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Let S = {a(t)(=2i0; — 82) + V(t,r) | a € CP(R/27Z),V € C®(R/27Z x R)} be the space of
Schrodinger operators in (1+ 1)-dimensions with periodic time-dependent potential. The action on
Sln of a large infinite-dimensional reparametrization group SV with Lie algebra sv [8, 10], called
the Schrodinger—Virasoro group and containing the Virasoro group, is proved to be Hamiltonian for
a certain Poisson structure on S, More precisely, the infinitesimal action of sb appears to be part
of a coadjoint action of a Lie algebra of pseudo-differential symbols, g, of which sv is a quotient,
while the Poisson structure is inherited from the corresponding Kirillov—Kostant—Souriau form.
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0. Introduction

The Schrodinger—Virasoro Lie algebra so was originally introduced in Henkel [3] as a natural
infinite-dimensional extension of the Schrodinger algebra. Recall the latter is defined as the
algebra of projective Lie symmetries of the free Schrodinger equation in (141)-dimensions

(—2iM; — 02)(t,r) = 0. (0.1)

These act on Eq. (0.1) as the following first-order operators

. .
L, = —t""19; — 5 (n+1)t"ro, + i/\/l(n + Dnt" 1% — (n 4 1)t
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1
Y, = —t"+20, +iM (m + 5) tmay
M, = iMtP
(0.2)

with p = 1/4 and n = 0,£1,m = i%,p = 0. The Oth-order terms in (0.2) correspond on
the group level to the multiplication of the wave function by a phase. To be explicit, the
6-dimensional Schrodinger group S acts on v by the following transformations

(L1, Lo, L1) :o(t,7) — o' (¢ 1) = (ct + d) "/ 2emaMer/ ety ) (0.3)
where t’ = gfig,r’ = g With ad —be = 1;
(Yeg):9p(tr) — h(t,r) = 7 MEHIT= By g, ) (0-4)

where 1’ = r — vt — rg;
(Mo) = o(t, 1) — (e, 7). (0.5)

The Schrédinger group is isomorphic to a semi-direct product of SL(2,R) (correspond-
ing to time-reparametrizations (0.3)) by the Heisenberg group H; (corresponding to the
Galilei transformations (0.4), (0.5)). Note that the last transformation (0.5) (multiplica-
tion by a constant phase) is generated by the commutators of the Galilei transformations
(0.4) — these do not commute because of the added phase terms, which produce a central
extension.

The free Schrodinger equation comes out naturally when considering many kinds of
problems in out-of-equilibrium statistical physics. Its analogue in equilibrium statistical
physics is the Laplace equation Ay = 0. In two-dimensional space, the latter equation
is invariant by local conformal transformations which generate (up to a change of vari-
ables) the well-known (centerless) Virasoro algebra Vect(S!), otherwise known as the Lie
algebra of C>-vector fields on the torus S' := {6 € [0,2n]}. There is no substi-
tute for Vect(S!) when time-dependence is included, but the Schrédinger—Virasoro Lie
algebra

1
50~ <Ln7YmaMp |n.peZme g +Z> (0.6)

shares some properties with it. First, the Lie subalgebra span(L,, n € Z) is isomor-
phic to Vect(S'). Actually, sv is isomorphic to a semi-direct product of Vect(S') by an
infinite-dimensional rank-two nilpotent Lie algebra. Second, there exists a family of nat-
ural actions of the Schrodinger—Virasoro group SV integrating sv (see [8]) on the space
S = La(t)(—2iM3O; — 9?) + V(t,r)} of Schrédinger operators with time-periodic poten-
tial, which generalizes the well-known action ¢, : 2 +u(t) — 97 +(d(t))?(uod)(t)+ 1S(9)(t)
(where S stands for Schwarzian derivative, see below) of the Virasoro group on Hill opera-
tors. The family of infinitesimal actions of sv on S, denoted by dc,, pp € R, is introduced
in Sec. 1. It is essentially obtained by conjugating Schrodinger operators with the above
functional transformations (0.2).
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The main result of this paper is the following (see Theorem 6.1).

Theorem. There exists a Poisson structure on S'™ = {a(t)(—2iMd; — 02) + V (t,r)} for
which the infinitesimal action do, of sv is Hamiltonian.

The analogue in the case of Hill operators is well-known (see for instance [2]). Namely,
the action of the Virasoro group on the space H of Hill operators is equivalent to its affine
coadjoint action with central charge ¢ = 3, with the identification 97 +u(t) — u(t)dt? € vir},

2

where vit} is the affine hyperplane {(X,c) | X € Vect(S')*}. Hence this action preserves
the canonical KKS (Kirillov—Kostant—Souriau) structure on viti ~ H. As well-known, one

may exhibit a bi-Hamiltonian structure on vit*™ which provides 2an integrable system on H
associated to the Korteweg—De Vries equation.

The above identification does not hold true any more in the case of the Schrédinger
action of SV on the space of Schrodinger operators, which is not equivalent to its coadjoint
action (see [8, Sec. 3.2]). Hence the existence of a Poisson structure for which the action
on Schrodinger operators is Hamiltonian has to be proved in the first place. It turns out
that the action on Schrodinger operators is part of the coadjoint action of a much larger
Lie algebra g on its dual. The Lie algebra g is introduced in Definition 4.3.

The way we went until we came across this Lie algebra g is a bit tortuous.

The first idea (see [8], or [4] for superized versions of this statement) was to see sb as
a subquotient of an algebra DWD of extended pseudodifferential symbols on the line: one

1
easily checks that the assignment L; — —f(£)0¢, Yy — —g(f)ﬁg,/\/lh — —%h({) yields a
1

linear application so — DWUD := R[¢, 7] [ 5,85_5]] which respects the Lie brackets of
both Lie algebras, up to unpleasant terms which are pseudodifferential symbols of negative
order. Define DWD<,. as the subspace of pseudodifferential symbols with order < x. Then
DVWD<; is a Lie subalgebra of DWD, DWD_ 1 is an ideal, and the above assignment defines

an isomorphism sv o~ DUD<;/DVD_ .
- - 2

N

The second idea (sketched in [9]) was to use a non-local transformation © : DWD — WD

(UD being the usual algebra of pseudo-differential symbols) which maps 05% to 0, and £ to
%7‘8{ 1 (see Definition 2.4). The transformation © is formally an integral operator, simply
associated to the heat kernel, which maps the first-order differential operator —2iM0; — O
into —2iM9; — 9?. The operator —2iM3J; — O¢ (which is simply the dz-operator in complex
coordinates) is now easily seen to be invariant under an infinite-dimensional Lie algebra
which generates (as an associative algebra) an algebra isomorphic to DWD. One has thus
defined a natural action of DWD on the space of solutions of the free Schrodinger equation
(—2iMd; — 92)y = 0.

