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We propose a simple procedure to identify the collective coordinate Q which is used to generate the
isochronous Hamiltonian. The new isochronous Hamiltonian generates more and more isochronous
oscillators, recursively.
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In recent years considerable interest has been shown to identify and classify isochronous sys-
tems. In this direction Calogero and his coworkers have introduced a number of systematic
procedures to generate isochronous oscillator systems [1–7]. In a different direction the exis-
tence of amplitude independent frequency of nonlinear oscillators have been identified using
nonlocal transformations [8, 9]. Recently Calogero and Leyvraz [6, 7] proposed a new pow-
erful technique to generate isochronous Hamiltonian systems. In this technique they have
shown that the real autonomous Hamiltonian H(p, q) can be transformed to an Ω-modified
Hamiltonian, that is, H(1) = 1

2(H(p, q)2 + Ω2Q(p, q)2), which has the isochronous prop-
erty. Here H behaves as the new momentum and Q is the canonically conjugate/collective
coordinate conjugate to the Hamiltonian, such that the Poisson bracket {H,Q} = 1. Ω is
an arbitrary constant. Due to the nature of the Ω-modified Hamiltonian system, now the
new momentum H and coordinate Q evolve periodically with period T = 2π/Ω, and so
the momentum p and coordinate q also evolve periodically with the same period. In [10],
the authors have shown the interesting connection between symplectic rectification and
isochronous Hamiltonian systems.

In this brief communication, we propose a simple procedure to identify the collective
coordinate Q which is used to generate the isochronous Hamiltonian. We also point out
the further interesting possibility to generate recursively more isochronous oscillators from
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the newly constructed isochronous Hamiltonian. We also illustrate this possibility with an
example. To identify Q we start with the following theorem:

Theorem 1. If H = H(p, q) is the Hamiltonian of a given system such that it can be
inverted to find a single valued q or p in terms of the other variable and H explicitly, then
the system admits at least one integral of the form I = −t + Q(p, q), and Q(p, q) is a
collective coordinate conjugate to the Hamiltonian in an appropriate phase space (avoiding
multivaluedness and singularities).

Proof. The Hamilton equations of the Hamiltonian H(p, q) are

q̇ =
∂H

∂p
= f1(p, q), ṗ = −∂H

∂q
= f2(p, q). (0.1)

Now inverting the Hamiltonian H(p, q) in terms of p or q and substituting the resultant
expression into the right-hand side of the q̇ or ṗ equation we get

q̇ = f1(p, q) = f3(q,H), or ṗ = f2(p, q) = f4(p,H). (0.2)

Integrating the above equation we get

I + t =
∫

dq

f3(q,H)
= Q1(p, q), or I + t =

∫
dp

f4(p,H)
= Q2(p, q) (0.3)

where I is the integration constant and Q1 and Q2 are two of the possible collective coor-
dinates (where the phase space chosen such that the coordinates are single valued and
non-singular). The latter fact can be easily proved by noting that the total differentiation
of any one of the Q(p, q) yields on using (0.1),

dQ

dt
= q̇

∂Q

∂q
+ ṗ

∂Q

∂p
= {H,Q} = 1. (0.4)

Thus Q1 or Q2 is canonically conjugate to H and can serve as the required collective
coordinate.

Now considering the above Hamiltonian H as a new momentum and Q as a new collective
coordinate and substituting these into the Ω-modified isochronous Hamiltonian H(1) given
by Calogero and Leyvraz [6, 7],

H(1) =
1
2
(H(p, q)2 + Ω2Q(p, q)2), (0.5)

one can show that the dynamical system in p and q is indeed isochronous. This has been
proved in [6, 7].

Example 1. Let us consider H = pq, then Q = log q. Then the Ω-modified Hamiltonian
H(1) = 1

2(p2q2 + Ω2(log q)2) is isochronous.

Next we note that the collective coordinate Q(1) = 1
Ω tan−1

(
ΩQ
H

)
, confined to the prin-

cipal branch of the right-hand side, is conjugate to the Hamiltonian H(1) which is obtained
using Theorem 1, and Eq. (0.3). Then we note the following theorem.
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Theorem 2. Let H(1) − a(1) and Q(1) = 1
Ω tan−1

(
ΩQ
H

)
, where the latter is confined to the

principal branch of the arctan function, be the new momentum and the collective coordinates,
respectively, then the Ω(1)- modified Hamiltonian H(2) = 1

2 [(H(1) − a(1))2 + Ω2
(1)Q

2
(1)]

also has isochronous dynamics, where a(1) and Ω(1) are suitable arbitrary positive system
parameters.

