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Recent studies have shown that the nonlinear jump-diffusion models give results which are in
agreement with financial data. Here we provide linearization criteria together with transformations
which linearize the nonlinear jump-diffusion models with compound Poisson processes. Furthermore,
we introduce the stochastic integrating factor to solve the linear jump-diffusion equations. Extended
Cox–Ingersoll–Ross, Brennan–Schwartz and Epstein models are shown to be linearizable and their
explicit solutions are presented.
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1. Introduction

Spiky behavior observed in financial data has been accounted for jumps [8, 17]. Recent
financial studies [1, 2, 8, 9, 11, 17, 18] have shown that the jumps play a prominent role
in asset price and the interest rates. Financial models in these studies are given by jump-
diffusion equations with compound Poisson processes. It has been shown [8, 17] that jumps
are due to surprises in macroeconomy. Moreover majority of these financial models are non-
linear jump-diffusion equations [23]. To the best of our knowledge there exists no method
to provide explicit (exact analytical) solutions for these models. However, extension of nor-
mal form theory (initiated by Poincaré) to the nonlinear stochastic differential equations
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282 G. Ünal, H. Turkeri & C. M. Khalique

allows one to study the stochastic bifurcations analytically (via approxiamte linearization
process) as it has been expounded in [4]. In this paper we undertake this task and pro-
vide linearization criteria for nonlinear jump-diffusion equations. We then use stochastic
integrating factors for linearizable equations and obtain the explicit solutions (stochastic
processes).

Let (Ω,F , P ) be a probability space with filtration {Ft}t≥0. Consider a real-valued
stochastic process Xt(t ≥ 0) adapted to the filtration and satisfying the nonlinear jump-
diffusion equation of the form

dXt = f(Xt−, t)dt + g(Xt−, t)dWt + r(Xt−, t)dCt, X0 = x0 (1.1)

where dWt is the infinitesimal increment of the Wiener process Wt(t ≥ 0) and independently
dCt is the infinitesimal increment of the compound Poisson process

dCt = ZNtdNt, Ct =
Nt∑
i=1

Zi. (1.2)

Here Nt(t ≥ 0) is a Poisson process with arrival rate λ. Zi are independent and identically
distributed random variables and independent of Wt and Nt. We take Nt and Xt as right
continuous. Xt− is the left limit of Xt at t− just before the jump at t. Nonlinear jump-
diffusion Eq. (1.1) could also be considered as a stochastic differential equation driven by
finite time activity Lévy process since the latter can be decomposed into a drift, a Wiener
and a compound Poisson process according to Lévy–Itô decomposition theorem [3].

The outline of the paper is as follows. In Sec. 2, we derive the linearization criteria
imposed on f(Xt−, t), g(Xt−, t) and r(Xt−, t). We also determine the invertible transforma-
tions which linearize the nonlinear jump-diffusion Eq. (1.1). Then in Sec. 3 we introduce the
stochastic integrating factors to solve linear jump-diffusion equations and provide solution
processes for insurance [16, 20] equations and asset price model [18]. In Sec. 4 we show
that Cox–Ingersoll–Ross (CIS) model [7], Brennan and Schwartz model [5] and Epstein
model [10] are linearizable and give their explicit solutions. These explicit solutions can be
used to check the numerical schemes and more importantly to develop derivative pricing
formulas. Finally, concluding remarks are made in Sec. 5.

2. Linearization Criteria for Nonlinear Jump-Diffusion Equations

There is no general method to solve the nonlinear jump-diffusion equations which involve
compound Poisson processes. Here we will look for invertible mappings to transform nonlin-
ear jump-diffusion Eq. (1.1) to a linear one. This can only be done when f(Xt−, t), g(Xt−, t)
and r(Xt−, t) satisfy certain conditions. In this section linearization criteria together with
the linearizing transformations will be determined.

