmonics
is insignificant and they are ignored) one can leave 3 equations in system (9). Taking into
account nonzero characteristic terms in the expansions (11) for the polarization coefficients,
we obtain



∇2Ex(�r, ω) −∇[∇ · Ex(�r, ω)] +
ω2

c2
D(L)

x (�r, ω) +
4πω2

c2
P (NL)

x (�r, ω) = 0,

∇2Ex(�r, 2ω) −∇[∇ · Ex(�r, 2ω)] +
(2ω)2

c2
D(L)

x (�r, 2ω) +
4π(2ω)2

c2
P (NL)

x (�r, 2ω) = 0,

∇2Ex(�r, 3ω) −∇[∇ · Ex(�r, 3ω)] +
(3ω)2

c2
D(L)

x (�r, 3ω) +
4π(3ω)2

c2
P (NL)

x (�r, 3ω) = 0,
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P (NL)
x (�r, nω) =

3
4
[χ(3)

xxxx(nω;ω,−ω, nω)|Ex(�r, ω)|2

+ χ(3)
xxxx(nω; 2ω,−2ω, nω)|Ex(�r, 2ω)|2

+ χ(3)
xxxx(nω; 3ω,−3ω, nω)|Ex(�r, 3ω)|2]Ex(�r, nω)

+ δ1
n

3
4
[χ(3)

xxxx(ω;−ω,−ω, 3ω)[E∗
x(�r, ω)]2Ex(�r, 3ω)

+ χ(3)
xxxx(ω; 2ω, 2ω,−3ω)[Ex(�r, 2ω)]2E∗

x(�r, 3ω)]

+ δ2
n

3
4
χ(3)

xxxx(2ω;−2ω, ω, 3ω)E∗
x(�r, 2ω)Ex(�r, ω)Ex(�r, 3ω)

+ δ3
n

[
1
4
χ(3)

xxxx(3ω;ω, ω, ω)E3
x(�r, ω)

+
3
4
χ(3)

xxxx(3ω; 2ω, 2ω,−ω)E2
x(�r, 2ω)E∗

x(�r, ω)
]
, n = 1, 2, 3. (12)

In particular, when a nonlinear structure is excited by a strong wave field of frequency ω

(and not by a wave package consisting of a high-intensity wave field of frequency ω and a
weak field of frequency 2ω) the generation of the third harmonic can be described according
to [32]. In this case, Eq. (12) can be simplified. Setting Ex(�r, 2ω) = 0 (the second equation
does not contain the terms leading to the field excitation at doubled frequency) we arrive
at the system of two equations


∇2Ex(�r, ω) −∇[∇ · Ex(�r, ω)] +

ω2

c2
D(L)

x (�r, ω) +
4πω2

c2
P (NL)

x (�r, ω) = 0,

∇2Ex(�r, 3ω) −∇[∇ · Ex(�r, 3ω)] +
(3ω)2

c2
D(L)

x (�r, 3ω) +
4π(3ω)2

c2
P (NL)

x (�r, 3ω) = 0,

P (NL)
x (�r, nω) =

3
4
[χ(3)

xxxx(nω;ω,−ω, nω)|Ex(�r, ω)|2

+ χ(3)
xxxx(nω; 3ω,−3ω, nω)|Ex(�r, 3ω)|2]Ex(�r, nω)

+ δ1
n

3
4
χ(3)

xxxx(ω;−ω,−ω, 3ω)[E∗
x(�r, ω)]2Ex(�r, 3ω)

+ δ3
n

1
4
χ(3)

xxxx(3ω;ω, ω, ω)E3
x(�r, ω), n = 1, 3. (13)

The corresponding problem is usually solved in the approximation of the given field.
Setting in the first equation of system (13) P

(NL)
x (�r, ω) = 0 or Ex(�r, ω) = 0 one finds

the solution to the BVP that satisfies the resulting equation. Next, the obtained solution
is used to solve the BVP employing the second nonlinear equation of system (13). The
solution determined in this way is actually an initial approximation to the solution of
the whole problem. A rigorous analysis of the generation of the third harmonic is based
on the solution to a conservative BVP system associated with (13). As a result, one can
estimate [32] the losses of the electromagnetic field energy in the nonlinear medium at the
excitation frequency ω caused by the generation of the third field harmonic at frequency 3ω.
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In this paper, we analyze electromagnetic fields scattered by a dielectric layer filled by
a Kerr-type (weakly) nonlinear medium. We limit the analysis to such a level of intensities
of the incident electromagnetic field affecting the structure when harmonic oscillations at
combined frequencies may be neglected. In this case Eqs. (9) and (11) have the form

∇2Ex(�r, ω) −∇[∇ · Ex(�r, ω)] +
ω2

c2
D(L)

x (�r, ω) +
4πω2

c2
P (NL)

x (�r, ω) = 0,

Px(�r, ω) =
3
4
χ(3)

xxxx(ω;ω,−ω, ω)|Ex(�r, ω)|2Ex(�r, ω).
(14)

We construct the methods of analytical solution of the problem based on Eq. (14).

3.2. Statement of the problem of diffraction by a weakly nonlinear layer

Denote by �E(�r ) ≡ �E(�r, ω) and �H(�r ) ≡ �H(�r, ω) the complex amplitudes of the sta-
tionary electromagnetic field; the time dependence is exp(−iωt). Consider the prob-
lem of diffraction of a plane stationary electromagnetic wave �E(�r, t) = exp(−iωt)�E(�r ),
�H(�r, t) = exp(−iωt) �H(�r ) by a nonmagnetic, �M = 0, isotropic and linearly polarized
�E(�r ) = (Ex(y, z), 0, 0)T, �H(�r ) = (0,Hy ≡ 1

iωµ0

∂Ex
∂z ,Hz ≡ − 1

iωµ0

∂Ex
∂y )T (E-polarization),

transversely inhomogeneous, ε(L)(z) = ε
(L)
xx (z), dielectric layer with a weak Kerr-type non-

linearity (5) P
(NL)
x = (3/4)χ(3)

xxxx|Ex|2Ex (where �P (NL) = (P (NL)
x , 0, 0)T, see Fig. 1); this

problem is stated in [16, 19, 2, 27]. Using (1), (2), and the results from [2] we obtain
∇ · �E = − �E · (∇ε̂)/ε̂ from the equation ∇ · �D = 0; therefore, the second term is absent,
both in (4) written in the time domain and in (6), (9), and (12)–(14), ∇(∇ · �E) = 0.

