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Two new solvable dynamical systems of goldfish type are identified, as well as their isochronous
variants. The equilibrium configurations of these isochronous variants are simply related to the
zeros of appropriate Laguerre and Jacobi polynomials.
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1. Introduction and Main Results

The dynamical system characterized by the N equations of motion of Newtonian type
(“acceleration equal force”)

z̈n = iωż +
N∑

m=1,m�=n

(
2żnżm

zn − zm

)
(1)

is solvable: its initial-value problem can be reduced to purely algebraic operations, essentially
to finding the N eigenvalues zn(t) of a N ×N (time-dependent) matrix explicitly known in
terms of the initial data, or equivalently to finding the N zeros zn of an explicitly known
(time-dependent) polynomial pN (z; t) of degree N in z. [1]

Notation. Here and hereafter N is an arbitrary positive integer (in some cases below it
will be clear that some formulas make sense only for N ≥ 2, or even N ≥ 3); the index n,
and other analogous indices such as m, � (see below), take all integer values from 1 to N

(unless otherwise explicitly stated); the N (generally complex ) dependent variables zn(t)
are functions of the (real) independent variable t (“time”), and may be interpreted as
the positions of point particles moving in the complex plane; superimposed dots denote
t-differentiations; i is the imaginary unit, i2 = −1; and ω is a nonnegative constant to
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which the period

T =
2π
ω

(2)

is associated.
Note that this (autonomous) model, (1), is invariant both under a common constant

rescaling, and a common constant shift, of all the dependent variables zn(t). The models
considered below do not share these symmetries, hence additional parameters can be intro-
duced by such transformations, which are however too trivial to deserve further mention.
Hereafter two models that can be transformed into each other via such transformations
are not considered different; yet sometimes parameters that could be gotten rid of by such
transformations are kept for notational neatness.

The solvable model (1) is called “goldfish” because of the neat character of its equations
of motion and of the remarkable behavior of its solutions. Indeed for ω > 0 it is isochronous:
all its solutions are periodic with a period which is a (generally small) integer multiple of
T (see for instance [1]); and also for ω = 0 the behavior of this dynamical system is quite
remarkable, see Subsec. 4.2.4, entitled “The simplest model: explicit solution (the game of
musical chairs), Hamiltonian structure”, of the book [2].

Several solvable extensions of this model have been discovered over the last few decades:
for a review see Subsec. 4.2.2 (“Goldfishing”) of the monograph [1], where the origin of the
term “goldfish” is also explained.

Two solvable models of goldfish type are presented in this paper. The technique employed
to identify them is described in the following section. While this technique is not new (see
Subsec. 4.2.2 of [1]), the dynamical systems reported herein are, to the best of my knowledge,
new.

These two models are described in a unified manner by the following system of ODEs:

z̈n =
ż2
n

zn
+

γżn

zn
[z2

n − z2
0 ] + [żn + θbzn − θγ(z2

n + z2
0)]

·
N∑

�=1,� �=n

{
[ż� + θbz� − θγ(z2

� + z2
0)]

zn + z�

z�(zn − z�)

}
. (3)

Here b, γ and z0 are 3 a priori arbitrary parameters; the first model is identified by the
assignment θ = 0, the second by the assignment θ = 1. Note that, while the second model
seems more general than the first because it features 3 arbitrary constants (b, γ and z0),
rather than the 2 featured by the first model (γ and z0), nevertheless it does not include the
first model as a special case: these two models are genuinely different (provided the a priori
arbitrary parameter γ does not vanish, as hereafter assumed — except in Subsec. 2.1, see
below).

Alternative avatars of these models obtain by setting

zn(t) = [sn(t)]−1, z0 = s−1
0 , (4a)
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and clearly read as follows:

s̈n =
ṡ2
n

sn
+ γ

ṡn

sn
− γ

ṡnsn

s2
0

+
[
ṡn − θbsn + θγ

(
1 +

s2
n

s2
0

)]

·
N∑

�=1,� �=n

{[
ṡ� − θbs� − θγ

(
1 +

s2
�

s2
0

)]
sn + s�

s�(sn − s�)

}
. (4b)

Other alternative avatars of the models (3) obtain by setting

zn(t) = z0 exp
[
2qn(t)

q0

]
; (5a)

clearly the corresponding equations of motion read

q̈n = 2γz0q̇n sinh
(

2qn

q0

)
+ 2q0

{
q̇n

q0
+ θ

[
b

2
− 2γz0 sinh2

(
qn

q0

)]}

·
N∑

�=1,� �=n

({
q̇�

q0
+ θ

[
b

2
− 2γz0 sinh2

(
qn

q0

)]}
coth

(
qn − q�

q0

))
. (5b)