The crucial point now is that (after conjugation with O, i.e. coming back to the
usual (t,7)-coordinates) the action of DWD<; coincides up to pseudodifferential symbols
of negative order with the above realization (0.2) of the generators Ly,Y,,, M, (n,p €
Z,m € % + Z). In other words, loosely speaking, the abstract isomorphism so =~
DYD<q /D\IIDS_ 1 has received a concrete interpretation, and one has somehow reduced
a problem concerning differential operators in two variables t,r into a problem concerning
time-dependent pseudodifferential operators in one space variable, which is a priori much
simpler.
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Integrable systems associated to Poisson structures on the loop algebra £,(WD) over
WD (with the usual Kac-Moody cocycle (X,Y) — §TrX(t)Y (t)dt, where Tr is Adler’s
trace on WD) have been studied by Reiman and Semenov-Tyan-Shanskii [7]. In our case,
computations show that the sv-action on Schrédinger operators is related to the coadjoint

action of £;((UD,)<1), where £,((¥D,)<1) is a central extension of £;((¥D,)<;) which is
unrelated to the Kac-Moody cocycle.

Actually, the above scheme works out perfectly fine only for the restriction of the
sv-action to the nilpotent part of sv. For reasons explained in Secs. 3 and 4, the gener-
ators of Vect(S') — sv play a particular réle. So the action dg, of sv is really obtained

P

as part of the coadjoint action of an extended Lie algebra g := Vect(S!) x £,((¥D,)<1),
where Vect(S!) acts as the time-dependent outer derivations f(t)d;, f € C*°(S') on the

loop algebra £:((¥D,)<1).

It is natural to expect that there should exist some bi-Hamiltonian structure on Si*
allowing to define some unknown integrable system. We hope to answer this question in the
future.

It appears in the course of the computations that the very closely related family of affine
actions do, on SM := {—2iM0; — 9% + V(t,r)} C S", originally defined in [8] (see also
Remark in Sec. 1 below), although seemingly more natural than the linear actions dé,, is not
Hamiltonian for the same Poisson structure. Note however that the action do /4 restricted
to the affine subspace S := {—2iM3; — 92 + Va(t)r? + Vi(t)r + Vo(t)} has been shown
in [10] to be Hamiltonian for a totally different Poisson structure. The two constructions
are unrelated.

Here is an outline of the article. The definitions and results from [8] needed on the
Schrodinger—Virasoro algebra and its action on Schrodinger operators are briefly recalled
in Sec. 1. Section 2 on pseudo-differential operators is mainly introductive, except for the
definition of the non-local transformation ©. The realization of DWD<; as symmetries of
the free Schrodinger equation is explained in Sec. 3. Sections 4 and 5 are devoted to the

construction of the extended Lie algebra £,((¥D,)<1) and its extension by derivations, g.
The action do, of sv on Schrodinger operators is obtained as part of the coadjoint action of g
restricted to a stable submanifold N' C g* defined in Sec. 6, where the main theorem is stated
and proved. Finally, an explicit rewriting in terms of the underlying Poisson formalism is
given in Sec. 7.

Notation. In the sequel, the derivative with respect to r, respectively ¢t will always

be denoted by a prime ('), respectively by a dot, namely, V'(¢,r) := 9,V (t,r) and
. 3

V(t,r) = 0\V(t,r) (except the third-order time derivative ‘fity, for typographical
reasons).

1. Definition of the Action of sv on Schrodinger Operators

We recall in this preliminary section the properties of the Schrodinger—Virasoro algebra sv
proved in [8] that will be needed throughout the article.

We shall denote by Vect(S!) the Lie algebra of 2mr-periodic C*-vector fields. It is gen-
erated by (0p; n € Z), £, = ™9y, with the following Lie brackets: WU, lp) = (n— p)lyyp.
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Setting t = €l € S', one has ¢, = —t"*19;. It may be seen as the Lie algebra of Diff(S1),
which is the group of orientation-preserving smooth diffeomorphisms of the torus.
For any p € R, Diff(S') admits a representation on the space of (—u)-densities

Fu=Af(0)(d0)™", f € C*(R/2rZ)}
defined as the natural action by change of variables,
(67 = (@) fo .

As well-known, the contragredient representation (F,)* is isomorphic to F_;_,; a par-
ticular case of this is the well-known isomorphism Vect(S1)* ~ Ff ~ F_,, so an ele-
ment of the restricted dual Vect(S1)* may be represented as a tensor density f(0)d6?,
fece(sh).

Definition 1.1 (Schrédinger—Virasoro algebra) (see [8, Definition 1.2]). We denote
by sv the Lie algebra with generators L, Y,,, M, (n € Z,m € %—FZ) and following relations
(where n,p € Z,m,m’ € % +Z):

[Ln, Lp] =(n—p)Ln+p
(L, Y] = (g . m) Yoims  [Ln, My] = —pMop;
Yo, Yol = (m — m/) My
Yy, M) = 0, [My, M,] = 0.

tn-‘rl

If f (respectively g,h) is a Laurent series, f = > ., fu , respectively g =

Zne%JrZ gnt"+%,h = > nez hat", then we shall write

ﬁf :anLna yg :Zgnyna MhzzhnMn (11)

Let go = span(Ly, n € Z) and b = span(Y,,, M, m € %—kZ,p € 7). Then go ~ Vect(S!)
and § are Lie subalgebras of sv, and sv ~ gy x b enjoys a semi-direct product structure.
Note also that b is rank-two nilpotent.

The Schrodinger—Virasoro algebra may be exponentiated into a group SV = Gy x H,
where G ~ Diff(S!) and H is a nilpotent Lie group (see [8, Theorem 1.4]).

Definition 1.2 (see [8, Definition 1.3]). Denote by dm, the representation of sv as
differential operators of order one on R? with coordinates t,r defined by

dmu(Lg) = — ()0, — 3 F (O, + JMF(E0? — (1)
dr(Vg) = —g(t)0r +iMg(t)r (1.2)

dm, (M) = iMh(t).

Note that dm,(Ly),dn,(Ym),dr,(M,) coincide with the formulas (0.2) given in the
Introduction.
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The infinitesimal representation dm, of sb may be exponentiated into a representation
7, of the group SV (see [8, Proposition 1.6]). Let us simply write out the exponentiated
action [10]:

. MiM'r2
(mu(d;0)f)(E',7") = (D(2)) e T 507 f(t,r) (1.3)
if € Gy ~ Diff(S!) induces the coordinate change (t,7) — (',') = (¢(t), r/d(t)); and

(a1 (e, B) ) 77) = e HMEOr=500aWH00) £ (1 7) (1.4)

if (o,3) € C®(R/27Z) x C*®°(R/27Z) induces the coordinate change (t,r) — (t,7') =
(t,r — a(t)).

It appears clearly in Eq. (1.3) that the parameter p is a “scaling dimension” or the
weight of a density.

Let us now introduce the manifold S of Schrédinger operators we want to consider,
and also the affine subspace S*.

Definition 1.3 (Schrédinger operators) (see [8, Definition 2.1]). Let S'™ be the
vector space of second order operators on R? defined by

D eS8 D=a(t)(-2iMd - }) + V(t,r), a€C¥(R/2rZ), V€ C™(R/2rZ x R)

and S c S'" the affine subspace of “Schrédinger operators” given by the hyperplane
a=1.

In other words, an element of S*¥ is the sum of the free Schrodinger operator Ag =
—2iM9; — 92 and of a time-periodic potential V.