According to [21] and the results of the previous section, one can show that the total
field Ex(y, z) = Einc

x (y, z) + Escat
x (y, z) of diffraction of the plane wave

Einc
x (y, z) = ainc exp{i[φy − Γ(z − 2πδ)]}, z > 2πδ,

by the weakly nonlinear dielectric layer (Fig. 1) is the solution to the equation (see (14)):

∇2Ex +
ω2

c2
ε(L)(z)Ex +

4πω2

c2
P (NL)

x ≡ [∇2 + κ2ε(z, α(z), |Ex |2)]Ex(y, z) = 0 (15)

satisfying the following generalized boundary conditions: continuity of Etg and Htg on the
boundary of the nonlinear layered structure having the permittivity ε(z, α(z), |Ex |2), the

Fig. 1. Geometry of the problem.
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spatial quasi-homogeneity condition [30] with respect to y

Ex(y, z) = U(z) exp(iφy), (16)

and the radiation condition for the scattered field

Escat
x (y, z) =

{
ascat

bscat

}
exp(i(φy ± Γ(z ∓ 2πδ))), z

>

<
± 2πδ. (17)

Expression (17) is a mathematical formulation of the radiation condition at infinity which
provides a physically consistent behavior of the scattered field and guarantees the absence
of waves coming from infinity (from the domain |z| > 2πδ). This statement was applied
in [27, 8, 21] and other classical monographs dealing with the wave scattering by parallel–
plane dielectric layers filled with linear media, as well as in [9, 4, 15, 16, 19, 28, 32], and other
works devoted to the analysis of the scattering by layered structures filled with nonlinear
media.

Note that in this work we consider the scattering by a nonlinear layer, so that in (17),
ImΓ = 0 and ReΓ > 0. However, (17) remains valid also when the guiding properties of
the layer are considered, then ImΓ > 0 and ReΓ = 0; when both guiding and scattering
properties are investigated (as e.g. in [4] and [30]), then ImΓ ≥ 0 and ReΓ ≥ 0.

Here we use the following notations: {x, y, z, t} are dimensionless spatial-temporal coor-
dinates introduced so that the layer thickness is 4πδ; the time dependence is exp(−iωt);
ω = κc is the dimensionless circular frequency; κ = ω/c ≡ 2π/λ is the dimensionless fre-
quency parameter such that h/λ = 2κδ, where λ is the free-space wavelength; c = (ε0µ0)1/2

is the dimensionless quantity equal to the speed of light in the medium containing the layer
(Imc = 0); ε0 and µ0 are the material parameters of the medium; Etg and Htg are the
tangential components of the total �E and �H fields; ∇2 = ∂2/∂y2 + ∂2/∂z2; the relative
permittivity function

ε = ε(z, α(z), |Ex |2) ≡ ε(z, α(z), |U(z)|2) =

{
1, |z| > 2πδ,

ε(L)(z) + α(z)|U(z)|2, |z| ≤ 2πδ,

where ε(L)(z) and α = α(z) = 3πχ
(3)
xxxx are piecewise continuously differentiable functions

with respect to z, the former being defined in the domain |z| < 2πδ inside the nonlinear
layer filled with a nonlinear piecewise transversely inhomogeneous medium, and α(z) = 0 in
the domain |z| > 2πδ outside the layer filled with a linear medium; Γ = (κ2 − φ2)1/2 is the
transverse propagation constant (transverse wavenumber); φ ≡ κ · sin(ϕ) is the longitudinal
propagation constant (longitudinal wavenumber); and ϕ is the angle of incidence of the
plane wave, |ϕ| < π/2 (see Fig. 1). Quantities x′, y′, z′, t′, ω′ are reconstructed from the
dimensionless values by the formulas (x′, y′, z′) = (x, y, z) · h/4πδ, t′ = t · h/4πδ, and
ω′ = ω4πδ/h.

Note that the assumptions imposed upon ε(L)(z) and α(z) enable us to consider, within
the frames of a single mathematical model, diffraction characteristics of both one nonlinear
layer and an arbitrary layered structure consisting of a finitely many nonlinear dielectric
layers.
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We look for the solution to problem (15)–(17) in the form

Ex(y, z) = U(z) exp(iφy)

=




ainc exp{i[φy − Γ(z − 2πδ)]} + ascat exp{i[φy + Γ(z − 2πδ)]}, z > 2πδ,

U scat(z) exp(iφy), |z| ≤ 2πδ,

bscat exp{i[φy − Γ(z + 2πδ)]}, z < −2πδ,

(18)

assuming the continuity on the permittivity break lines z = 2πδ and z = −2πδ, so that
U(−2πδ) = bscat and U(2πδ) = ainc + ascat.

4. Integral Equation of the Nonlinear Problem

4.1. Reducing to an integral equation

We solve problem (15)–(17) in the whole space Q = {q = {y, z} : −∞ < y, z < ∞} by
reducing it to a one-dimensional IE along the layer height z ∈ [−2πδ, 2πδ] with respect
to the scattered field component U(z) ≡ U scat(z) introduced in (18). To this end, make
use of canonical Green’s function G0 of problem (15)–(17) (for ε = 1) defined in the strip
Q{Y,∞} = {q = {y, z} : −Y ≤ y ≤ Y, |z| < ∞;Y > 0} ⊂ Q by the expression [20–22]

G0(q, q0) =
i

4Y
exp{i[φ(y − y0) + Γ|z − z0|]}/Γ

≡ exp(±iφy)
iπ

4Y

∫ ∞

−∞
H

(1)
0 [κ

√
(ỹ − y0)2 + (z − z0)2] exp(∓iφỹ)dỹ. (19)

The nonlinear IE with respect to U(z) introduced in (18) is obtained using a classical
approach set forth in [26]. Denote by V (q) ≡ Ex(q ≡ {y, z}) = U(z) exp(iφy) the total
diffraction field (see (18)), where U(z) is the solution of problem (15)–(17), and write
Eq. (15) as

(∇2 + κ2)V (q) = [1 − ε(q, α(q), |V (q)|2)]κ2V (q). (20)

The field of the incident plane wave V0(q) ≡ V inc(q) = ainc exp{i[φy − Γ(z − 2πδ)]}
satisfies in the whole space Q the homogeneous Helmholtz equation

(∇2 + κ2)V0(q) = 0. (21)

At z > 2πδ, V0(q) is the incident field of the incoming plane wave irradiating the layer,
while at z < 2πδ, V0(q) is the outgoing plane wave that satisfies the radiation condition at
infinity (because in the representation for V0(q) the transverse wavenumber Γ > 0).