1.1. Isochronous versions

In this subsection we report isochronous variants of the special case of the two solvable
models reported above characterized by the conditions

z0 = b = 0. (6)

These variants are obtained by a technique which is by now standard [1]; it amounts, in
this case, to the change of dependent and independent variables

z̃n(t) = exp(iωt)zn(τ), τ =
exp(iωt) − 1

iω
(7a)

entailing

z̃n(0) = zn(0). (7b)

Of course these models are just as solvable as the models reported above, and they are as
isochronous as the original goldfish model (1).

It is plain to see, via (7a), that the equations of motion of these isochronous models
read as follows:

··
z̃n = iω

·
z̃n + ω2z̃n +

(
·
z̃n)2

z̃n
+ γ(

·
z̃n − iωz̃n)z̃n

+
N∑

�=1,� �=n


(

·
z̃n − iωz̃n − θγz̃2

n)(
·
z̃� − iωz̃� − θγz̃2

� )
z̃�

z̃n + z̃�

z̃n − z̃�


. (8)

And clearly alternative versions of these models obtain by setting

z̃n = c0 exp
(

2q̃n

q0

)
; (9)
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they read

··
q̃n = iω

·
q̃n +

1
2
ω2q0 + γ

( ·
q̃n − 1

2
iωq0

)
c0 exp

(
2q̃n

q0

)

+
2
q0

N∑
�=1,� �=n

{[ ·
q̃n − 1

2
iωq0 − θ

2
γq0c0 exp

(
2q̃n

q0

)]

·
[ ·
q̃� −

1
2
iωq0 − θ

2
γq0c0 exp

(
2q̃�

q0

)]
coth

(
q̃n − q̃�

q0

)}
. (10)

1.2. Equilibrium configurations of the isochronous models

Clearly the equilibrium configurations of the isochronous models (8), z̃n(t) = z̄n with
·
z̄n = 0,

are characterized by the following system of N algebraic equations:

z̄n


−ω2 + iωγz̄n −

N∑
�=1,� �=n

[
(iω + θγz̄n)(iω + θγz̄�)

z̄n + z̄�

z̄n − z̄�

]
 = 0. (11)

The solutions z̄n of this system of N algebraic equations are of course defined up to per-
mutations; this fact should be kept in mind in the following, whenever specific values are
assigned to some of the quantities z̄n (such as, for instance, z̄N = 0; see below). And of
course throughout our treatment we assume that the N numbers z̄n are all different among
themselves, see the denominator in (11); when this eventually turns out not to be the case,
our findings remain valid only in a limiting sense.

It turns out to be convenient to treat separately the two models characterized by θ = 0
and θ = 1.

For the first model, characterized by θ = 0, it is convenient to set

z̄n =
iωwn

γ
. (12)

As shown in the Appendix, there are then two possibilities, the second of which is however
hardly acceptable, since it yields a vanishing value, z̄n = 0, for all the numbers z̄n.

Case 1. The N numbers wn are the N zeros of the (generalized) Laguerre polynomial
Lα

N (w), of order N and with α = −N − 1 (for the notation and the properties of these
polynomials, see, for instance [3, 4]):

Lα
N (wn) = 0, α = −(N + 1). (13)

Case 2. wN = 0, and the remaining N − 1 numbers wn are the N − 1 zeros of the
(generalized) Laguerre polynomial Lα

N−1(w), of order N − 1 and with α = −(N − 1):

Lα
N−1(wn) = 0, α = −(N − 1), n = 1, . . . , N − 1. (14)

Note that in both cases the Laguerre polynomials feature parameters α which are nega-
tive integers, hence generally outside of the range for which these polynomials are orthogonal.
In Case 2, however, all these zeros vanish (see Eq. (8.973.3) of [4]), hence this result is only
valid in a limiting sense.
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For the second model, characterized by θ = 1, it is instead convenient to set

z̄n =
iω(wn − 1)

2γ
. (15)

As shown in the Appendix, there are then 4 possibilities.