We seek an invertible mapping h : R × R+ → R

Yt = h(Xt, t) with
∂h

∂X
�= 0,

∂h

∂t
�= 0 (2.1)

to transform (1.1) into a linear equation of the form

dYt = (a1(t)Yt− + a2(t))dt + (b1(t)Yt− + b2(t))dWt

+(c1(t, ZNt)Yt− + c2(t, ZNt))dNt. (2.2)
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Itô lemma [22] for h(X, t) leads to

dYt =
[
∂h(Xt−, t)

∂t
+ f(Xt−, t)

∂h(Xt−, t)
∂Xt−

+
1
2
g2(Xt−, t)

∂2h(Xt−, t)
∂X2

t−

]
dt

+
[
g(Xt−, t)

∂h(Xt−, t)
∂Xt−

]
dWt

+ [h(Xt− + r(Xt−, t)ZNt , t) − h(Xt−, t)]dNt. (2.3)

From (2.2) and (2.3) we obtain the following deterministic PDEs:

∂h(x, t)
∂t

+ f(x, t)
∂h(x, t)

∂x
+

1
2
g2(x, t)

∂2h(x, t)
∂x2

= a1(t)h(x, t) + a2(t), (2.4)

g(x, t)
∂h(x, t)

∂x
= b1(t)h(x, t) + b2(t), (2.5)

h(x + r(x, t)z, t) − h(x, t) = c1(t, z)h(x, t) + c2(t, z). (2.6)

Here Xt− = x and ZNt = z. The PDE (2.5) has two distinct solutions for b1(t) = 0
(t ∈ [0, T ]) and for b1(t) �= 0 (t ∈ [0, T ]) and so we consider each case separately.

Case 1. b1(t) = 0 (t ∈ [0, T ])

In this case the solution of (2.5) is

h(x, t) = b2(t)
∫

dx

g(x, t)
, (2.7)

where we have chosen the arbitrary function of integration to be zero, because it does not
alter the course of linearization.

Substituting (2.7) into (2.4) we obtain

ḃ2(t)
∫

dx

g(x, t)
+ b2(t)

∫
∂

∂t

(
1

g(x, t)

)
dx + b2(t)

f(x, t)
g(x, t)

− 1
2
b2(t)

∂

∂x
g(x, t)

= a1(t)b2(t)
∫

dx

g(x, t)
+ a2(t), (2.8)

where the overhead dot denotes differentiation with respect to t. Differentiating (2.8) and
rearranging yields,

(ḃ2(t) − a1(t)b2(t))
∫

1
g(x, t)

dx

+ b2(t)
[∫

∂

∂t

(
1

g(x, t)

)
dx +

f(x, t)
g(x, t)

− 1
2

∂

∂x
g(x, t)

]
= a2(t). (2.9)

Differentiation of (2.9) with respect to x leads to

ḃ2(t) − a1(t)b2(t)
g(x, t)

+ b2(t)
(

∂

∂t

(
1

g(x, t)

)
+

∂K

∂x

)
= 0, (2.10)

where

K =
f(x, t)
g(x, t)

− 1
2

∂g(x, t)
∂x

.
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From (2.10) we obtain

ḃ2(t) − a1(t)b2(t)
b2(t)

= −g(x, t)L (2.11)

where

L =
∂

∂t

(
1

g(x, t)

)
+

∂K

∂x
.

Differentiation of (2.11) with respect to x leads to

∂

∂x

(
g(x, t)L

)
= 0. (2.12)

Rewriting (2.6) as

h(x + r(x, t)z, t) = (1 + c1(t, z))h(x, t) + c2(t, z) (2.13)

and differentiating it with respect to x yields

∂h(x + r(x, t)zt, t)
∂x

(
1 +

∂r(x, t)
∂x

z

)
= (1 + c1(t, z))

∂h(x, t)
∂x

. (2.14)

Substitution of (2.7) into (2.14) gives(
b2(t)

g(x + r(x, t)z, t)

)(
1 +

∂r(x, t)
∂x

z

)
= (1 + c1(t, z))

(
b2(t)
g(x, t)

)
(2.15)

and rearranging (2.15) yields(
g(x, t)

g(x + r(x, t)z, t)

)(
1 +

∂r(x, t)
∂z

z

)
= 1 + c1(t, z). (2.16)

Differentiation of (2.16) with respect to x leads to

∂

∂x

[(
g(x, t)

g(x + r(x, t)z, t)

)
(1 +

∂r(x, t)
∂x

z)
]

= 0. (2.17)

Hence, the linearization criterion (2.12) and (2.17) must be satisfied for (1.1) to be lineariz-
able via transformation (2.7).