Subtracting from (20) Eq. (21) we obtain

(∇2 + κ2)[V (q) − V0(q)] = [1 − ε(q, α(q), |V (q)|2)]κ2V (q). (22)

Here V (q) − V0(q) satisfies the radiation condition (17) in the whole space. In fact, at
z > 2πδ the difference V (q) − V0(q) = V scat(q) is the reflected field and at z → −∞ both
V (q) and V0(q) satisfies the radiation condition.
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Using (22) and the equation for the canonical Green’s function G0

(∇2 + κ2)G0(q, q0) = −δ(q, q0) (23)

(where δ(q, q0) is the Dirac delta-function) it is easy to show that

(V − V0)∇2G0 − G0∇2(V − V0) = −(V − V0)δ(q, q0) − G0[1 − ε(q, α(q), |V |2)]κ2V. (24)

Let Q{Y,Z} = {q = {y, z} : −Y ≤ y ≤ Y,−Z ≤ z ≤ Z;Y > 0, Z > 2πδ} denote a rectangu-
lar domain in space Q. Divide this domain into rectangles such that in each of them the per-
mittivity ε(q, α(q), |V |2) is continuously differentiable with respect to y and z. On common
parts of the boundaries of rectangles V (q) and ∂V (q)/∂n (where n denotes the outer normal)
are continuous due to the continuity of the tangential components Etg and Htg. Therefore,
in the whole domain Q{Y,Z}, the sought-for twice continuously differentiable function V (q)
preserves this property up to the boundary ∂Q{Y,Z}; i.e., V (q) ∈ C2(Q{Y,Z}) ∩ C1(Q{Y,Z})
(here Q{Y,Z} = Q{Y,Z} ∪ ∂Q{Y,Z}).

Applying in Q{Y,Z} Green’s formula

∫ ∫
Q{Y,Z}

[(V − V0)∇2G0 − G0∇2(V − V0)]dq0

=
∫

∂Q{Y,Z}

[
(V − V0)

∂G0

∂n
− G0

∂(V − V0)
∂n

]
dq0,

and taking into account (24), we obtain

V (q) = −κ2

∫ ∫
Q{Y,Z}

G0(q, q0)[1 − ε(q0, α(q0), |V (q0)|2)]V (q0)dq0 + V0(q)

−
∫

∂Q{Y,Z}

{
[V (q0) − V0(q0)]

∂G0(q, q0)
∂n

− G0(q, q0)
∂[V (q0) − V0(q0)]

∂n

}
dq0. (25)

When parameter Z → ∞, the integrals in the lower, [(−Z,−Y ), (−Z, Y )], and upper
[(Z, Y ), (Z,−Y )] parts of the boundary ∂Q{Y,Z} that enter curvilinear integral (25) tend to
zero. This statement follows from asymptotic properties of Green’s function (10) and the fact
that V scat = V − V0 satisfies radiation condition (17). The integrals along [(−Z, Y ), (Z, Y )]
and [(Z,−Y ), (−Z,−Y )] cancel each other. Therefore, setting in (25) Z → ∞ and deleting
the curvilinear integral along the boundary ∂Q{Y,Z→∞}, we obtain an integral representa-
tion for the total field of diffraction in the band Q{Y,∞}

V (q) = −κ2

∫ ∫
Q{Y,∞}

G0(q, q0)[1 − ε(q0, α(q0), |V (q0)|2)]V (q0)dq0

+ V0(q), q ∈ Q{Y,∞}.

The integrand in the remaining double integral is a finite function with respect to z, i.e. 1−
ε(q, α(q), |V (q)|2) ≡ 0 when |z| > 2πδ (because the permittivity of the medium enveloping
the layer is assumed to be equal unity), so that one can limit the integration to the domain
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occupied by the dielectric

V (q) = −κ2

∫ ∫
Q{Y,Z=2πδ}

G0(q, q0)[1 − ε(q0, α(q0), |V (q0)|2)]V (q0)dq0

+ V0(q), q ∈ Q{Y,∞}.

Performing a transfer to the limit Y → ∞ (which can be justified by the facts that, according
to (16) and (19), the integrand is asymptotically equivalent to O(Y −1) and parameter Y may
be chosen arbitrarily) we obtain an integral representation for the total field of diffraction
in the whole space Q

V (q) = −κ2

∫ ∫
Qδ

G0(q, q0)[1 − ε(q0, α(q0), |V (q0)|2)]V (q0)dq0

+ V0(q), q ∈ Q. (26)

Here Qδ ≡ Q{∞,Z=2πδ} = {q = {y, z} : −∞ < y < +∞, |z| ≤ 2πδ} is the band occupied by
the nonlinear dielectric layer.

We can also obtain (26) using an iteration scheme based on the approach developed
in [21, 22]. Let us give a short description of this method. In space Q a function sequence
Vn(y, z) is constructed such that every function of this sequence, beginning from n = 1,
satisfies conditions (16) and (17), and the limiting function V = Ex(y, z) = limn→∞ Vn is a
solution to (15)–(17); namely,

(∇2 + κ2)V0 = 0, (∇2 + κ2)V1 = [1 − ε(z, α(q), |V0 |2)]κ2V0 + V0, . . . ,

(∇2 + κ2)Vn+1 = [1 − ε(z, α(q), |Vn|2)]κ2Vn + V0, . . . .
(27)

Equations (27) are formally equivalent to the following

V0(q) ≡ V ins(q),

V1(q) = −
∫ ∫

Qδ

G0(q, q0)[1 − ε(q0, α(q0), |V0(q0)|2)]κ2V0(q0)dq0 + V0(q), . . . ,

Vn+1(q) = −
∫ ∫

Qδ

G0(q, q0)[1 − ε(q0, α(q0), |Vn(q0)|2)]κ2Vn(q0)dq0

+ V0(q) . . . , q ∈ Q. (28)

Performing in (28) a transfer to the limit n → ∞ we obtain the integral representation
(26) for the total field of diffraction in Q.

For q ∈ Qδ, representation (26) is transformed to a nonlinear IE with respect to
the sought for scattered field V (q) ≡ V scat(q), q ∈ Qδ, see (18). Substituting into
Eq. (30) formula (19) for canonical Green’s function and the expression for the permit-
tivity ε(q0, α, |V (q0)|2) we obtain an equation

U(z)eiφy

= − lim
Y →∞

{
iκ2

4Y Γ

∫ 2πδ

−2πδ

∫ Y

−Y
eiφyeiΓ|z−z0|[1 − (ε(L)(z0) + α(z0)|U(z0)|2)]U(z0)dy0dz0

}

+ U inc(z)eiφy (29)
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with respect to U(z) ≡ U scat(z), |z| ≤ 2πδ, that enters the expression for the field V (q) ≡
Ex(q ≡ {y, z}) = U(z) exp(iφy) quasi-homogeneous along the layer. Integrating in domain
Qδ with respect to y0, we obtain a nonlinear IE of the second kind with respect to an
unknown function U(z) ∈ L2([−2πδ, 2πδ]):

U(z) +
iκ2

2Γ

∫ 2πδ

−2πδ
exp(iΓ|z − z0|)[1 − (ε(L)(z0) + α(z0)|U(z0)|2)]U(z0)dz0

= U inc(z), |z| ≤ 2πδ, (30)

where U inc(z) = ainc exp[−iΓ(z − 2πδ)].
The existence and uniqueness of the solution to IE (30) for the linear problem with

α = 0 are proved in [21, 31]. In the general case a nonlinear IE of type (30) may or may not
have (the unique) solution. Its solvability is governed by the properties of the kernel and
the right-hand side (incident field U inc(z)) and value of the nonlinearity parameter.