The action of SV on Schrodinger operators is essentially the conjugate action of my /4
(see following proposition and remark):

Proposition 1.4 (see [8, Propositions 2.5 and 2.6]). (1) Let,: SV — Hom(S'n, S'in)
the representation of the group of SV on the space of Schrodinger operators defined by
the left-and-right action

6u(9): D — muy2(9)Dru(g)™", g€ SV, DesS™.
Then the action of 6, is given by the following formulas

5.(50) - (a(t)(—20M; — O2) + V (¢, 7))
= $(t)a(d(t))(—20M, — 87) + &> ()V (4(t), 1/ 9(1))
ta (21 (M _ i) M% 4 %M2T2S(¢)(t)>
G.(1; (o, B)) - (—2iM; — 02 + V (t,7))

= —2iM3, — O* + V(t,r — a(t)) + a(—2M>ra(t) — M2(28(t) — a(t)i(t)))
(1.5)

where S: ¢ — % - %(%)2 is the Schwarzian derivative.
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(2) Let Ag := —2iMO; — 9% be the free Schridinger operator. The infinitesimal action

do,: X — %‘tzo(éu(exp tX)) of sv writes (recall V' := 0,V):

Ao, (Ly)(a(t)Ag + V(t,r)) = —(af + fa)Ao — fV — 1f'rv’

a<—2i (u 1> f——MQCfitéc )—2fV

Ao, (YVg)(a(t)Ao+ V(t,r)) = —gV' = 2M%agr
de (Mp)(a(t) Ao + V (t, 1)) = —2M?3ah. (1.6)

Remark. Consider instead the left-and-right action
0.(9): D — mu1(9)Dru(g)™t, g€ SV,D e S, (1.7)
The restriction o,|g to the nilpotent subgroup coincides with &,|f, while

3
dou(ﬁf):—fdAo—fV—%frV'+a<—2i(u )Mf——MQflt‘?}j >—fv. (1.8)

Hence o, restricts to an affine action on the affine subspace S* := {-2iM09; — 9? +
V(t,r)} € S corresponding to a constant coefficient a = 1. It appears somehow in the
computations that one obtains as a by-product of a certain coadjoint action the family of
linear representations do,, and not the affine representations do,.

The affine action do, has been studied elsewhere [10] in the case p = i. (Note that
this case is the “optimal one as appears in the formula for do, (L) in Proposition 1.4: in
particular, only for p = 7 is the free Schrodinger equation preserved by the Schrodinger
group, Wthh may be 1nterpreted by saying that the scaling dimension of the Schrodinger
field is 1.) Once restricted to the stable submanifold S<2 = {—2iMO — ?+ Vo (t) + Vi(t)r+
Va(t)r?} of Schrédinger operators with time-dependent quadratic potential, it exhibits a
rich variety of finite-codimensional orbits, whose classification is obtained by generalizing
classical results due to Kirillov on orbits of the space of Hill operators under the Virasoro
group. Also, a parametrization of operators by their stabilizers yields a natural symplectic
structure for which the oy /4-action is Hamiltonian. These ideas do not carry over to the
whole space S, whose Poisson structure will be obtained below by a totally different
method.

2. Algebras of Pseudodifferential Symbols

Definition 2.1 (algebra of formal pseudodifferential symbols). Let VD :=
R[z, 271]] [0., 07 1]] be the associative algebra of Laurent series in z, 9, with defining relation

[0.,2] = 1.

Using the coordinate z = ¢!, § € R/27Z, one may see elements of WD as formal pseu-
dodifferential operators with periodic coefficients.
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The algebra WD comes with a trace, called Adler’s trace, defined in the Fourier coordinate
0 by

N 1 2m
ﬂ( 3 qu)az) =57 | fa@®. (2.1)

q=—o00

Coming back to the coordinate z, this is equivalent to setting

Tr(a(2)0) = 04,1 - % fa(z)dz (2.2)

N
p=—00
For any n < 1, the vector subspace generated by the pseudodifferential operators

D = f,(2)0% + fo_1(2)0271 + .- of degree < n is a Lie subalgebra of WD that we shall
denote by ¥D<,. We shall sometimes write D = O(07) for a pseudodifferential operator
of degree < n. Also, letting OD = UD>q = {>_1_, fx(2)9%, n > 0} (differential operators)
and volt = UD<_; (called: Volterra algebra), we shall denote by (D4, D_) the decom-
position of D € WD along the direct sum OD & volt, and call Dy the differential part
of D.

We shall also need to introduce the following “extended” algebra of formal pseudodif-
ferential symbols.

where ﬁ ¢ is the Cauchy integral giving the residue a_; of the Laurent series apzP.

Definition 2.2 (algebra of extended pseudodifferential symbols). Let DWD be
the extended pseudodifferential algebra generated as an associative algebra by &,¢~! and

1 _1
2 2
2.0, %

Let D € DWD. As in the case of the usual algebra of pseudodifferential symbols, we shall
write D = O(0%) (k € 3Z) for an extended pseudodifferential symbol with degree < x, and
denote by DWD<, the Lie subalgebra span(fj(g)ﬁg;j =K,k — %, k—1,...)if Kk < 1.

The Lie algebra DWD contains two interesting subalgebras for our purposes:
(i) span(fi(€)0e, fo(€); f1, fo € C>(S')) which is isomorphic to Vect(S1) x Fo;

)
(ii) DUD<y := span(fx(§)f; & = 1,5,0,—%,..., fx € C(S")), which is also the Lie

algebra generated by span(f1(€)e, 1 ()9, fo(€); fu, f1, fo € C(SY).

As mentioned in the Introduction, the Schréodinger—Virasoro Lie algebra sv is isomorphic
to a subquotient of DWD:

Lemma 2.3 (sv as a subquotient of D¥D) (see [4]). Let p be the projection of DWD<;
onto D¥D<1/D¥D__1, and j be the linear morphism from so to DWD<; defined by
< <-1 <

Lp— —ﬁf(—%/\/tf)@g, Y, — —g(—2iMf)8§, Mp — IMA(=2iM¢E).  (2.3)

Then the composed morphism po j:s0 — D\Ingl/D\IfDS is a Lie algebra isomorphism.

1
2

Proof. Straightforward computation. (Formulas look simpler with the normalization
—2iM =1.) O



A Hamiltonian Action of the Schridinger—Virasoro Algebra 265

It turns out that a certain non-local transformation gives an isomorphism between
DWUD and ¥D. For the sake of the reader, we shall in the sequel add the name of the
variable as an index when speaking of algebras of (extended or not) pseudodifferential
symbols.

Definition 2.4 (non-local transformation ©). Let ©: DUD, — WD, be the associative
algebra isomorphism defined by

o=

0F -0, 0

3 2 — ot

(2.4)
Lo -1 -1
£—>§7“0r , & =207,
1 1
The inverse morphism 07! : 9, — 852 ,r = 25852 is easily seen to be an algebra iso-
morphism because the defining relation [9,,r] = 1 is preserved by ©~!. It may be seen

o—r2/4E

formally as the integral transformation ¥(r) — ¥(€) = fj;o 7 (r) dr (one verifies

straightforwardly for instance that rafw goes to 25651; and that 921 goes to Ggﬁ). In other
words, assuming ¢ € L'(R), one has ¢ () = (Pe)(0) (€ > 0) where (Pe, & > 0) is the usual
heat semi-group. Of course, this does not make sense at all for & < 0.