Case 2. b1(t) �= 0 (t ∈ [0, T ])

The solution of (2.5) in this case becomes

h(x, t) = −b2(t)
b1(t)

+ H(t) exp
(

b1(t)
∫

dx

g(x, t)

)
. (2.18)

We choose H(t) = 1 and b2(t) = 0 because it does not affect the linearization conditions.
Therefore

h(x, t) = exp
(

b1(t)
∫

dx

g(x, t)

)
. (2.19)
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Substitution of h(x, t) into (2.5) gives,[
ḃ1

∫
dx

g(x, t)
+ b1

(∫
∂

∂t

(
1

g(x, t)

)
dx +

f(x, t)
g(x, t)

− 1
2

∂

∂x
g(x, t)

)
+

b2
1

2
− a1

]

× exp
[
b1(t)

∫
dX

g(X, t)

]
= a2(t). (2.20)

After some algebra we obtain

g(x, t)
∂(g(x, t)L)

∂x
+
(
ḃ1 + b1(t)g(x, t)L

)
= 0. (2.21)

Differentiation of (2.21) with respect to x leads to

∂

∂x

(
g(x, t)

∂

∂x
(g(x, t)L)

)
+ b1(t)

∂

∂x
(g(x, t)L) = 0 (2.22)

and so

b1(t) = −
∂
∂x

(
g(x, t) ∂

∂x (g(x, t)L)
)

∂
∂x (g(x, t)L)

. (2.23)

Differentiation of (2.23) with respect to x gives

∂

∂x

(
∂
∂x

(
g(x, t) ∂

∂x (g(x, t)L)
)

∂
∂x (g(x, t)L)

)
= 0. (2.24)

Substitution of (2.19) into (2.14) gives

b1(t)
g(x + r(x, t)z, t)

exp
[
b1(t)

∫
dx

g(x, t)

](
1 +

∂r(x, t)
∂x

z

)

= (1 + c1(t, z))
b1(t)
g(x, t)

exp
[
b1(t)

∫
dx

g(x, t)

]
. (2.25)

Rearranging (2.25) we obtain

(
1 +

∂r(x, t)
∂x

z

)
g(x, t)

g(x + r(x, t)z, t)

exp
[
b1

∫
dx

g(x+r(x,t)z,t)

]
exp
[
b1

∫
dx

g(x,t)

] = 1 + c1(t, z). (2.26)

Differentiation of (2.26) yields[
∂

∂x

((
1 +

∂r(x, t)
∂x

z

)
Φ
)
−
(

1 +
∂r(x, t)

∂x
z

)
Φb1

(
1

g(x + r(x, t)z, t)
− 1

g(x, t)

)]

×
exp
(
b1(t)

∫
dx

g(x+r(x,t)z,t)

)
exp
(
b1(t)

∫
dx

g(x,t)

) = 0, (2.27)
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where

Φ =
g(x, t)

g(x + r(x, t)z, t)
.

Substitution of the value of b1(t) from (2.23) into (2.27) yields

∂

∂x

((
1 +

∂r(x, t)
∂x

z

)
Φ
)

+
(

1 +
∂r(x, t)

∂x
z

)(
1

g(x + r(x, t)z, t)
− 1

g(x, t)

)

×
∂
∂x

(
g(x, t) ∂

∂x (g(x, t)L)
)

∂
∂x (g(x, t)L)

Φ = 0. (2.28)

Hence, the linearization criterion (2.24) and (2.28) must be satisfied for (1.1) to be lineariz-
able via transformation (2.19). Note that when

∂

∂x
(gL) = 0 and

∂

∂x

[(
g(x, t)

g(x + r(x, t)z, t)

)(
1 +

∂r(x, t)
∂x

z

)]
= 0

hold then the transformation

Y =
∫

dx

g(x, t)

casts (1.1) into

dYt = (a1(t)Yt− + a2(t))dt + b2(t)dWt + (c1(t, ZNt)Yt− + c2(t, ZNt))dNt.