Note that from the method of obtaining IE (30) it follows that the solution to this
IE may be used for the integral representation in Ex(y, z) = U(z) exp(iφy) of the sought
for solution to problem (15)–(17) for the points with the coordinates |z| > 2πδ outside the
nonlinear layer. Indeed, finding the solution to IE (30) and substituting it under the integral
sign in (30), we obtain an explicit expression for U(z) in the domain |z| > 2πδ.

The equivalence of IE (30) to problem (15)–(18) is proved in Appendix.

4.2. Sufficient condition of the existence of solution to nonlinear IE

Assume that α = const. and the permittivity function ε(L)(z0) is positive, bounded, and
continuous in the interval γ = [−2πδ, 2πδ], so that ε(L)(z0) ∈ C(γ), where C(γ) denotes
the space of continuous functions in the closed interval γ with the norm ‖f‖ = ‖f‖C(γ) =
maxz∈γ |f(z)|. Assume also that

1 < ε(L)(z) ≤ E, z ∈ γ, E > 1. (31)

Write IE (30) in the operator form

U + AU − αF (U) = f, (32)

where

f(z) = U inc(z) = a exp[−iκ cos(ϕ)(z − 2πδ)], a = ainc > 0,

AU =
∫ 2πδ

−2πδ
k(z − z0)[1 − ε(L)(z0)]U(z0)dz0 (33)

is a linear integral operator with the continuous kernel

k(t) = s0 exp[2iκ cos(ϕ)|t|], s0 =
iκ

2 cos(ϕ)

(
−π

2
< ϕ <

π

2

)
,

and

F (U) =
∫ 2πδ

−2πδ
k(z − z0)|U(z0)|2U(z0)dz0

is a cubic-nonlinear integral operator.
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A linear integral operator B : C(γ) → C(γ) defined by

Bu =
∫ 2πδ

−2πδ
k(z − z0)u(z0)dz0

is bounded, so that

‖B‖ ≤
∫ 2πδ

−2πδ
max
z∈γ

|k(z − z0)|dz0 = 4πδ
κ

2 cos(ϕ)
=

2πδκ

cos(ϕ)
= q0. (34)

Integral operator (34) is bounded and continuous in C(γ) and its norm can be estimated as

‖A‖ ≤ max
z∈γ

[∫ 2πδ

−2πδ
|k(z − z0)||1 − ε(L)(z0)|dz0

]
= (E − 1)

2πδκ

cos(ϕ)
= (E − 1)q0. (35)

The nonlinear operator Q(U) = |U |2U is bounded and continuous in C(γ) and F (U) is
therefore bounded and continuous in C(γ) as a superposition of B and Q. Hence the non-
linear operator T (U) = −AU +αF (U)+f is completely continuous on each bounded subset
Ω ∈ C(γ).

Set

Ω = Sp = {U ∈ C(γ) : ‖U‖ < p}
to be a ball in C(γ), assume that U ∈ Sp, and estimate the C(γ)-norm of T :

‖T (U)‖ ≤ ‖A‖‖U‖ + α‖B‖‖U‖3 + ‖f‖
≤ p‖A‖ + α‖B‖p3 + a ≤ K(p), U ∈ Sp,

K(p) = (E − 1)q0p + αq0p
3 + a.

Write Eq. (32) as U = T (U). One can apply to the operator T (U) : Sp → Sp the Banach
fixed-point theorem [14] if K(p) ≤ p. In order to determine the corresponding range of
values of parameter p > 0, solve the inequality K(p) ≤ p, which yields a cubic inequality
with respect to p

PK(p) ≡ D0p
3 − D1p + a ≤ 0, D0 = αq0, D1 = 1 − (E − 1)q0. (36)

The necessary condition for (36) to have a positive solution is D1 > 0, which yields
(E − 1)q0 < 1, or, according to (34) and assumption (31) concerning the properties of
the permittivity function ε(L)(z),

2πδκ < cos(ϕ)
{

max
z∈γ

[ε(L)(z)] − 1
}−1 (

−π

2
< ϕ <

π

2

)
. (37)

Subject to the condition (37), cubic polynomial PK(p) in (36) has two positive zeros p1 and
p2 if 0 < a < maxp≥0(−D0p

3 + D1p) (with D1 > 0), which holds if the local minimum of

PK(p) is negative, PK(pext) < 0, at the point pext =
√

D1
3D0

> 0 where P ′
K(pext) = 0. The

corresponding condition for a can be written as a < 2
3D1

√
D1
3D0

, or

a
√

α <
2

3
√

3
[1 − (E − 1)q0]3/2

√
q0

, q0 =
2πδκ

cos(ϕ)
. (38)
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Condition (38) holds for arbitrary set of the problem parameters a, κ, ϕ, δ, and E sat-
isfying (37) if the nonlinearity parameter α is sufficiently small because α enters only the
left-hand side of inequality (38). The inequality K(p) ≤ p holds for p ∈ (p1, p2), p1 > p2 > 0;
for example, at

p = pext =

√
1 − (E − 1)q0

3αq0
.

Theorem 1. Assume that

(i) the permittivity function ε(L)(z) is positive, bounded, and continuous in the closed inter-
val γ = [−2πδ, 2πδ] and E = maxz∈γ [ε(L)(z)] > 1;

(ii) parameters a, κ, δ and the nonlinearity parameter α are positive, |ϕ| < π/2, and all the
parameters a, κ, δ, ϕ, α, and E satisfy (31), (37) and (38), namely

E > 1, (E − 1)q0 < 1, α < α0 =
4
27

1
a2

[1 − (E − 1)q0]3

q0
, q0 =

2πδκ

cos(ϕ)
.

Then the operator T (U) = −AU + αF (U)+ f , T (U) : Sp → Sp defined by (32) and (33)
is a contraction in the space C(γ) if

t0 = q0(E − 1 + 3αp2) < 1, p ∈ (p1, p2) (39)

where p1 and p2 are positive zeros of the polynomial PK(p) defined by (36) and α is suffi-
ciently small, satisfying

0 < α < min{α0, α1}, α1 =
1
3
{q0[1 − (E − 1)q0]}−1. (40)

Proof. Use definition (32), estimates (34) and (35), and inequality ||z1| − |z2|| ≤ |z1 − z2|
(where z1, z2 are complex numbers), assume that U, V ∈ Sp, and estimate the C(γ)-norm
of the difference T (U) − T (V ):

‖T (U) − T (V )‖ ≤ ‖AV − AU‖ + α‖F (U) − F (V )‖
≤ (E − 1)q0‖U − V ‖ + αq0‖U |U |2 − V |V |2‖ < q0(E − 1 + 3αp2)‖U − V ‖.