Remark. Denote by &, = [r0;,.] the Euler operator. Let WDq), respectively, WD(y be the
vector spaces generated by the operators D € WD such that &.(D) = nD where n is even,
respectively, odd. Then WD g is an (associative) subalgebra of WD, and one has

[(¥D o), YD(oy] = ¥D(), [¥D(0), ¥D(1y] = ¥D(1y, [¥D(1), ¥D ()] = WD ).

Now, the inverse image of D € WD, by ©~! belongs to ¥D; C DWD; if and only if
D e (\IJDT)(O)

Lemma 2.5 (pull-back of Adler’s trace). The pull-back by © of Adler’s trace on VD,
yields a trace on DVD defined by
1

Trpwp, (a(§)0]) = Trup, (©(a(§)d])) = 2041 - %in a(§)dg. (2.5)
Proof. Note first that the Lie bracket of WD,., respectively, DWD; is graded with respect
to the adjoint action of the Euler operator &, := [r0,,.], respectively, & := [£0,.], and
that © o & = %ET 0 0. Now Tryp, D = 0 if D € ¥D, is not homogeneous of degree 0 with
respect to &y, hence the same is true for Trpyp,. Consider D := /9] = O~ Y ((Ara- 1)o7y
then Trpyp, (D) = 0 if j > 0 because (as one checks easily by an explicit computation)
©(D) € OD; and Trpyp, (D) = 0 if j < —2 because O(D) = O(9;?). O

r

In order to obtain time-dependent equations, one needs to add an extra dependence on
a formal parameter t of all the algebras we introduce. One obtains in this way loop algebras,
whose formal definition is as follows:

Definition 2.6 (loop algebras). Let g be a Lie algebra. Then the loop algebra over g is
the Lie algebra

g = g[t,t‘l]]. (2.6)
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Elements of £;g may also be considered as Laurent series Zngoo "X, (X, € g), or
simply as functions ¢t — X (t), where X (t) € g.

The transformation © yields immediately (by lacing with respect to the time-variable t)
an algebra isomorphism

£,0: £(DUD;) — £(ID,), D — (t — O(D(1))). (2.7)

3. Time-Shift Transformation and Symmetries of the Free
Schrodinger Equation

In order to define extended symmetries of the Schrodinger equation, one must first introduce
the following time-shift transformation.

Definition 3.1 (time-shift transformation 73). Let 7; : D¥D; — £,(DVD;) be the
linear transformation defined by

T(F(€)0F) = (Tf (€)% (3.1)
where:
TiP(¢) = P <mt n 5) (3.2)

for polynomials P, and

Tieh = (Lt ; g)_k - (Lt> B BV LSS Rk Py VIE)

2M 2M = 4!
(3.3)
In other words, for any Laurent series f € C[¢,£71]],
e =31 () & (3.4)
2M ) E!
k=0

Then 7; is an injective Lie algebra homomorphism, with left inverse &; given by

Si9(t.9) = 5= P o(-2MEDT (35)
t(g\t, - % g ) t . .

Proof. Straightforward. O

Now comes an essential remark (see Introduction) which we shall first explain in an
informal way. The free Schrédinger equation Agy = (—2iM9; — 9%)yp = 0 reads in the
“coordinates” (t,¢)

(—2iM, — D) (t,€) = 0. (3.6)

In the complex coordinates z = t — 2IM¢E, zZ = t + 21M¢, one simply gets (up to a constant)
the O-operator, whose algebra of Lie symmetries is span(f(t — 2iM&)0g, g(t — 2iME)0;)
for arbitrary functions f,g. An easy but crucial consequence of these considerations is
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the following:
Definition 3.2 (Xj(“i)—generators and ©;-homomorphism). Let, for f € C[¢,£7]] and
j€ iz,

X0 = 0,(~f(~2ME))) € £,(uD,) 40

where O; is the Lie algebra homomorphism obtained by composition of the time-laced
non-local transformation £;(0) and the time-shift 7z,

O := £,(0) 0 7T;. (3.8)
In other words,
XY = £,(0)(—f(t — 2AMED]) = —f(t — iMro; )oY (3.9)
(at least if f is a polynomial). The homomorphism ©; will play a key role in the sequel.

Lemma 3.3 (invariance of the Schrédinger equation).

i e free Schrodinger equation Ag(t,r) = 0 is invariant under the Lie algebra o
i) Th Schroding tion Ao(t 0 s i jant under the Lie algeb
transformations generated by X(z),i € %Z.

(ii) Denote by 1, f, % the time-derivatives of f of order 1,2,3, then

X = —f(0)02 +iMf(t)ro, + l/Vl?f (t)r

_ @w Ftyr+ M3let§ ) oL + 0(072); (3.10)

) M?
X = —g()0, +1Mg(Or + (00 + 09 ); (3.11)
X\ = —h(t)y + oY), (3.12)

In particular, denoting by D4 the differential part of a pseudo-differential operator D,
i.e. its projection onto OD, the operators (Xg(l/Q))+, (X}EO))Jr coincide (see Definition 1.2)
with dmo(Yy), respectively, dmo(My,), while

2iMdmo(Ls) = (X}))4 — F(t)(2M8; — 0?). (3.13)
Proof. (i) One has

(—21IME)k
k!

(2(0)) (X)) = Ti(€ — f(~2iME) =3 " <i )

=0

L0l, (3.14)

which is easily seen by a straightforward computation to commute with the Schrédinger
operator (£,(0)) " (—2iM; —d?) = —2i M, — O, hence preserves the free Schrodinger
equation. Note that, when f is a polynomial, (£t(®))_1(/¥}j)) =—f(t— 21M§)8§ obvi-
ously commutes with —2iM0; — 0, see Eq. (3.6) and following lines.

(ii) Straightforward computations. O
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In other words (up to constant multiplicative factors), the projection (X }k))Jr of X }k),

k=1, %,0 onto OD forms a Lie algebra which coincides with the realization dmy of the
Schrédinger—Virasoro algebra, apart from the fact that —2iM9; is substituted by 9?2 in the
)

. This discrepancy is not too alarming since —2iMd; = 02 on the kernel

)

formula for X }1

of the free Schrédinger operator. As we shall see below, one may alter the X}l in order to

make them “begin with” — f(¢)0, as expected, but then the X }1) appear to have a specific
algebraic status.

4. From Central Cocycles of (¥D,)<; to the Kac-Moody Type Algebra g

The above symmetry generators of the free Schrédinger equation, X }i),i > 1 may be seen
as elements of £;(WD,). The original idea (following the scheme for Hill operators recalled
in the Introduction) was to try and embed the space of Schrédinger operators S into
the dual of £;(VD,) and realize the action d&,, of Proposition 1.4 as part of the coadjoint
representation of an appropriate central extension of L£(WVD,.).

Unfortunately this scheme is a little too simple: it allows to retrieve only the action of the
Y- and M-generators, as could have been expected from the remarks at the end of Sec. 3. It
turns out that the X}z),i < 3 may be seen as elements of £,((¥D,)<1), while the realization
dmo(Ly) (see Definition 1.2) of the generators in Vect(S') C sv involve outer derivations
—f(t)0y, f € C>(S1) of this looped algebra. Then the above scheme works correctly, pro-
vided one chooses the right central extension of £,((VD,)<1). As explained below, there are
many possible families of central extensions, and the correct one is obtained by “looping”
a cocycle ¢ € H2((UD,)<1,R) which does not extend to the whole Lie algebra WD,..