Case 1. The N numbers wn are the N zeros of the Jacobi polynomial P
(α,β)
N (w), of order

N and parameters α = −N + 1/(N − 1), β = −N + 1 − 1/(N − 1) (for the notation and
the properties of these polynomials, see, for instance, [3, 4]):

P
(α,β)
N (wn) = 0, α = −N +

1
N − 1

, β = −N + 1 − 1
N − 1

. (16)

Cases 2 and 3. wN = s, s = ±1 and the remaining N −1 numbers wn are the N −1 zeros
of the Jacobi polynomial P

(α,β)
N−1 (w), of order N − 1, with α = −N + 1 + (1− s)/[2(N − 2)],

β = −N + 2 − (1 − s)/[2(N − 2)]:

P
(α,β)
N−1 (wn) = 0, α = −N + 1 +

1 − s

2(N − 2)
, β = −N + 2 − 1 − s

2(N − 2)
,

n = 1, . . . , N − 1.
(17)

Note the simplicity of this result in the case s = 1, yielding integer values for α and β.

Case 4. wN = 1, wN−1 = −1 and the remaining N − 2 numbers wn are the N − 2 zeros of
the Jacobi polynomial P

(α,β)
N−2 (w), of order N − 2, with α = −N + 2, β = −N + 3:

P
(α,β)
N−2 (wn) = 0, α = −N + 2, β = −N + 3,

n = 1, . . . , N − 2.
(18)

Again, note the simplicity of this result.
And again note that in all these cases the Jacobi polynomials feature parameters α and

β which are generally outside of the range for which these polynomials are orthogonal.
The standard linearization of the nonlinear systems of ODEs (8) in the immediate

neighborhood of its equilibrium configurations, achieved by the assignment

z̃n(t) = z̄n[1 + εϕn(t)] (19)

with ε infinitesimal, yields a system of N linear second-order ODEs for the dependent vari-
ables ϕn(t), the generic solutions of which must of course be isochronous. This leads to the
identification of matrices — in this case, given by explicit formulas in terms of the zeros
of certain Laguerre or Jacobi polynomials, as the case may be, see above — characterizing
the small oscillations of the isochronous system (8) in the immediate neighborhood of its
equilibrium configurations z̃n(t) = z̄n. The isochronous character of the system (8) entails
that these oscillations must all have as common period an integer multiple of T , hence that
these matrices must feature — up to a common factor — integer eigenvalues: a Diophantine
result! But these findings are quite different from those reported herein, and are therefore
likely to be of interest to a quite different audience: mainly to researchers interested in
classical polynomials rather than in dynamical systems. Hence we prefer to devote to them
a separate paper.
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1.3. Covariant models describing motions in the plane

The isochronous models (8) treated in the last two sections 1.1 and 1.2 entail clearly that
the “point particles” whose positions are identified by the coordinates zn(t) move in the
complex z-plane. It is also interesting to consider the original models (3) as describing
motions taking place in the complex z-plane, namely to assume that all the quantities
appearing in the equations of motion (3) are complex numbers (except for the time t). And
it is also possible, and interesting, to then reinterpret these models as describing the time
evolution of “physical” point-particles moving in the real plane. To this end one considers
the positions of these particles to be described by real two-vectors �rn(t), introduced by
identifying their two Cartesian components xn(t) and yn(t) with the real and imaginary
parts of the complex numbers zn(t):

zn ≡ xn + iyn, �rn ≡ (xn, yn). (20a)

Likewise one introduces constant (real) two-vectors via analogous correspondences with the
(complex ) numbers appearing in the equations of motion (or, as appropriate, with their
complex conjugates, see the next formula), by setting

γ ≡ γx − iγy, �γ ≡ (γx, γy), (20b)

(note the minus sign in the right-hand side of the first of these identities),

z0 ≡ x0 + iy0, �r0 ≡ (x0, y0), (20c)

b ≡ bR + ibI . (20d)

In this manner one has also introduced the two, arbitrary, constant two-vectors �γ and �r0

and the two, arbitrary, constant scalars bR and bI . As the diligent reader may verify — con-
sulting for guidance, if need be, Chapter 4 (entitled “Solvable and/or integrable many-body
problems in the plane, obtained by complexification”) of [2] — the Newtonian equations of
motion (3) become thereby real and covariant Newtonian equations of motion describing
the evolution of N unit-mass, equal, point-particles moving in the xy-plane, the positions
of which are identified by the two-vectors �rn(t). These equations of motion are however
not rotation-invariant, because the two constant two-vectors �γ and �r0 identify two fixed
directions in that plane.

An analogous treatment can be applied to the isochronous model (8).