Thus, inequality (39) provides that operator T (U) : Sp → Sp is a contraction if α is
sufficiently small; namely, satisfies (38) and (40). Note that (40) follows from (38), the
condition 3αp2

ext < 1, and inequality 0 < p1 < pext, where pext ∈ (p1, p2) is the point of a
negative local minimum of the cubic polynomial PK(p) (36) satisfying P ′

K(pext) = 0 and
mint≥0[PK(t)] = PK(pext) < 0 and p1, p2 are positive zeros of PK(p).

Summarizing the results verified above we conclude that the following statement is valid.

Theorem 2. Assume that the permittivity function ε(L)(z), parameters a, κ, δ, the non-
linearity parameter α, and quantity E satisfy conditions (i) and (ii) from Theorem 1 and
conditions (39) and (40). Then the operator T (U) = −AU +αF (U)+f defined by (32) and
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(33) is a contraction in the space C(γ) and IE (30) has the unique solution U∗(z) continu-
ous in the closed interval [−2πδ, 2πδ]. U∗(z) is a limit with respect to the C(γ)-norm of the
function sequence Un(z) (the fixed point of operator T (U)) determined according to

Un+1 = T (Un), n = 0, 1, 2, . . . , U0 ∈ Sp = {U ∈ C(γ) : ‖U‖ < p}, p ∈ (p1, p2),
(41)

where p1 and p2 are positive zeros of the polynomial PK(p) defined by (36).

The rate of convergence of the fixed-point iterations (41) can be estimated using the
quantity t0 < 1 defined in (39):

‖Un − U∗‖ = ‖T (Un−1) − T (U∗)‖
< t0‖Un−1 − U∗‖ < · · · < tn−1

0 ‖T (U0) − U∗‖, n = 2, 3, . . . .

4.3. Complex-valued permittivity function (diffraction by a lossy

nonlinear layer)

The method and results can be extended to the case when the permittivity ε(L)(z) is an
arbitrary complex-valued function of the real argument z continuous and bounded on the
line. To this end denote

ε(L)(z) − 1 = g(z) = ε1(z) exp[iε2(z)] = g1(z) + ig2(z), (42)

where, according to physical assumptions of the model, the real and imaginary parts of the
permittivity function, g1(z) and g2(z), are positive, continuous, and bounded on the line
satisfying g1(z) ≥ 1 and g1(z) >> g2(z), so that the modulus ε1(z) and argument ε2(z)
of the permittivity are also positive functions continuous and bounded on the line with
0 ≤ ε2(z) < π/2.

Make use of (42) and represent integral operator (33) as

A1U =
∫ 2πδ

−2πδ
k1(z, z0)ε1(z0)U(z0)dz0, k1(z, z0) = −s0 exp{i[2κ cos(ϕ)|z − z0|ε2(z0)]}.

(43)
Assuming, similar to (31) and taking into account (42) and the conditions for the per-

mittivity function, that

0 < ε1(z) ≤ E1, z ∈ γ, (44)

(that is, 0 < |ε(L)(z)| ≤ E1, z ∈ γ) we can estimate, as in (33), the norm of the integral
operator (43), which is bounded and continuous in C(γ), as

‖A1‖ ≤ max
z∈γ

[∫ 2πδ

−2πδ
|k1(z, z0)||ε1(z0)|dz0

]
= E1

2πδκ

cos(ϕ)
= E1q0. (45)

(45) yields an estimate for the norm of the nonlinear operator T1(U) = −A1U +αF (U)+ f

‖T1(U)‖ ≤ K1(p), U ∈ Sp, K1(p) = E1q0p + αq0p
3 + a. (46)

Thus one can easily check that the following statements are valid which are extensions of
Theorems 1 and 2 to the case of a complex-valued permittivity function.
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Theorem 3. Assume that

(i) the permittivity ε(L)(z) is a complex-valued function given by (42), where g1(z) > 0 and
are continuous and bounded on the line so that the modulus ε1(z) and argument ε2(z)
of the function ε(L)(z) − 1 are also nonnegative functions continuous and bounded on
the line with 0 ≤ ε2(z) < π/2 and ε1(z) ≥ 1, and E1 = maxz∈γ [ε1(z)] > 0 in the closed
interval γ = [−2πδ, 2πδ];

(ii) parameters a, κ, δ and the nonlinearity parameter α are positive, |ϕ| < π/2, and all the
parameters a, κ, δ, ϕ, α, and E1 satisfy the conditions similar to (31), (37) and (38),
namely,

0 < E1q0 < 1, α < α
(1)
0 =

4
27

1
a2

(1 − E1q0)3

q0
, q0 =

2πδκ

cos(ϕ)
> 0. (47)

Then the operator T1(U) = −A1U + αF (U) + f, T1(U) : Sp → Sp defined using (43) is
a contraction in the space C(γ) if

t1 = q0(E1 + 3αp2) < 1, p ∈ (p(1)
1 , p

(1)
2 ), (48)

where p
(1)
1 and p

(1)
2 are positive zeros of the polynomial

P
(1)
K (p) ≡ D0p

3 − D
(1)
1 p + a, D0 = αq0, D

(1)
1 = 1 − E1q0 (49)

and α is sufficiently small, satisfying

0 < α < min {α(1)
0 , α

(1)
1 }, α

(1)
1

=
1
3
[q0(1 − E1q0)]−1. (50)

Theorem 4. Assume that the permittivity function ε(L)(z) specified by (42), parameters a,

κ, δ, the nonlinearity parameter α, and quantity E1 = maxz∈γ [ε1(z)] > 0, γ = [−2πδ, 2πδ]
(ε1(z) = |ε(L)(z) − 1|) satisfy conditions (i) and (ii) from Theorem 3 and conditions (47),
(48), and (50). Then the operator T1(U) = −A1U + αF (U) + f defined using (43) is a
contraction in the space C(γ) and IE (30) has the unique solution U∗(z) continuous in the
closed interval [−2πδ, 2πδ]. U∗(z) is a limit with respect to the C(γ)-norm of the function
sequence Un(z) (the fixed point of operator T1(U)) determined according to

Un+1 = T1(Un), n = 0, 1, 2, . . . , U0 ∈ Sp = {U ∈ C(γ) : ‖U‖ < p}, p ∈ (p(1)
1 , p

(1)
2 ),

(51)
where p

(1)
1 and p

(1)
2 are positive zeros of the polynomial P

(1)
K (p) defined by (49).