In this section and the following ones, we shall formally assume the coordinate r = e
to be on the circle St If f(r) = > okez frr®, the Cauchy integral %fsl f(r)dr selects
the residue f_i. Alternatively, we shall sometimes use the angle coordinate 6 in the next
paragraph, so f(r) = > ..z f1e* may be seen as a 2m-periodic function.

0

4.1. Central cocycles of (¥D;)<;

We shall (almost) determine H?(WD<1,R), using its natural semi-direct product structure
UD<y = Vect(Sh) x WD<g. We choose to work with periodic functions f = f(#) in the
paragraph.

One has (by using the Hochschild—Serre spectral sequence, see for instance [1]):

H*(UD<1,R) = H?(Vect(S'),R) @ H'(Vect(S'), H' (¥D<y,R)) @ Ianect(Sl)HQ(qugo, R).
(4.1)

The one-dimensional space H?(Vect(S!),R) is generated by the Virasoro cocycle, which
we shall denote by cg.

For the second piece, elementary computations give [¥D<g, WD<g] = WD<_s. So
H{(VD<p,R) is isomorphic to WD<o/WD<_o, i.e. to the space of symbols of type fy +
f-107%. In terms of density modules, one has Hy(¥D<o) = Fo @ F_1. So H(¥D<(,R) =
(Fo®F_1)* = F_1®F; by the standard duality (see Sec. 1) Fi ~ F_1_,,, and H' (Vect(S"),
HY(UD<y,R)) = HY(Vect(Sh), F_1 & Fy) = H'(Vect(S1), F_1) & H(Vect(S1), Fy). From
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the results of Fuks [1], one knows that H'(Vect(S'), F}) is one-dimensional, generated by
fO9 — f"df, and H' (Vect(S'), Fo) is two-dimensional, generated by f0y — f and f9p — f'.
So we have proved that H'(Vect(S!), H'(¥D<g,R)) — H?(¥D<q,R) is three-dimensional,
with generators c¢1,co and c3 as follows:

- 1
1 <939, Z fkﬁg) = %/g"fodG (4.2)
k=—o00
1
ca (939, > ﬁﬁé“) = %/gf—lde (4.3)

k=—o00

! 1
cs <g89, > fkag> = / g f_1db. (4.4)
k=—00

Let us finally consider the third piece Invyeq(g1)H 2(WD<,R). We shall once more make
use of a decomposition into a semi-direct product: setting volt = WD<_;, one has VD<=
Fo X volt, where Fy is considered as an abelian Lie algebra, acting non-trivially on volt.
We do not know how to compute the cohomology of volt, because of its “pronilpotent”
structure, but we shall make the following:

Conjecture.

Inv .z, H(volt, R) = 0. (4.5)

We shall now work out the computations modulo this conjecture.

One first gets H?*(WD<y,R) =  H?*(F,R) & HY(Fy, H'(volt,R)). Then
InVyeer(s1) H?(¥D<0, R) = InVyeer(s1) H?(Fo, R) @ Invyeer(s1yH' (Fo, H' (volt, R)). Since Fo
is abelian, one has H?(Fo,R) = A*(Fg), and Invyees1)(A*(Fg)) < H?(¥D<1,R) is one-
dimensional, generated by the well-known cocycle

alf.0) = o [F = Foi. (4.6)

A direct computation then shows that [volt, volt] = UD<_3, so H;(volt, R) = F_; & F_o
and H'(volt,R) = Fy @ F; as Vect(S')-module. Then H'(Fy, H!(volt,R)) is easily deter-
mined by direct computation, as well as Invyeeq(s)H' (Fo, H' (volt,R)) — H?*(¥D<1,R);
the latter is one-dimensional, generated by the following cocycle:

! 1
cs (g, > fk0§> =5 / gf-1do. (4.7)

k=—00
Let us summarize our results in the following:

Proposition 4.1. Assuming conjecture (4.5) holds true, the space H*(¥D<1,R) is siz-
dimensional, generated by the cocycles ¢;, 1 =10,...,5, defined above.

Remarks. (1) If conjecture (4.5) turned out to be false, it could only add some supple-
mentary generators; in any case, we have proved that H 2(\IID§1,R) is at least six-
dimensional.
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(2) The natural inclusion i : ¥D<; — WD induces i* : H*(WD,R) — H?*(¥D<1,R); one
may then determine the image by i* of the two generators of H?(¥D, R) determined by
Khesin and Kravchenko [5]. Set c¢xx, (D1, D2) = Tr[log 0, D1]|Dy and cxk, (D1, D2) =
Tr[log 0, D1]D2. Then i*cx i, = c2 and i*cx g, = co + €1 + 4.

The right cocycle for our purposes turns out to be ¢3: coming back to the radial coor-
dinate r, one gets a centrally extended Lie algebra of pseudodifferential symbols WD<; as
follows.

Definition 4.2. Let /\17531 be the central extension of WD<; associated with the cocycle
ces (¢ € R), where c3 : A2UD< — C verifies

al10r,907") = a0 90) = 51 f Fade (4.9

(all other relations being trivial).

4.2. Introducing the Kac—Moody type Lie algebra g

Let us introduce now the looped algebra £,((UD,)<;) in order to allow for time-

dependence. An element of £;((¥D,)<1) is a pair (D(t),a(t)) where a € C[t,t71]] and
D(t) € £:((¥D,)<1). By a slight abuse of notation, we shall write c3(D1,D2) (D1, D2 €
£:((UD,)<1)) for the function t — c3(D1(t), D2(t)), so now c¢3 has to be seen as a function-
valued central cocycle of £;((¥D,)<1). In other words, we consider the looped version of
the exact sequence

0—R— (\IIDT‘)SI — (‘I/D'r)gl — 0, (49)

namely,

0 — R[t,t7]] — £.((¥D,)<1) — £:((¥D,)<;) — 0. (4.10)

As mentioned in the Introduction, £;((¥D,)<i) is naturally equipped with the

—_~—

Kac-Moody cocycle £((WD;)<1) x £:((¥Dr)<1) — C,((D1(t), Mi(1)), (D2(t), A2(t))) —
TrD;(t)D2(t). However this further central extension is irrelevant here. On the other hand,
we shall need to incorporate into our scheme time derivations f(t)0; (which are outer Lie

derivations of £;((¥D,)<1), as is the case of any looped algebra), obtaining thus a Lie
algebra g which is the main object of this article.