2. Derivation of the Results

In this section we justify the assertion that the two models identified by the two sets of N

Newtonian equations of motion (3) (with θ = 0 respectively θ = 1) are solvable, namely
that the corresponding initial-value problems — i.e., the determination of the N “particle
coordinates” zn(t) from an arbitrarily assigned set of 2N initial data, zm(0) and żm(0) —
can be achieved by algebraic operations, i.e., by solving finite systems of linear differential
equations with constant coefficients or, equivalently, systems of nondifferential equations
featuring linearly a finite number of unknowns.
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The starting point of our treatment is the following first-order matrix ODE satisfied by
the N × N matrix U ≡ U(t):

U̇ = αC + β(CU + UC) + γU2. (21a)

The 3 scalar constants α, β, γ are a priori arbitrary (but we reserve the privilege to assign
special values to some of them, see below), while C is a constant N × N matrix,

Ċ = 0. (21b)

Of course the N × N matrix C may be evaluated if the “initial values” U(0) and U̇(0)
are assigned, by solving the N × N matrix equation

αC + β[CU(0) + U(0)C] = U̇(0) − γ[U(0)]2, (22)

amounting to a system of N2 linear equations for the N2 elements of the N ×N matrix C.

The solution of this system is in fact a trivial task if the matrix U(0) is diagonal, which is
the only case we consider hereafter, see (30) below as well as the explicit expression of this
matrix C in terms of the initial data given at the end of this section, see (58).

The solvability of (21a) — namely the possibility to solve its initial-value problem by
algebraic operations — can be demonstrated as follows. Let

V (t) = exp(βCt)U(t) exp(−βCt), U(t) = exp(−βCt)V (t) exp(βCt), (23a)

so that (21a) becomes

V̇ = αC + 2βCV + γV 2. (23b)

Then set

V (t) = −1
γ

Ẇ (t)[W (t)]−1 (24a)

entailing that the N × N matrix W (t) satisfy the (linear, constant-coefficients, hence solv-
able) matrix ODE

Ẅ − 2βCẆ + αγCW = 0. (24b)

An explicit expression of the general solution of this matrix ODE reads

W (t) = exp(βCt)[cos(Ωt) − Ω−1 sin(Ωt)A]B, (25a)

with A and B two arbitrary constant matrices and the constant matrix Ω defined by the
formula

Ω = βC

(
−1 +

αγ

β2
C−1

)1/2

. (25b)

Hence the corresponding formula providing the general solution of the nonlinear matrix
equation (21a) reads

U(t) =
1
γ
{−βC + [Ω sin(Ωt) + cos(Ωt)A]

· [cos(Ωt) − Ω−1 sin(Ωt)A]−1}. (25c)
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And this expression yields the solution of the initial-value problem when the a priori arbi-
trary matrix A is assigned by the following formula in terms of the initial value U(0) of the
matrix U(t):

A = βC + γU(0). (25d)

Having thereby shown that the matrix ODE (21a) is solvable, let us now use it to
manufacture our new model of goldfish type. To this end we introduce the N × N matrix
R(t) that diagonalizes the matrix U(t),

U(t) = R(t)Z(t)[R(t)]−1, (26a)

Z(t) = diag[ζn(t)]. (26b)

Note that (26a) entails

U̇(t) = R(t){Ż(t) + [M(t), Z(t)]}[R(t)]−1, (27)

with the N × N matrix M(t) defined (here and hereafter) as follows:

M(t) = [R(t)]−1Ṙ(t). (28a)

Of course here and hereafter the standard notation [A,B] indicates the commutator of the
two matrices A and B, [A,B] ≡ AB − BA.

We moreover indicate hereafter with µn(t) the diagonal elements of the matrix M(t):

Mnm(t) = δnmµn(t) + (1 − δnm)Mnm(t). (28b)

Of course here and hereafter δnm is the standard Kronecker symbol, δnm = 1 if n = m,
δnm = 0 if n �= m.

Note that — because the matrix R(t) is defined by (26a) up to multiplication from the
right by an arbitrary diagonal matrix, i.e., up to the transformation R(t) → R̃(t) = R(t)D(t)
with D(t) = diag[dn(t)], where the N functions dn(t) are arbitrary — the matrix M(t)
is defined by this formula, (28a), up to the “gauge transformation” M(t) → M̃(t) =

[R̃(t)]−1
·
R̃(t) = [D(t)]−1M(t)D(t) + [D(t)]−1Ḋ(t), implying that its diagonal matrix ele-

ments remain unconstrained. This entails the possibility to assign the N functions µn(t) at
our convenience, see below.