The rate of convergence of the fixed-point iterations (51) can be estimated using the
quantity t1 < 1 defined in (48):

‖Un − U∗‖ < tn−1
1 ‖T1(U0) − U∗‖, n = 2, 3, . . . ,

U0 ∈ Sp∗ = {U ∈ C(γ) : ‖U‖ < p∗}, p∗ ∈ (p(1)
1 , p

(1)
2 ).

The existence of the unique solution to IE (30) subject to the sufficient conditions
specified in formulations of Theorems 2 and 4 (corresponding to the cases of, respectively,
real- and complex-valued permittivity function of the nonlinear layer) and the equivalence
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of IE (30) to problem (15)–(18) proved in Appendix enables us to prove the following
statement which constitutes the main result of this study.

Theorem 5. Assume that the permittivity function ε(L)(z) is (a) real-valued and quan-
tity E and parameters a = ainc, κ, δ, ϕ, and α satisfy conditions (i) and (ii) from
Theorem 1, (39), and (40); or (b) complex-valued (given by (42)) and quantity E1 =
maxz∈γ |ε(L)(z) − 1| > 0 and parameters a = ainc, κ, δ, ϕ, and α satisfy conditions (i) and
(ii) from Theorem 3 and conditions (47), (48), and (50). Then problem (15)–(18) has the
unique solution U∗(z) continuous in the closed interval [−2πδ, 2πδ] which can be deter-
mined as a limit with respect to the C(γ)-norm of the function sequence Un(z) determined,
respectively, according to (a) (41) or (b) (51).

4.4. First iterations as trigonometric polynomials

In view of the fact that at ε(L)(z) = 1 and α = 0 nonlinear IE (20) has a formal solution

U(z) = U inc(z) = ã exp(−ibz), ã = exp(ibd), d = 2πδ, b = κ cos(ϕ), (52)

it is reasonable to choose the zero iteration in (51) U0(z) = ã exp(−ibz) in the form (52).
The linear integral operators (33) and (43) can be represented as

AU = A[η]U =
∫ d

−d
k(z − z0)η(z0)U(z0)dz0,

k(t) = s0 exp(2ib|t|), s0 =
iκ

2 cos(ϕ)
,

(
−π

2
< ϕ <

π

2

)
.

(53)

Obviously, they are linear with respect to the (continuous complex-valued) weight
function η(z0):

A[h1η1 + h2η2]U = h1A[η1]U + h2A[η2]U, h1, h2 = const.

Lemma 1.

A[η(0)]U0 = H1 exp(−i2bz) + H2 exp(i2bz) + H3 exp[iz(q − b)],

where

Hj = H0H̃j, (j = 1, 2, 3), H0 = − iT ãs0

(b + q)(3b − q)
,

H̃1 = (3b − q) exp[id(b + q)], H̃2 = (b + q) exp[id(3b − q)], H̃3 = −4b, (54)

q �= −b, q �= 3b, and

U0(z) = ã exp(−ibz), η(0)(z) = T exp(iqz), ã, T = const. (55)

At q = b,

A[η(0)]U0 = − iT ãs0

b
[exp(i2bd) cos(i2bz) − 1].
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Proof. Proof of Lemma 1 reduces to tedious algebra and integration.

We see that it is possible to determine explicitly the image A[η(0)]U0 of a simple trigono-
metric polynomial U0 = ã exp(−ibz) and to show that this image is also a trigonometric
polynomial:

A[η(0)][ã exp(−ibz)] =
3∑

j=1

Hj exp(icjz), c1 = −2b, c2 = 2b, c3 = q − b.

The linearity of A[η]U with respect to the weight function η(z) and U yields

Lemma 2. Let

η(0)(z) =
Nη∑
j=1

rj exp(iqjz), Nη ≥ 1.

Then the image A[η(0)]U of a trigonometric polynomial U(z) =
∑NU

j=1 hj exp(ibjz) is also a
trigonometric polynomial:

A[η(0)]U(z) =
NA∑
j=1

Pj exp(icjz),

where the coefficients Pj and the number of terms NA can be determined explicitly.

Similar statements are valid for the nonlinear operator F (U) defined in (32); namely,
the image F (U0) of a trigonometric polynomial U0 = ã exp(−ibz) is also a trigonometric
polynomial that can be determined explicitly:

Lemma 3.

F (U0) = f1 exp(−i2bz) + f2 exp(i2bz) + f3 exp(−ibz),

where

fj = f0f̃j, (j = 1, 2, 3), f0 = − ia3 exp(ibd)s0

3b
,

f̃1 = 3exp(idb), f̃2 = − exp(idb), f̃3 = −2,

U0(z) = ã exp(−ibz), ã = a exp(ibd), a = const.

Lemmas 1–3 enable one to evaluate explicitly the first iteration

U1 = T (U0) = −AU0 + αF (U0) + U0

= −
3∑

j=1

Hj exp(icjz) + α

2∑
j=1

fj exp(icjz) + αf3 exp(−ibz)

=
4∑

j=1

Sj exp(icjz), Sj = −Hj + αfj (j = 1, 2), S3 = αf3, S4 = −H3,

c1 = −2b, c2 = 2b, c3 = −b, c4 = q − b.
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We conclude that according to (33) and (53) if the permittivity function ε(L)(z) is a trigono-
metric polynomial then the first iteration U1 specified by (51) is also a trigonometric poly-
nomial whose coefficients can be determined explicitly.

4.5. Sufficient condition of the existence of solution to nonlinear IE:

reducing to a functional equation system

Here we present the proof of an alternative sufficient condition for the existence of a solution
to nonlinear IE (30) which is similar to the solvability conditions of the type (39). The
approach developed in this section enables one to create a rather efficient method of the
numerical solution of the IE. To this end, assume that α = α(z) is a piecewise smooth
function and reduce (30) to a nonlinear functional equation system, considering the system
of two IEs in the domain |z| ≤ 2πδ:

Un+1(z) +
iκ2

2Γ

∫ 2πδ

−2πδ
exp(iΓ|z − z0|)[1 − (ε(L)(z0) + α|Un(z0)|2)]Un(z0)dz0 = U inc(z),

Ψn(z) +
iκ2

2Γ

∫ 2πδ

−2πδ
exp(iΓ|z − z0|)[1 − (ε(L)(z0) + α|Un(z0)|2)]Ψn(z0)dz0 = U inc(z).

(56)

The first equation of system (56) is an iteration scheme of solution to nonlinear equation (30)
(cf. (28)). The second is a linear IE with respect to Ψn(z) for the given Un(z0). If Ψn(z)
is not an eigenfunction of the problem of diffraction by the layer with the permittivity
ε(z, α, |Un(z)|2) ≡ ε(L)(z) + α|Un(z)|2, then the second equation is uniquely solvable [15,
26] and its solution can be represented in the form

Ψn(z) = Ψ(z, α, |Un(z)|2)U inc(z), (57)

where Ψ(z, α, |Un(z)|2) is the solution to the linear IE at U inc(z) = 1 such that
|Ψ(z, α, |Un(z)|2)| ≤ 1.