Also when

∂

∂x

(
∂
∂x

(
g(x, t) ∂

∂x (g(x, t)L)
)

∂
∂x (g(x, t)L)

)
= 0

and

∂

∂x

[(
1 +

∂r(x, t)
∂x

z

)
Φ
]

+
(

1 +
∂r(x, t)

∂x
z

)

×
(

1
g(x + r(x, t)z, t)

− 1
g(x, t)

) ∂
∂x

(
g(x, t) ∂

∂x (g(x, t)L)
)

∂
∂x(g(x, t)L)

Φ = 0

are satisfied the transformation

h(x, t) = exp
(

b1(t)
∫

dx

g(x, t)

)

transforms (1.1) to

dYt = (a1(t)Yt− + a2(t))dt + (b1(t)Yt− + b2(t))dWt

+ (c1(t, ZNt)Yt− + c2(t, ZNt))dNt

where

b1(t) = −
∂
∂x

(
g(x, t) ∂

∂x (g(x, t)L)
)

∂
∂x(g(x, t)L)

.



October 8, 2010 8:52 WSPC/1402-9251 259-JNMP S1402925110000908

Explicit Solution Processes for Nonlinear Jump-Diffusion Equations 287

We now summarize our result in the following theorem.

Theorem 1. A nonlinear stochastic differential equation (1.1) is linearizable via the
transformation

h(x, t) =
∫

dx

g(x, t)

if and only if (2.12) and (2.17) are satisfied or via

h(x, t) = exp
(

b1(t)
∫

dx

g(x, t)

)

if and only if (2.24) and (2.28) are satisfied where b1(t) is given by (2.23).

3. Stochastic Integrating Factor Method for Linear Jump-Diffusion
Equations

To the best of our knowledge there is no work on the solution methods for the jump-diffusion
equations which involve compound Poisson processes in the literature. Here we will develop
the method of the stochastic integrating factors.

Definition 1. The function M = M(t,Wt, Nt;Zi) with property

d(MYt) = D1(t,M)dt + D2(t,M)dWt + D3(t)ZtdPt

is an integrating factor for the linear jump-diffusion Eq. (2.2).

We now consider the chain rule [15]

d(MYt) = MdYt + YtdM + dYtdM. (3.1)

Here dM is [14]

dM =
(

∂M

∂t
+

1
2

∂2M

∂y2

)
dt +

∂M

∂y
dy + (M(t, y, n + 1) − M(t, y, n)) dn (3.2)

and dMdYt is

dMdYt =
∂M

∂y
(b1Yt + b2)dt + (M(t, y, n + 1) − M(t, y, n))

× (c1(t, z)Yt + c2(t, z))dn, (3.3)

y = Wt and n = Nt and we have made use of the following multiplication rules [14]

dtdNt = 0, dNtdWt = 0, dNm
t = dNt, dtdWt = 0, dWtdWt = dt, dW m

t = 0.

Equation (3.1) can now be rewritten as

d(MYt) =
[(

∂M

∂t
+

1
2

∂2M

∂y2
+ b1(t)

∂M

∂y
+ a1(t)M

)
dt +

(
b1(t)M +

∂M

∂y

)
dy

+ [(1 + c1(t, z)) (M(n + 1) − M(n))] dn]Yt−

+
(

a2(t)M + b2(t)
∂M

∂y

)
dt + b2(t)Mdy + c2(t, z)Mdn. (3.4)
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The right-hand side of the equation should not involve the variable Y to comply with the
definition of the integrating factor. This leads to the following three equations:

∂M

∂t
+

1
2

∂2M

∂y2
+ b1(t)

∂M

∂y
+ a1(t)M = 0, (3.5)

∂M

∂y
+ b1(t)M = 0, (3.6)

(1 + c1(t, z))M(t, y, n + 1) = M(t, y, n). (3.7)

Equation (3.7) has a solution of the form

M(t,Wt, Nt;Zi) = M1(t,Wt)
Nt∏
i=1

1
1 + c1(t, Zi)

, (3.8)

where M1 is an arbitrary function of its arguments. Substitution of this value of M into (3.6)
yields

M(t,Wt, Nt) = e−
R t b1(s)dWs+q(t)

Nt∏
i=1

1
1 + c1(t, Zi)

(3.9)

and finally substitution of (3.9) into (3.5) leads to

dq

dt
− b2

1(t)
2

+ a1(t) − Ω(t,Nt;Zi) = 0, (3.10)

where

Ω(t,Nt;Zi) =
d
dt

∏Nt
i=1

1
1+c1(t,Zi)∏Nt

i=1
1

1+c1(t,Zi)

.