We are moreover free to assign the “initial” value R(0) of the diagonalizing matrix R to
be just unity,

R(0) = I, Rnm(0) = δnm, (29)

inasmuch as the following developments allow to restrict attention to the consideration of
a matrix U(t) the initial value of which is diagonal, i.e. (see (26))

U(0) = diag[ζn(0)], (30)

while of course (see (27) and (29))

U̇(0) = Ż(0) + [M(0), Z(0)], (31a)

U̇nm(0) = δnmζ̇n(0) − (1 − δnm)[ζn(0) − ζm(0)]Mnm(0). (31b)
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Hence (see (22))

Cnm =
δnm[ζ̇n(0) − γζ2

n(0)] − (1 − δnm)[ζn(0) − ζm(0)]Mnm(0)
α + β[ζn(0) + ζm(0)]

. (32)

Likewise let us introduce the (time-dependent) N × N matrix H(t) via the formulas
(motivated by (26))

C = R(t)H(t)[R(t)]−1, H(t) = [R(t)]−1CR(t), (33a)

Hnm(t) = δnmhn(t) + (1 − δnm)Hnm(t). (33b)

Next, let us note that, via (26a) and (33a) with (28a), the two N × N matrix ODEs
(21) read

Ż + [M,Z] = αH + β(HZ + ZH) + γZ2, (34a)

Ḣ + [M,H] = 0. (34b)

Next, let us write componentwise these two matrix ODEs, separating their diagonal and
off-diagonal parts. But before doing so it is convenient to introduce new dependent variables
zn(t) by setting

α + 2βζn = 2βzn, ζ̇n = żn, ζn = zn − z0, z0 =
α

2β
. (35)

Then from (34a) we get, via (26b), (28b) and (33b),

żn = 2βznhn + γ(zn − z0)2, (36a)

entailing

hn =
żn − γ(zn − z0)2

2βzn
, (36b)

and

Mnm = −β(zn + zm)
zn − zm

Hnm, n �= m. (37)

Likewise, from (34b) we get, via (33b) and (28b),

ḣn =
N∑

�=1,� �=n

(Hn�M�n − Mn�H�n) (38a)

entailing, via (37),

ḣn = 2β
N∑

�=1,� �=n

[
Hn�H�n

zn + z�

zn − z�

]
, (38b)
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and

Ḣnm = −(µn − µm)Hnm + (hn − hm)Mnm

+
N∑

�=1,� �=n,m

(Hn�M�m − Mn�H�m), n �= m, (39a)

entailing, via (36b) and (37),

Ḣnm

Hnm
= −µn + µm − 1

2

[
żn − γ(zn − z0)2

zn
− żm − γ(zm − z0)2

zm

]
zn + zm

zn − zm

+ β

N∑
�=1,� �=n,m

{[
Hn�H�m

Hnm

] [
zn + z�

zn − z�
+

zm + z�

zm − z�

]}
, n �= m, (39b)

which, via a little trivial algebra, can be conveniently rewritten as follows:

Ḣnm

Hnm
= −µn + µm − żn − żm

zn − zm
+

1
2

[
żn + γ(z2

n − z2
0)

zn
+

żm + γ(z2
m − z2

0)
zm

]

+ β

N∑
�=1,� �=n,m

{
Hn�H�m

Hnm

[
zn + z�

zn − z�
+

zm + z�

zm − z�

]}
, n �= m. (39c)

Finally, let us time-differentiate (36a), getting thereby

z̈n = 2[γ(zn − z0) + βhn]żn + 2βznḣn, (40a)

hence, via (36b) and (38b),

z̈n =
[
żn + γ(z2

n − z2
0)

zn

]
żn + 4β2zn

N∑
�=1,� �=n

[
Hn�H�n

zn + z�

zn − z�

]
. (40b)

The idea now is to interpret these ODEs, (40b), as a (solvable) system of Newtonian
equations of motion (“acceleration equal force”) characterizing the motion of N (unit mass)
particles (whose positions at time t are identified by the coordinates zn(t)), which move
under the influence of a one-body velocity-dependent force (represented by the first term
in the right-hand side of (40b)) and of a velocity-independent two-body force (represented
by the second term in the right-hand side of (40b)) featuring however “coupling constants”
Hn�H�n which, rather than being indeed “constant”, evolve themselves in time according to
the set of first-order ODEs (39c). One approach, pioneered decades ago by J. Gibbons and
T. Hermsen [5] and by S. Wojchiechowski [6], is to try and attribute a physical meaning to
these quantities, in terms of internal (“spin”) degrees of freedom of the moving particles.
The approach used here instead gets rid of these extra variables by finding appropriate
ansatzen which express them in terms of the “particle coordinates” zn (and possibly their
time derivatives żn, see below) and are compatible with (39c) (possibly via (40b), see below).
Two categories of such ansatzen have been widely used [1]; their potentialities in the present
context are explored in the following two subsections.
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2.1. First ansatz