The analysis of the convergence criterion for the sequence Un(z), Ψn(z) specified by
system (56) enables one to obtain a sufficient condition for the existence of solution to
nonlinear IE (30).

Kernels of IEs (56) are identical, which makes it possible to calculate and estimate the
L2-norm of the difference between Un(z) and Ψn(z)

ρ[Un+1(z),Ψn(z)]

=
[∫ 2πδ

−2πδ
|Un+1(z) − Ψn(z)|2dz

]1/2

=
∣∣∣∣ iκ2

2Γ

∣∣∣∣
{∫ 2πδ

−2πδ

∣∣∣∣
∫ 2πδ

−2πδ
exp(iΓ|z − z0|)[1 − (ε(L)(z0)

+ α|Un(z0)|2)][Un(z0) − Ψn(z0)]dz0

∣∣∣∣
2

dz

}1/2

=
κ2

2Γ

{∫ 2πδ

−2πδ

∣∣∣∣
∫ 2πδ

−2πδ
[1 − (ε(L)(z0) + α|Un(z0)|2)][Un(z0) − Ψn(z0)]dz0

∣∣∣∣
2

dz

}1/2
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≤ κ2

2Γ

{∫ 2πδ

−2πδ

∫ 2πδ

−2πδ
|1 − (ε(L)(z0) + α|Un(z0)|2)|2dz0dz

}1/2

×
{∫ 2πδ

−2πδ
|Un(z0) − Ψn(z0)|2dz0

}1/2

≤ κ2

2Γ
4πδ max

|z|≤2πδ
|1 − (ε(L)(z) + α|Un(z)|2)|ρ[Un(z),Ψn(z)]

≤ κ2

2Γ
4πδ max

|z|≤2πδ
[|1 − ε(L)(z)| + |α||Un(z)|2]ρ[Un(z),Ψn(z)]

≤ κ2

2Γ
4πδ max

|z|≤2πδ
[|1 − ε(L)(z)| + |α||U inc(z)|2]ρ[Un(z),Ψn(z)]. (58)

The last inequality in (58) is obtained taking into account the condition
max|z|≤2πδ |Un(z)| ≤ max|z|≤2πδ |U inc(z)| which holds for all n = 0, 1, 2, . . . and directly
follows from the inequality max|z|≤2πδ |U(z)| ≤ max|z|≤2πδ |U inc(z)| due to (18). We see
that, according to (58), in the case under study of weakly nonlinear approximation (5)
when

max
|z|≤2πδ

[|α||U(z)|2] ≤ max
|z|≤2πδ

[|α||U inc(z)|2] < max
|z|≤2πδ

|ε(L)(z)|, (59)

the iterations defined by the first equation of (56) converge to the unique solution determined
by (56) if the term in the last inequality of (58) multiplying the norm satisfies the condition

κ2

2Γ
4πδ max

|z|≤2πδ
[|1 − ε(L)(z)| + |α||U inc(z)|2] < 1.

In view of the expression for the transverse wavenumber Γ = {κ2 − [κ sin(ϕ)]2}1/2 rewrite
the last inequality as

κ2πδ max
|z|≤2πδ

[|1 − ε(L)(z)| + |α||U inc(z)|2] < cos(ϕ). (60)

Note that according to (59), condition (60) can be written in the form (39) with p = a√
3

as

q0(E − 1 + αa2) < 1. (61)

Observe also that (60) yields the sufficient condition (36) for the existence of solution to
nonlinear IE (30) obtained in the previous section because the latter reads (E − 1)q0 < 1.

We have proved the following statement which constitutes a sufficient condition for the
existence of solution to nonlinear IE (30).

Theorem 6. Assume that the weakly nonlinear approximation (59) holds. Then nonlinear
IE (30) has the unique continuous solution if condition (60) holds. This solution can be
obtained using both the iterations defined by the first equation of (56) and the equivalent
iteration scheme according to the second equation of (56) if to consider its solution Ψn(z)
as the n + 1 approximation (setting Ψn(z) ≡ Un+1(z)) to the sought for U(z).
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Note that in [3] the existence and uniqueness of weak (generalized) solutions of the
problem under study is proved independently and a numerical technique based on the
solution of the semilinear Sturm–Liouville type BVP (67) by the finite element method is
proposed and justified.

5. Conclusion

We have proved, subject to certain sufficient conditions, the unique solvability of the
problem of diffraction of a plane wave by a transversely inhomogeneous isotropic non-
magnetic linearly polarized dielectric layer filled with a Kerr-type nonlinear medium. The
diffraction problem has been reduced to a cubic-nonlinear IE of the second kind. Based
on the use of the contraction principle, sufficient conditions of the IE unique solvabil-
ity have been obtained in the form of simple inequalities. The method presented in this
work can be generalized so that it will enable one to obtain eigensolutions and soliton-
type solutions; eigenvalues, also as functions of the problem parameters; and to develop
the techniques to wider classes of nonlinearities B and operators L of singular semilin-
ear BVPs L(λ)u + αB(u;λ) = f associated with the problems of wave scattering and
propagation.

On the basis of these solution techniques and the IE obtained one can perform numerical
investigation of the resonance effects caused by certain nonlinear properties of the object
under study irradiated by an intense electromagnetic field. In particular, one can determine
the critical limits of the excitation field intensity that govern applicability of the developed
mathematical model. The proposed methods and results of computations can be further
applied to the analysis of various physical phenomena including self-influence and inter-
action of waves; determination of eigenfields, natural (resonance) frequencies of nonlinear
objects, and dispersion amplitude–phase characteristics of the diffraction fields; description
of evolution processes in the vicinities of critical points; and to the design and modeling of
novel scattering, transmitting, and memory devices.

Appendix

Let us prove that IE (30) is equivalent to BVP (15)–(18); namely, if U(z) is a solution to
IE (30) then Ex(y, z) = U(z) exp(iφy) is a solution to (15)–(17) subject to representation
(18) and vice versa. To this end, let us show that IE (30) and (15)–(18) are reduced to the
determination of the solution to one and the same BVP and both problems are equivalent
to one and the same IE. Indeed, write IE (30) for the points |z| ≤ 2πδ inside the nonlinear
layer in the form

U(z) +
iκ2

2Γ
[F+(z) + F−(z)] = U inc(z), |z| ≤ 2πδ,

F+(z) =
∫ z

−2πδ
exp[iΓ(z − z0)][1 − (ε(L)(z0) + α|U(z0)|2)]U(z0)dz0,

F−(z) =
∫ 2πδ

z
exp[−iΓ(z − z0)][1 − (ε(L)(z0) + α|U(z0)|2)]U(z0)dz0.