Definition 4.3 (Kac—Moody type Lie algebra g). Let g ~ Vect(S'); x £,((¥D,)<1)

be the Kac-Moody type Lie algebra obtained from £;((¥D,)<1) by including the outer Lie
derivations

F(£), - (D(t),a(t)) = (F(£)D(1), f(t)éu(t)). (4.11)

5. Construction of the Embedding I of (D¥D¢)<; into g

This section, as explained in the introduction to Sec. 4, is devoted to the construction of
an explicit embedding, denoted by I, of the abstract algebra of extended pseudodifferential
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symbols (DWD¢)<; into g. Loosely speaking, the image I((DWVD¢)<1) is made up of the

X}j),j < 1 and the X}l) with 02 substituted by —2iMO; (see end of Sec. 3). More precisely,
I’ maps an operator D into its image by ©; (see Definition 3.2), namely, O;(D),
(D¥Dg)

viewed as an element of the centrally extended Lie algebra £;((VD,)<1). On the other hand,
the operator of degree one — f(—2iM¢&)0d¢ will not be mapped to ©4(— f(—2iME)0¢) = X}l)

—_~—

(which is of degree 2 in 9,.), but to some element in the product g = Vect(S1); x £,((¥D,)<1)
with both components non-zero, as described in the following

Theorem 5.1 (homomorphism I). Let I: (DWD¢)<; ~ Vect(S!)e x (D\IIDﬁ)Sé g =
Vect(S1); x St((\Ijl_)\r)/gl) be the mapping defined by
1((0, D)) = (0,04(D)); (5.1)

1((~gpf-2m00c0) ) = (=001 5741 5:2)

where
(X)) <1 = (O4(— F(—=2ME)de)) <1

g Lo ogin 2 Lo i s df 3\ oo
lef(t)T0T+§M ft)rs — (5/\/1 f(t)'r+6/\/l pretd >8T +--- (5.3)

(see Lemma 3.3) is X}l) shunted of its term of order 0%, i.e. the projection of X}l) onto

Li((¥Dr)<1).
Then I is a Lie algebra homomorphism.

Proof. First of all, the cocycle c3 (see Definition 4.2) vanishes on the product of two
operators of the form ﬁ(/“(}l))gl + ©4(D) belonging to the image of (DWD¢)<; by I, see
Egs. (5.1) and (5.2), because these involve only non-negative powers of r. Hence I may
be seen as a map (I, say) with values in Vect(S1); x £,((¥D,)<1) (discarding the central
extension). Now the Lie bracket [(—f1(t)d;, W1), (= fa(t)0;, Wa)] in Vect(S1); x £,((¥D,)<1)
coincides with the usual Lie bracket of the Lie algebra WD, , of pseudo-differential symbols
in two variables, ¢ and r, hence I((DWD¢)<1) may be seen as sitting in WD, ,. Then

- i ) i i

(- g FBME ) = —1 00+ () = (e + ), (54)
where E’f = —f(t)(—2iM0O; — 0?) is an independent copy of Vect(S!), by which we
mean that [L%, Li] = Ef{fg} = LYy, ;, and [E’f,X}i)] = 0 for all 7. This is immediate
in the “coordinates” (t,£) since (St((%))_l(ﬁ}) = —f(t)(=2iM0O; — J¢) commutes with
£,(0)" (X Dy = f(t—2iME)DE as shown in Lemma 3.3. Hence I is a Lie algebra homo-

! 3

morphism. O

As we shall see in the next two sections, the coadjoint representation of the semi-direct
product g is the key to define a Poisson structure on S" for which the action of SV is
Hamiltonian.
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6. The Action of sv on Schrédinger Operators as a Coadjoint Action

Here and in the sequel, an element of g = Vect(S1); x £,((¥D,)<;) will be denoted by
(w(t)0s, (W (t,r),a(t))) (see Sec. 4.2) or simply by the triplet (w(t)ds; W, a(t)). Since an
element of h = £,((UD,)<1) writes (W (t), a(t)) with W (t) € (VD,)<; (for every fixed t), it
is natural (using Adler’s trace) to represent an element of the restricted dual g* as a triplet
(v(t)dt?; Vdt,a(t)dt) with v € C®(S1),V € £,((¥D,)>_3) and a € C*(S1). The coupling
between g and its dual g* writes then

((v(t)dt?; Vdt, a(t)dt), (w(t)oy; W, a(t))) g xg
1
= 5 Plw(t) + Trep, (VO)W(?)) + a(t)a(t)]dt. (6.1)
This section is devoted to the proof of the main Theorem announced in the Introduction,
which we may now state precisely:

Theorem 6.1. Let (/\1757«)31 be the central extension of (YD, )<1 associated with the cocycle

P

ces (see Definition 4.2) with ¢ = 2; = £,((¥YD,)<1) the corresponding looped algebra, and

P

g = Vect(S1); x £,((¥D,)<1) the corresponding Kac—Moody type extension by outer deriva-
tions (see Definition 4.3). Let also N be the affine subspace Vect(S1); x {([V_a(t,r)0,? +
Vo(t)dP)dt, a(t)dt)} C g* (note that Vi is assumed to be a function of t only). Then:

(i) the coadjoint action ady, restricted to the image I((DWUD¢)<1), preserves N, and quo-
tients out into an action of sv;

(ii) decompose dao(X)(a(t)Ao +V(t, 7)), X € sv into d5g¥ (X)(a) Ao + dat” (X)(a, V) (free
Schradinger operator depending only on a, plus a potential depending on (a,V')). Then
it holds

ady(Lg) - (v(t)de: [Voa(t, )0 + Vo(t)OR)dt, a(t)dt)

= ([—%f <f rV_gdr) —(fo+ 2f'v)} dt?;

457 (E5)(a V-a)O + (¥ = ¥ + a0l 5 (L))t )5 (62
ad(Vy) - (v(t)dt?; [Voa(t, 1)0; 2 + Vo(t)OP)dt, a(t)dt)
- (—g < 7{ V_er> a2 (A2 (9, a, V_g))O,Tth,()) : (6.3)
ad}(Mp) - (v(t)dt*; [V_o(t,7)0;% + Vo(t)OP]dt, a(t)dt)
= (0; (d&F" (Mp)(a, V_))d; 2dt,0). (6.4)

In other words (disregarding the 0°-component in b* and the dt?-component in
Vect(S')*) the restriction of the coadjoint action of ady|sy to N coincides with the
infinitesimal action déo of sv on S'™ = {a(t)(—2iM3; — 0?) + V_o(t,7)}.

Remark. The term a f@? in Eq. (6.2) shows that the subspace of N with vanishing coor-
dinate V) = 0 is not stable by the action of sv. The Vj-component is actually important
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since the terms proportional to M or M? in the action dég(sv), see Proposition 1.4 (which
are affine terms for the affine representation dog) will be obtained in the next section as
the image by the Hamiltonian operator of functionals of V.

Proof of the Theorem. Recall sv ~ DWD<;/DV¥D_ 1 (see Lemma 2.3). The first
= =73

important remark is that the coadjoint action ady of I((DWD¢)<;) on elements (v(t)dt?;
(V_o(t, )02 + Vo(t)d]dt, a(t)dt) € N quotients out into an action of the Schrédinger—
Virasoro group. Namely, let —x < —3% and (w; W, a(t)) = (w(t)0; > Wj (t,r)d, a(t)) €
g, then

<ad7(f(_2m§)agn)(v(t)dtQ; [Voa(t,7)0% + Vo (1), 1dt, a(t)dt), (w(t)e; W, (1)) g+ xg

= —( ([Voa(t, )0, + Vo()d)dt, a(t)dt),

F®)O72 + 00,27,y Wy(t, 1)l

J<1 b/ b xp

+ ([Voalt, )02 + Vo(6)A0)dt, w(t) f (1), + 00721
- (6.5)

since the Lie bracket in g produces (i) no term along the central charge (namely, the
coefficient of ;! is constant in r, see Definition 4.2); (ii) if —x = —3 only, a term of order
—1 coming from —[f(t)0;Y, W19,] + w(t) f(t)0 = (fF()W] + w(t)f())d" + --- , whose
coupling with the potential yields [ [ Vo(t)(f(t)W] +w(t)f(t))dtdr = 0 (total derivative in
r); (iii) a pseudodifferential operator of degree < —2 which does not couple to the potential.