The first ansatz, suggested by (39c) but only usefully applicable in the case with

γ = 0, (41)

reads as follows:

Hnm = g
(znzm)1/2

zn − zm
. (42)

Its insertion in (39c) yields

ġ

g
= −µn + µm + 2βg

N∑
�=1,� �=n,m

[
znz�

(zn − z�)2
− zmz�

(zm − z�)2

]
, n �= m, (43)

and this formula suggests to take advantage of the freedom to assign at our convenience
the quantities µn(t) by setting

µn = 2βg
N∑

�=1,� �=n

[
znz�

(zn − z�)2

]
, (44)

whereby the previous equation becomes simply

ġ = 0. (45)

Hence this ansatz, (42), is compatible with (39c), allowing g to be an arbitrary constant. And
the insertion of this ansatz in (40b) (with (41)) yields the following system of Newtonian
equations:

z̈n =
ż2
n

zn
− 4β2g2

N∑
�=1,� �=n

[
z2
nz�(zn + z�)
(zn − z�)3

]
. (46)

But now by setting

zn = exp(2βqn) (47)

this becomes

q̈n = −βg2

2

N∑
�=1,� �=n

{
cosh[β(qn − q�)]
sinh3[β(qn − q�)]

}

=
g2

4
d

dqn

N∑
�=1,� �=n

sinh−2[β(qn − q�)], (48)

which is a well-known solvable many-body problem (see for instance Subsec. 2.1.5 of [2]). So
via this first ansatz we do manufacture a solvable many-body problem, but not a new one.
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2.2. Second ansatz

An educated guess (see [1]) for a second ansatz reads as follows:

Hnm =
1
2β

{
[żn + f(zn)][żm + f(zm)]

znzm

}1/2

, n �= m, (49)

where f(z) is a function that shall be specified below. The insertion of this ansatz, together
with the assignment

µn = 0, (50)

in (39c) yields, after a bit of trivial algebra, the following system of N(N − 1) ODEs:

1
2

z̈n + f ′(zn)żn

żn + f(zn)
− żn + γ(z2

n − z2
0)

zn

−1
2

N∑
�=1,� �=n

{
[ż� + f(z�)]

z�

(zn + z�)
(zn − z�)

}

+
1
2

[żm + f(zm)]
zn

(zn + zm)
(zn − zm)

+ (n ↔ m)

= − żn − żm

zn − zm
, n �= m, (51a)

where the convenient notation “+(n ↔ m)” denotes, here and hereafter, addition of all
that comes before it, with the exchange of the indices n and m. Via the convenient identity
(zn + zm)/[2zn(zn − zm)] ≡ 1/(zn − zm) − 1/(2zn) this system becomes

1
2

z̈n + f ′(zn)żn

żn + f(zn)
− 1

2

N∑
�=1,� �=n

{
[ż� + f(z�)]

z�

(zn + z�)
(zn − z�)

}

−1
2

żn + γ(z2
n − z2

0) − f(zn)
zn

+ (n ↔ m)

=
f(zn) − f(zm)

zn − zm
, n �= m. (51b)

We moreover note that the insertion of the ansatz (49) in the set of N equations of
motion (40b) yields the following version of these Newtonian ODEs:

z̈n =
[
żn + γ(z2

n − z2
0)

zn

]
żn + [żn + f(zn)]

N∑
�=1,� �=n

[
[ż� + f(z�)]

z�

(zn + z�)
(zn − z�)

]
. (52)



October 8, 2010 8:55 WSPC/1402-9251 259-JNMP S1402925110000970

Two New Solvable Dynamical Systems of Goldfish Type 409

The insertion of this expression of z̈n in (51b) then yields

1
2

żn

żn + f(zn)

[
f ′(zn) +

żn + γ(z2
n − z2

0)
zn

]

− 1
2

żn + γ(z2
n − z2

0) − f(zn)
zn

+ (n ↔ m)

=
f(zn) − f(zm)

zn − zm
, n �= m. (53)

This formula suggests setting

f(z) = a + bz + cz2, (54)

with a, b, c three a priori arbitrary constants. It is then clear that the system of N(N − 1)
ODEs (53) is satisfied provided the simple condition

(a + bz + cz2)[−(a + γz2
0) + (γ + c)z2] = 0, (55)

is satisfied identically, i.e., for all values of z.
This clearly happens in two cases.