Equation (3.10) has the solution

q(t) =
1
2

∫ t

b2
1(s)ds −

∫ t

a1(s)ds +
∫ t

Ω(s,Ns;Zi)ds (3.11)

and substitution of this value of q(t) into (3.9) yields

M(t,Wt, Nt;Zi) =

(
Nt∏
i=1

1
1 + c1(t, Zi)

)

× exp
[∫ t(1

2
b2
1(s) − a1(s)

)
ds −

∫ t

b1(s)dWs +
∫ t

Ω(s,Ns)ds

]
. (3.12)

Invoking (3.12) in (3.4) leads to

d(MYt) = (a2(t) − b1(t)b2(t))Mdt + b2(t)MdWt

+ c2(t, ZNt)M(Nt + 1)dNt. (3.13)
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Integrating (3.13) we obtain the solution

Yt =
1
M

[∫ t

0
(a2(s) − b1(s)b2(s))M(s,Ws, Ps)ds +

∫ t

0
b2(s)M(s,Ws, Ns)dWs

+
∫ t

0
c2(s, ZNs)M(Ns + 1)dNs + Y0

]
. (3.14)

We now consider two linear examples. The accumulated value of aggregate claim Yt up
to time t, can be modelled by compound Poisson process Ct given in (1.2). In this case Zi

are the claim amounts and Nt is the number of claims up to time t. An insurance model
with risk free interest rate δ is given by [16, 20]

dYt = δYt−dt + dCt, Y0 = 0.

Notice that for this example we have a1 = δ, a2 = 0, b1 = 0, b2 = 0, c1 = 0 and c2 = 1.
Integrating factor (3.12) now becomes

M(t) = e−δt.

Aggregate claim amount Yt is

Yt =
∫ t

0
ZNse

δ(t−s)ds, Yt =
Nt∑
i=1

Zie
δ(t−si).

Jump-diffusion model for the asset price has been proposed by Merton in [19]. Merton
model of asset price Yt has been extended by Kou in [18] to incorporate the asymmetric
leptokurtic features in asset pricing, and the volatility smile. Kou’s model is given by

dYt = a1Yt−dt + b1Yt−dWt + c1Yt−dCt, Y0 = y0,

where a1, b1 and c1 are constant parameters which will be determined by calibration. In
this case stochastic integrating factor (3.12) becomes

M(t,Wt, Nt;Zi) = exp
[(

1
2
b2
1 − a1

)
t − b1Wt

] Nt∏
i=1

1
1 + c1Zi

.

Asset price is

Yt = Y0 exp
[(

1
2
b2
1 − a1

)
t − b1Wt

] Nt∏
i=1

(1 + c1Zi) .

4. Applications

There has been great evidence in the observations of financial data that the tails in the
returns of interest rates are due to jumps [1, 2]. Impact of jumps on economy have been
discussed in [17] and it is shown that surprises in macroeconomy leads to jumps in the inter-
est rate. Following Johannes [17] we now consider some nonlinear jump diffusion models of
interest rates. Explicit solution to these interest rate models are important since the pricing
derivative securities relies on the interest rate processes [18]. First example is an extension
of the celebrated interest rate model CIR [7] with an additional jump term and it reads

dXt = α (β − Xt−) dt + σ
√

Xt−dWt + Xt−dCt, X(0) = x0. (4.1)
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This model satisfies the linearization conditions (2.12) and (2.17) when σ = 2
√

αβ.
Therefore, according to Theorem 1, the transformation

Yt =
1√
αβ

√
Xt (4.2)

linearizes (4.1) to

dYt = −α

2
Yt−dt + dWt + (

√
1 + Zi − 1)Yt−dNt. (4.3)

Invoking formula given in (3.14) we obtain

Yt =
Nt∏
i=1

(
√

1 + Zi)

[∫ t

0

Ns∏
i=1

(
1√

1 + Zi

)
exp
(
−a

2
(t − s)

)
dWs

]
.

Hence the interest rate process is

Xt =

[
√

x0 +
√

αβ

(
Nt∏
i=1

(
√

1 + Zi)e−
a
2
t

(∫ t

0

Ns∏
i=1

(
1√

1 + Zi

)
e

a
2
sdWs

))]2

.