(62)
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We have

U(2πδ) = U inc(2πδ) − iκ2

2Γ
F+(2πδ) = ainc + ascat,

U(−2πδ) = U inc(−2πδ) − iκ2

2Γ
F−(−2πδ) = aince4iπδ − iκ2

2Γ
F−(−2πδ) = bscat,

(63)

where

ascat = − iκ2

2Γ
F+(2πδ), bscat = aince4iπδ − iκ2

2Γ
F−(−2πδ) (64)

denote the quantities (constants) expressed in terms of the solution to IE (30).
Differentiating two times with respect to z the first equality (62) (or IE (30)) involving

functions F±(z) and using the continuity condition (16) for the tangential components of
the total diffraction field on the permittivity break lines z = 2πδ and z = −2πδ and
representation (18) we arrive at the problem in the differential form equivalent to IE (62)
(or (30))

�Γ(U) + g(U) ≡ U ′′(z) + {Γ2 − κ2[1 − (ε(L)(z) + α|U(z)|2)]}U(z) = 0, |z| ≤ 2πδ,

U(2πδ) = ascat + ainc, U(−2πδ) = bscat,
(65)

where the linear differential and nonlinear operators

�Γ(U) = U ′′(z) + Γ2U(z), g(U) = −κ2[1 − (ε(L)(z) + α|U(z)|2)]U(z).

Note that U(z) in (65) satisfies the conditions

U ′(2πδ) = iΓ(ascat − ainc), U ′(−2πδ) = −iΓbscat. (66)

Indeed, differentiating with respect to z the first equality (62) and setting z = 2πδ and
z = −2πδ we obtain

U ′(2πδ) + iΓ
iκ2

2Γ
F+(2πδ) = −iΓainc,

U ′(−2πδ) − iΓ
iκ2

2Γ
F−(−2πδ) = −iΓainc exp(4iΓπδ),

which, together with (63) and (64), leads to (66). The same result is obtained if we note that
on the lines z = 2πδ and z = −2πδ, U(z) and its derivative coincide, according to (18) and
the continuity condition, with the boundary values on these lines of the respective functions
U+(z) = ainc exp{−iΓ(z − 2πδ)}+ascat exp{iΓ(z − 2πδ)}, U−(z) = bscat exp{−iΓ(z + 2πδ)}
and their derivatives.
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Excluding in (65) complex amplitudes ascat and bscat we obtain a semilinear BVP of the
Sturm–Liouville type

U ′′(z) + {Γ2 − κ2[1 − (ε(L)(z) + α|U(z)|2)]}U(z) = 0, |z| ≤ 2πδ,

iΓU(2πδ) − U ′(2πδ) = 2iΓainc,

iΓU(−2πδ) + U ′(−2πδ) = 0.

(67)

We can show independently that (67) is equivalent to IE (30). Indeed, using Green’s
function

G(z, z0) =
i

2Γ
eiΓ|z−z0|

of the linear differential operator �Γ(U) we obtain IE (62) (or (30)) by inverting �Γ(U) in
(65) with the help of Green’s function G(z, z0) (that is, by reducing (67) to an equivalent
IE [6]). The solution to IE (30) satisfies the boundary condition of BVP (67) at z = ±2πδ

which is verified directly, as above, by differentiating with respect to z and setting z = 2πδ

and z = −2πδ.
Assume now that U(z) is a solution to IE (30) continuous in the closed interval |z| ≤ 2πδ

(we note that the unique solvability of IE (30) is proved in Sec. 4 subject to the sufficient
conditions formulated in Theorems 1–4). Then constants ascat and bscat are determined from
(63) and (64) so that U(z) satisfies boundary conditions in (65) and (67), and the solution
to (15)–(17) is represented in the form (18) with these constants (which also enter boundary
conditions in (67)).

The same BVP (67) in the interval |z| ≤ 2πδ is obtained from the initial BVP (15)–(17)
and representation (18). This follows directly if we substitute Ex(y, z) = U(z) exp(iφy)
into Eq. (15) taking into account the relationship Γ2 = κ2 − φ2 and the continuity of the
tangential components of the total diffraction field on the permittivity break lines.

This statement completes the proof of the fact that IE (30) is equivalent to BVP
(15)–(18).

References

[1] V. Agranovich and V. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory of Exci-
tons (Interscience, Innsbruck, 1966).

[2] N. Akhmediev and A. Ankevich, Solitons (Fizmatlit, Moscow, 2003).
[3] L. Angermann and V. Yatsyk, Numerical simulation of the diffraction of weak electromagnetic

waves by a Kerr-type nonlinear dielectric layer, Int. J. Electromagn. Waves Electron. Syst. 13
(2008) 15–30.

[4] P. N. Butcher, Nonlinear optical phenomena, in Bulletin Engineering Experiment Station, Ohio
State University Columbus (1965).

[5] M. Born and E. Wolf, Principles of Optics, 3rd edn. (Pergamon Press, Oxford, 1965), 61–66.
[6] F. Brauer and J. Nohel, Ordinary Differential Equations (Benjamin, New York, 1967) Chapter 5.
[7] W. Chen and D. L. Mills, Optical behavior of a nonlinear thin film with oblique S-polarized

incident wave, Phys. Rev. B 38 (1988) 12814–12822.
[8] S. Furman and A. Tikhonravov, Basics of Optics of Multilayer Systems, Edition Frontieres

(Gif-sur-Yvette, 1992).



October 8, 2010 8:52 WSPC/1402-9251 259-JNMP S1402925110000921

Diffraction by a Nonlinear Dielectric Layer 335

[9] V. Kravchenko and V. Yatsyk, Effects of resonant scattering of waves by layered dielectric
structure with Kerr-type nonlinearity, Int. J. Electromagn. Waves Electron. Syst. 12 (2007)
17–40.

[10] K. M. Leung, Exact results for the scattering of electromagnetic waves with a nonlinear film,
Phys. Rev. B 39 (1988) 3590–3598.

[11] K. M. Leung, Scattering of transverse-electric electromagnetic waves with a finite nonlinear
film, J. Opt. Soc. Am. B 5 (1988) 571–574.

[12] V. Lugovoi and A. Prokhorov, Theory of the propagation of high-power laser radiation in a
nonlinear medium, Sov. Phys. Usp. 16 (1983) 658–679.

[13] T. Peschel, P. Dannberg U. Langbein and F. Lederer, Investigation of optical tunneling through
nonlinear films, J. Opt. Soc. Am. B 5 (1988) 29–36.

[14] R. Precup, Methods in Nonlinear Integral Equations (Kluwer, Dordrecht, 2002).
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[17] H. W. Schürmann V. Serov and Y. Shestopalov, Solutions to the Helmholtz equation for TE-

guided waves in a three-layer structure with Kerr-type nonlinearity, J. Phys. A: Math. Gen.
35 (2002) 10789–10801.
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