Case 1.

a = b = c = 0; f(z) = 0. (56)

Then (52) becomes (3) with θ = 0, the solvable character of which is thereby demonstrated.

Case 2.

a = −γz2
0 , c = −γ; f(z) = bz − γ(z2 + z2

0). (57)

Then (52) becomes (3) with θ = 1, the solvable character of which is thereby demonstrated.
Let us complete this treatment by noting that, via (33), (49), (36b) and (29),

Cnm = δnm
żn(0) − γ[zn(0) − z0]2

2βzn

+
1 − δnm

2β

({żn(0) + f [zn(0)]}{żm(0) + f [zm(0)]}
zn(0)zm(0)

)1/2

. (58)

This is the explicit expression of the (time-independent) N × N matrix C to be employed
in the context of the solution of the initial-value problem characterizing the time-evolution
of the matrix U(t), as described at the beginning of this section; of course with the function
f defined by (56) (in case 1, see (3) with θ = 0) respectively by (57) (in case 2, see (3) with
θ = 1).
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Let us end this section with the following two related remarks.

Remark 1. Via the assignments

Ǔ = U +
β

γ
C, Č = αC − β2

γ
C2, (59a)

the nonlinear matrix ODE (21) that is the point of departure of our treatment can clearly
be reformulated to read as follows,

·
Ǔ = γǓ2 + Č. (59b)

Because this nonlinear matrix ODE is just — up to trivial notational changes — the point
of departure of a previous treatment yielding a dynamical system of goldfish type (see [7]
or, equivalently, Example 4.2.2-6 in the monograph [1]), one might question the validity of
the assertion made above, that the solvable goldfish models identified in the present paper,
see (3), are new. Yet this claim is in fact quite valid. The reason is that the previous model
and the new ones are obtained by focussing on the time-evolution of the eigenvalues of
two different matrices, U respectively Ǔ ; hence they also correspond to the assignments
of different ansatzen. There is therefore no simple transformation relating the equations of
motion of the previous model [7, 1], which describe the evolution of the N eigenvalues žn(t)
of the N ×N matrix Ǔ(t) evolving according to the nonlinear matrix ODE (59b) and read
as follows,

··
žn = 2 a

·
žnžn + 2

N∑
m=1,m�=n

( ·
žn − až2

n

)( ·
žm − až2

m

)

žn − žm
, (60)

to the equations of motion, (3), of the models treated herein, which describe the time-
evolution of the N quantities zn(t) simply related via (35) to the N eigenvalues ζn(t) of the
N × N matrix U(t) evolving according to the nonlinear matrix ODE (21).

Remark 2. One might think that more general results could be obtained by taking as
starting point of the treatment, rather than the nonlinear matrix ODE (21), the following
nonlinear matrix ODE,

·
Û = α̂C + β̂(CÛ + ÛC) + γ̂Û2 + δ̂ÛCÛ , (61a)

which is more general than (21) because it features the 4, a priori arbitrary, constants
α̂, β̂, γ̂, δ̂ rather than the 3, a priori arbitrary, constants α, β, γ featured by (21). But it is
easy to check that the matrix Û satisfying this ODE is related to the matrix U satisfying
(21) by the relation

Û(t) = [1 − λU(t)]−1U(t), (61b)

provided the 4 constants α̂, β̂, γ̂, δ̂ are given in terms of the 4 constants α, β, γ, λ by the
following relations:

α̂ = α, β̂ = β + αλ, γ̂ = γ, δ̂ = λ(αλ + 2β). (61c)
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Hence the eigenvalues of the matrix Û(t) are related to the eigenvalues of the matrix U(t),
throughout their time-evolution, by the simple relation entailed by the matrix equation
(61b) (which involves no other matrix besides Û and U ; contrary to what happens in the
case of the previous Remark 1, see the relation (59a) relating Ǔ to U). Hence the dynamical
system describing the evolution of the eigenvalues of the matrix Û(t) does not provide a
more general goldfish model than that discussed in this paper, but merely a reformulation
of it yielded by the simple change of dependent variables corresponding to (61b).

3. Outlook

Let me end by reiterating that, in my opinion, the search for new (solvable) models of
goldfish type is not over, and that any such discovery should be considered a significant
achievement.

Appendix

In this Appendix we justify the relations reported above of the equilibrium configurations
of the isochronous models with the zeros of appropriate Laguerre and Jacobi polynomials
(for their notation see, for instance, [3, 4]).