Our second example is an extension of Brennan and Schwartz interest rate model [5] with an
additional jump term (log mean-reverting Ornstein–Uhlenbeck equation with an additional
jump [21]) is

dXt = µXt− (θ − ln Xt−) dt + ρXt−dWt + Xt−dCt, X(0) = x0. (4.4)

This model also satisfies the linearization conditions (2.12) and (2.17) for any µ and ρ.
Hence, according to Theorem 1, the transformation

Yt =
1
ρ

ln Xt, (4.5)

linearizes (4.4) to

dYt =
(
−µ

ρ
Yt− +

ρ

2
+

µθ

ρ

)
dt + dWt +

1
ρ

ln (1 + ZNt) dNt. (4.6)

Using formula given in (3.14) we obtain

Yt =
∫ t

0

(
ρ

2
+

µθ

ρ

)
exp
[
µ

ρ
(s − t)

]
ds +

∫ t

0
exp
[
µ

ρ
(s − t)

]
dWs

+
∫ t

0

1
ρ

ln[1 + ZNs ] exp
[
µ

ρ
(s − t)

]
dNs.

Hence the interest rate Xt is

Xt = x0 exp



ρ

[∫ t

0

(
ρ

2
+

µθ

ρ

)
exp
[
µ

ρ
(s − t)

]
ds +

∫ t

0
exp
[
µ

ρ
(s − t)

]
dWs

+
∫ t

0

1
ρ

ln[1 + ZNs ] exp
[
µ

ρ
(s − t)

]
dNs.

]

 .

The third example we consider here arises in several fields. For instance in population
growth model in a noisy environment with a jump term [12] and in valuation of the firm [10].
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Table 1. Linearizable Equations and Solutions.

Equation dXt = α(β − Xt−)dt + σ
p

Xt−dWt + Xt−dCt, X(0) = x0.
Criteria

(2.12), (2.17)
Solution Process

Xt = (
√

x0 +
√

αβ(
QNt

i=1(
√

1 + Zi)e
−a

2 t(
R t
0

QNs

i=1( 1√
1+Zi

)e
a
2 sdWs)))

2

Equation dXt = µXt−(θ − ln Xt−)dt + ρXt−dWt + Xt−dCt, X(0) = x0.
Criteria

(2.12), (2.17)
Solution Process

Xt = x0 exp

2
4 ρ(

R t
0 (ρ

2 + µθ
ρ )e[ µ

ρ (s−t)]ds

+
R t
0 e[ µ

ρ (s−t)]dWs +
R t
0

1
ρ ln[1 + Zt]e

[ µ
ρ (s−t)]dPs)

3
5

Equation dXt = ξXt−(η − Xt−)dt + δXt−dWt + Xt−dCt, X(0) = x0.
Criteria

(2.24), (2.28)
Solution Process

Xt = X0(
QNt

i=1(
1

Zi+1 )[
R t
0 ξ

QNs

i=1(Zi + 1)

× exp[( δ2

2 − ξη)(t − s) + δ(Wt − Ws)]ds])−1

It is

dXt = ξXt− (η − Xt−) dt + δXt−dW + Xt−dCt, X(0) = x0. (4.7)

This model satisfies the linearization conditions (2.24, 2.28) for any ξ, η and δ. Hence accord-
ing to Theorem 1 the transformation

Yt =
1
Xt

, (4.8)

linearizes (4.7) into

dYt =
[
(δ2 − ξη)Yt− + ξ

]
dt + δYt−dWt +

(
− ZNs

ZNs + 1

)
Yt−dNt. (4.9)

Using formula given in (3.14) we obtain

Yt =
Nt∏
i=1

(
1

Zi + 1

)[∫ t

0
ξ

Ns∏
i=1

(Zi + 1) exp
[(

δ2

2
− ξη

)
(t − s) + δ(Wt − Ws)

]
ds

]
.

Hence the solution process Xt is

Xt = x0

(
Nt∏
i=1

(
1

Zi + 1

)[∫ t

0
ξ

Ns∏
i=1

(Zi + 1) exp
[(

δ2

2
− ξη

)
(t − s) + δ(Wt − Ws)

]
ds

])−1

.

The results are reproduced in Table 1.

5. Concluding Remarks

We have shown that when certain conditions are satisfied, nonlinear jump-diffusion equa-
tions are linearizable via invertible transformations. Stochastic integrating factors were
introduced to solve the linear jump-diffusion equations. Explicit solution processes have
been obtained for extended CIR, Brennan–Schwartz and Epstein models of finance via
linearization and stochastic integrating factor methods.
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