Denote by p o j the isomorphism from sv to D\Ingl/D\IIDS_%, as in Lemma 2.3. With
a slight abuse of notation, we shall write ady instead of ad;oj( x) for X € sv and consider
ad® opoj as a “coadjoint action” of sv.

Let us now study successively the “coadjoint action” of the Y, M and L generators of
sv on elements (v(t)dt?; [V_o(t,r)0;2 + Vo (t)d0)dt, a(t)dt) € g*.

Recall from the Introduction that the derivative with respect to r, respectively, ¢ is
denoted by ’, respectively, by a dot, namely, V'(t,r) := 9,V (t,r) and V(t,r) := 8,V (t,7).

Action of the Y -generators
Let W =3, W;(t,r)0) € £((¥D,)<1) and a(t) € C*(S') as before. A computation
gives (see Eq. (3.11))

(a3, (0(t)de*; [V_s(t,7)0; 2 + Vo(£)OPJdt, a(t)dt), (w(t)dy: W, a(t))) g xg

- <([V_2(t, )0, % + Vo(t))dt, a(t)dt),

2

[—g(t)&« +iMg(t)r + M

5= 9(tr*0 1 +0(0.7),

3
Wi(t, )0, + Wo(t,r)0° + W_1(t,r)d 1 + 0(8;2)] —w <—gar + —Mr28_1)>
b b* xb
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_ <(v_2(t, r)0; 2t a(t)dt), <—(9W1’ - u0)or, M 5 7{ TWldr) >

MQ /
+ {vowtar ooy + (Ao
- / VoW — gu)didr — M - / / aiir W dtdr. 66)

The coupling of Vy with W vanishes, as may be seen in greater generality as follows
(this will be helpful later when looking at the action of the L-generators): the term of order
—1 comes from a bracket of the type [A(t,7)0,, B(t,r)0; '] = (A'B+ AB")0; ' +---; this is
a total derivative in 7, hence (since V = 0 by hypothesis) (Vy(t)d%dt, [AD,, BO; 1)) =

Generally speaking (by definition of the duality given by Adler’s trace), the terms
in the above expression that depend on W;, ¢« = 1,0,... give the projection of
ady, (v(t)dt?; Vdt,a(t)dt) on the component 9, while the term depending on w gives
the projection on the Vect(S!)-component.

Hence altogether one has proved:

ady, ((v(t)dt?; [Voo(t,7)07 % + Vo(t)37]dt, a(t)dt))

= <_g < }[ V_er> dt?; —(g(t)V'y + CMQajj(t)r)G,Tth,()) (6.7)

which gives the expected result for ¢ = 2.

Action of the M -generators
It may be deduced from that of the Y-generators since the Lie brackets of the
Y -generators generate all M-generators.

Action of the Virasoro part
One computes (see Eq. (3.10) or (5.3)):

(adz, (v(t)dt?; [Voa(t, )0, + Vo(t)aR]dt, a(t)dt), (w(t)Dy; W, a(t))) g xg
= —(adyeq g1y S (8)Dr - v(1)dE?, W ()t )veen(s1)+ x Veet(s1)

- <([V—2(t, )% + Vo(t)oR]dt, a(t)dt), — ()0, - (W (t, )0,
+ Wo(t,r) + W_i(t, 7)ot + 0(972))

2 . 2 .
+ g [MIOr0,+ 2o - (- For Lt

2M 5 >a + 0072,

Wi (t,7)0, + Wo(t,r) + W_1(t, 7)ot + 0(6;2)} >
b/ b xp
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+/dtTr(v_2(t,r)8;2 + Vo(t)) - w(t)
1. PBF MY ) L
| <—§f7"8r * ( M 2w > o >
= /(f@ + 2fv)wdt + <(V_2(t,r)a;2dt,a(t)dt),
) 1.
(e + o0wi - wn) .

— fa+ %_ <—1/\/lf 7{W_1d?"

2im 2M
3
+—f fwld + M?’df r2W1dr>>>
+ (Vo(1)ddt, f(t)W_10; Y pe s — %// wfrV_sdtdr. (6.8)

A term of the form (Vo (t)0%dt, [AD,, B, 1]) (which vanishes after integration as above,
see computations for the action of the Y-generators) has been left out. The term depending
on « gives the projection on the a-coordinate.

Hence:

ady, (0(t)dt% [Vo(t, 1)0; 2 + Vo()O]dt, a(t)dt))

_ <[_%f' (}[rv_gdr> - (f®+2fv)] dt?;

[(—f(t)v_Q - %f(t)(rvi2 +4V_) + ca(t) <¥f(t) _ MTQT2§T§>> o=

+ (=% - o + 5af) a?] dt, ~(af + fc'z)dt> (6.9)
which gives the expected result for ¢ = 2. U

Remark. By modifiying as follows the relation defining the non-local transformation ©
(see Definition 2.4)

1 1
0 =0, £— 51“8;1 +v0; 2 (6.10)

for an arbitrary real parameter v, one may obtain all the actions in the family do,,u € R
(as detailed but straightforward computations show). Note that

1 o 1 1
<§r8;1> = =507 r = =50 4+ 50,7
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so the operators %T@T_ U+ v972,v € R correspond to various (and mainly harmless)
symmetrizations of %r@; L

7. Connection with the Poisson Formalism

The previous results suggest by the Kirillov-Kostant—Souriau formalism that dog(X), X €
5b is a Hamiltonian vector field, image of some function F'x by the Hamiltonian operator.
It is the purpose of this section to write down properly the Hamiltonian operator H and to
spell out for every X € sv a function Fx such that Hp, = X.

Identify bh* as a subspace of L;((UD,)>_2) @& F_1 through the pairing given by
Adler’s trace as in the first lines of Sec. 6, so that an element of h* writes generi-
cally (3, o VkOF - dt,a(t)dt). Consider similarly to [2] the space Fj,. of local func-
tionals on L¢((¥D,)>—2), Fioe = Floc/span( % Foc, LFoc), with Fe = CP(S! x §') @
C[(agaivk)kz_g,i,jzo]. An element F of Fj,. defines by integration a C-valued function
[ F(t,r)dtdr on L;((¥D,)>_2). The classical Euler-Lagrange variational formula yields
the variational derivative

SF = S OF
S, — —]. H_Jalf)ﬂ — . 71
Vi 2_ (-1 (aw;aww) (7.1)

i,j=0

Local vector fields are then formally derivations of .7:"10C commuting with % and %, SO
that they define linear morphisms X : Fo. — Foe. It is also possible to represent X
more geometrically as a vector field on L:((¥D,)>_2); since £4((UD,)>_2) is linear, X is
a mapping X : L¢((UD,)>_2) — L4((VD,)>_2) with some additional requirements due
to locality. Set X(D) = 3,~_, Ax(D)3*, then (as a derivation of Fi.e) it holds X =
D okeZ Di j>0 didlay, - 8/0(0!02V},). Now the differential dF of a function F € Fio. verifies
by definition dF(X) = X(F) =3, ak%. Choose D € L4((¥D,)>_2): then the differential
of F at D should be a linear evaluation (dpF, X (D)) = [TrdpF(t)X(D)(t)dt, hence
(using once again the pairing given by Adler’s trace) one has the following representation:
dpF =3, a_k_l(?TFk(D) € h. Formally, one may simply write dF' =, 8_]“_1(?7]2.