For the first model (θ = 0) we get, from (11) with (12), the N algebraic relations

wn


−1 − wn +

N∑
�=1,� �=n

[
wn + w�

wn − w�

]
 = 0. (62)

We now treat separately the two cases when none of the numbers wn vanishes, and that
in which one of them (say, wN ) does vanish.

Case 1. wn �= 0. Then (62) reads

N∑
�=1,� �=n

[
wn + w�

wn − w�

]
= wn + 1, (63)

or equivalently (by replacing in the left-hand side wn + w� with 2wn − (wn − w�))

N∑
�=1,� �=n

(
2wn

wn − w�

)
= wn + N. (64)

The conclusion reported above, (13), is then an immediate consequence of Eq. (4.2a) of [8],
which we report here for the convenience of the reader:

N∑
�=1,� �=n

(
2xn

xn − x�

)
= xn − α − 1, Lα

N (xn) = 0. (65)

Case 2. wN = 0. Then (62) yields, for n = 1, . . . , N ,

N−1∑
�=1,� �=n

[
wn + w�

wn − w�

]
= wn, n = 1, . . . , N − 1, (66)
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or equivalently (again, by replacing in the left-hand side wn + w� with 2wn − (wn − w�))

N−1∑
�=1,� �=n

(
2wn

wn − w�

)
= wn + N − 2, n = 1, . . . , N − 1. (67)

The conclusion reported above, (14), is again an immediate consequence of Eq. (4.2a) of [8],
see (65). However, as explained there, it can only be considered valid in a limiting sense.

For the second model (θ = 1) we get, from (11) with (15), the N algebraic relations

(1 − w2
n)


−2 +

N∑
�=1,� �=n

[
(w� + 1)(wn + w� − 2)

wn − w�

]
 = 0. (68)

We now treat separately the cases when none of the numbers wn has unit square, that
in which only one of them (say, wN ) has unit square, and that when two of them (say, wN

and wN−1) have unit square.

Case 1. w2
n �= 1. Then (68) reads

N∑
�=1,� �=n

[
(w� + 1)(wn + w� − 2)

wn − w�

]
= 2, (69)

or equivalently (proceeding as above)

N∑
�=1,� �=n

[
2(1 − w2

n)
wn − w�

]
= N − 3 − S − (2N − 3)wn, (70a)

where

S =
N∑

n=1

wn. (70b)

To evaluate S we sum (70a) over n, from 1 to N, getting, after a little trivial algebra,

S =
N(N − 3)

N − 1
. (70c)

The insertion of this expression of S in (70a) yields

N∑
�=1,� �=n

[
2(1 − w2

n)
wn − w�

]
= −N − 2

N − 1
− (2N − 3)wn. (71)

The conclusion reported above, (16), is then an immediate consequence of Eq. (5.2a) of [8],
which we report here for the convenience of the reader:

2
N∑

�=1,� �=n

(
1 − x2

n

xn − x�

)
= (α + β + 2)xn + α − β, P

(α,β)
N (xn) = 0. (72)
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Cases 2 and 3. w2
N = 1, wN = s, s = ±1. It is then easily seen that (68) yields, for

n = 1, . . . , N − 1,

N−1∑
�=1,� �=n

[
(w� + 1)(wn + w� − 2)

wn − w�

]
= 1 − s, n = 1, . . . , N − 1, (73)

and proceeding as above this yields

N−1∑
�=1,� �=n

[
2(1 − w2

n)
wn − w�

]
= N − 3 + s − S − (2N − 5)wn, n = 1, . . . , N − 1, (74a)

where now

S =
N−1∑
n=1

wn. (74b)

To evaluate S we sum (74a) over n from 1 to N − 1, getting, after a little trivial algebra,

S =
(N − 1)(N − 3 + s)

N − 2
. (74c)

The insertion of this expression of S in (74a) yields

N−1∑
�=1,� �=n

[
2(1 − w2

n)
wn − w�

]
= −1 +

1 − s

N − 2
− (2N − 5)wn, n = 1, . . . , N − 1. (75)

The conclusion reported above, (17), is again an immediate consequence of Eq. (5.2a) of [8],
see (72).

Case 4. wN = 1, wN−1 = −1. It is then easily seen that (68) yields, for n = 1, . . . , N − 2,

N−2∑
�=1,� �=n

[
(w� + 1)(wn + w� − 2)

wn − w�

]
= 0, n = 1, . . . , N − 2, (76)

which is just the same as (73) with s = 1 and N replaced by N −1. The conclusion reported
above, (18), follows therefore immediately.
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