Similar considerations apply to local functionals on Vect(S')* or F_1, with the difference
that the variable r is absent. We refer once again to [2] for this very classical case. Since
the generic element of Vect(S!), respectively Vect(S!)*, is denoted by w(t)d;, respectively
v(t)dt?, the differential of a functional F = F(v) will be denoted by dF = %—f@t, while a
vector field writes X (v) = Ax_,(v)dt?. Similarly, the differential of a functional F' = F(a)
will be denoted by dF = %—5, while a vector field writes X (a) = Ax_,(a)dt. Note that
(considering e.g. the case of Vect(S!)*) such a functional may be seen as a particular case
of a “mixed-type local functional” ®(v, (Vi)r>_2) by setting ®(v, (Vi)k>—2) = r 1F(v)
(integrating with respect to r yields ¢ r~ldr = 1), but we shall not need such mixed-type
functionals. We shall restrict to (i) local functionals on £;((¥D,)>_2), (ii) local functionals
on Vect(S1)* and (iii) local functionals on F_1, which are sufficient for our purposes.

It is now possible to write down explicitly the Poisson bracket of local functionals of the
above three types on g*; we shall restrict to the affine subspace

Vect (S1)* & {([V_a(t, )0, + Vo(t,r)dV)dt, a(t)dt)} C g*
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(note that we allow a dependence on r of the potential Vj for the time being). Denote by
V = (V_2,Vp) the element V_o(t,7)9,2 + Vo (t,7)0°. Consider first local functionals F, G on
L+((YD,)>_2). By the Kirillov-Kostant-Souriau construction,

{//thdr / Gdtdr} (t)dt?; [V_o(t, 1), + Vi (t, r)d]dt, a(t)dt))
= (([V_20;% + Voldt, a(t)dt), [dv F, dv Gly) - xy

= /{TT((V—ZOT_Q +Vo).ldv F,dvGle,(wp,)<,)) + ces(dv F,dy G)tdt.  (7.2)

Recall from the previous considerations that dF = 9,2 W + W -+ 0F ! 3‘2 + ---. The

operatlon of taking the trace leaves out only the bracket [0, 5€,F Oy 5€,G | which couples to
" 20,72, and the mixed brackets [0, 5€,F , O lﬁ] and [0y af/GQ oy 15—F] which couple to Vjp,
while the central extension couples only the coefficients of 9, and 9, . All together one

obtains
{//thdr //Gdtdr} (£)de%s (Voo (t,1)0; 2 + Vi (t, )R dt, a(t)dt))
-l 75 - GE) 7l e
/ / Vo [?50 5(15/F2 5(‘S/G2 2‘2 ] dt dr
+C// [(51/()),' <5(1S/C_:2> " <5(1S/i> (%)] a(t)dt dr. (7.3)

Assume now that F is a functional on Vect(S1)* and G a functional on £;((¥D,)>_);
then

{/th / Gdtdr} (t)dt?; [V_o(t, 1), > + Vi (t, r)d]dt, a(t)dt))

= (V27 + Volat,a(tyat), °F

// < <55VG2> +V0% <§%>>dtdr (7.4)

Similarly, if F' is a functional on Vect(S1)* and G a function on F_1, then

O - dVG>h*xh

{/th /Gdt} (t)dt?; [V_o(t,7)072 + Vo(t,7)d0)dt, a(t)dt))
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Finally, if both F' and G are functionals on Vect(S1)*, then (as is classical)

{/th,/Gdt} ((v(t)dt?; [V_o(t,r)0; 2 + Vo (t,r)d0)dt, a(t)dt))

JeoltEA () ()

Consider now the Hamiltonian operator F' — Hp. Set Hp = Ar ,dt* + Zk2—2 ALOF +
Az _,dt, then

dG(Hp)(v(t)dt?; Vdt,a(t)dt) = Hr(G)(v(t)dt?*; Vdt, a(t)dt)
= {F,G}(v(t)dt?; Vdt, a(t)dt) (7.7)

writes [[ D05 o Ak%(V) dtdr if G is a functlonal on L((¥D,)>_2), [Ar_ % (v) dt if G
is a functional on Vect(S1)*, and [ Ar , ( )dt if G if a functional on F_;, hence

S
=

t)dt?; [V_o(t,r)0; + Vo(t,r)dP)dt, a(t)dt)
d (6F d (oF 2
= (- for ey (5v75) Vo (55 )
OF 1\’ 6F 6F 6F
92V -V’ - -
( = <5v_2> Voagy, eald) <5vo> V“é%) %"

SF ', 6F \ .
- (ca(t) 5V_2) -V 6V_2> ar,o> (7.8)

if F'is a functional on £((VD,)>_2), and

Hp(v(t)dt?; [Voo(t,r)0;2 + Vo (t,r)3°)dt, a(t)dt)

B d (0F OF] 5 d OF\ . o
= ([‘2% <5—> ‘”av} W= (“%) o
d OF\ o d [ OF
(Y () ) -
if I is a functional on Vect(S1)*.

Let F' be a functional on £;((VD,)>_2) depending only on V; and V_y; note that Hp
preserves the affine subspace A if and only if

Jj+1

F = Fy(Vp) + Z ANIV_y - Zr Fiie(Vo), (7.10)
1,7=0

where Fy is any functional depending on Vg and ¢,7, and (f;jx)i  r any set of functionals
depending on Vj and only on t. In particular, such a functional is affine in V5 and its
derivatives, and the coefficient of V_o affine in r.
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Lemma 7.1. The coadjoint action ady(X) of X = Ly, respectively Vg, respectively My, € so
on N may be identified with the Hamiltonian vector field Hp, with

Fr, (v, (Vi)kez) /fvdtJr //er 2dtdr+// <1—rf'—ﬂ2 s f>%dtdr;

(7.11)
MQ
By, (Vi)kez) = //QV—2 dtdr — —- //97“2‘/0 dtdr; (7.12)
Fa, (Vihez) = M? // rhVo dt dr. (7.13)
Furthermore, {Fx, Fy} = Fixy) if X,Y € sv, except for the Poisson brackets
(P, Fa) = M [ [ gVatar (7.14)
{Fe; s Fy,} = Fie, v, — //ngg dt dr. (7.15)

The additional terms on the right are functionals of the form [[ fVydtdr which vanish on
N (and whose Hamiltonian acts of course trivially on N).

Proof. Straightforward computations. O
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