Proof. From the nature of H(2), the solutions for H(1) − a(1) and Q(1) are written as

H(1) − a(1) = A(1) cos[Ω(1)t + δ(1)], Q(1) =
A(1)

Ω(1)
sin[Ω(1)t + δ(1)], (0.6)

where A(1) and δ(1) are arbitrary constants. Substituting Eq. (0.6) into the expressions for
H(1) (Eq. (0.5)) and Q(1) and inverting we get the solutions for H and Q in the forms

H =
√

2a(1) + 2A(1) cos(Ω(1)t + δ(1)) cos
[
ΩA(1)

Ω(1)
sin(Ω(1)t + δ(1))

]

Q =
1
Ω

√
2a(1) + 2A(1) cos(Ω(1)t + δ(1)) sin

[
ΩA(1)

Ω(1)
sin(Ω(1)t + δ(1))

]
.

(0.7)

These solutions evolve periodically with period T = 2π/Ω(1), for a(1) > |A(1)| so that the
quantity inside the square root remain positive for all times. The expressions for p and q

can be obtained upon inverting H and Q. Now, as we already know that H and Q evolve
periodically, it is obvious that p and q must also evolve periodically with the same period,
namely T(1) = 2π/Ω(1), but in general different from T(0) = 2π/Ω.

From the above Theorem 2, one can identify recursively the Ω(i) modified Hamil-
tonian from H(i+1) = 1

2 [(H(i) − a(i))2 + Ω2
(i)Q

2
(i)], i = 0, 1, 2, . . . , n, where H(0) = H,

Q(0) = Q,Ω(0) = Ω, and a(0) = 0. Here H(i) − a(i) and Q(i) are the new momentum and
its corresponding canonically conjugate/collective coordinate, respectively. All the above
systems yield periodic solutions with period T(i) = 2π/Ω(i) and they can be deduced using
the relations,

H(i) = a(i) +
√

2H(i+1) cos[Ω(i)Q(i+1)],

Q(i) =
1

Ω(i)

(√
2H(i+1) sin[Ω(i)Q(i+1)]

)
, i = 0, 1, . . . , n

and also

H(n) = a(n) + A(n) cos[Ω(n)t + δ(n)], Q(n) =
A(n)

Ω(n)
sin[Ω(n)t + δ(n)]. (0.8)

Here A(n) and δ(n) are arbitrary constants, Ω(i) and a(i), i = 0, 1, 2, . . . , n, are system (arbi-
trary) parameters. Note that for the solution to remain real, one has to impose the condition
ai−1 >

√
2(ai + Xi) = Xi−1 and a(n) > |An| = Xn, i = 1, 2, . . . , n. Using the above periodic

solutions, one can easily see that the canonical variables p and q also evolve periodically
with period Tn = 2π/Ω(n).
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We now illustrate the above recursive procedure with an example.

Example 2. Let us consider the Hamiltonian H = png(q), where g(q) is an arbitrary
function of q, for which the Hamilton’s equations can be written as

q̇ =
∂H

∂p
= npn−1g(q), ṗ = −∂H

∂q
= −png′(q). (0.9)

Here g′(q) = dg
dq . Note that the integration of the equation dp/dq = −pg′(q)/(ng(q)) (vide

Eq. (0.9)) gives the integration constant I = png(q) which is nothing but the Hamiltonian
H. From the Hamiltonian we get p = (H/g(q))

1
n and substituting this expression into the

q̇ equation, we obtain

q̇ = n(H/g(q))
n−1

n g(q) = n(H)
n−1

n g(q)
1
n . (0.10)

Integrating (0.10) we get

I + t =
g(q)

1−n
n

npn−1

∫
g(q)−

1
n dq. (0.11)

Now the collective coordinate Q(p, q) is of the form

Q(p, q) =
g(q)

1−n
n

npn−1

∫
g(q)−

1
n dq, (0.12)

which is conjugate to the Hamiltonian, that is {H,Q} = 1. This is in conformity with
Theorem 1.

For simplicity let us consider the case n = 1 and g(q) = q. In this case the new momen-
tum and the collective coordinate are written as H = pq and Q = log(q). Substituting these
into the Ω-modified Hamiltonian H(1) given in (0.5) we get

H(1) =
1
2
((pq)2 + Ω2 log(q)2). (0.13)

Using the procedure given in [6, 7] or following our procedure given above the solution for
p and q now become

p(t) = A cos(Ωt + δ)e−
A
Ω

sin(Ωt+δ), q(t) = e
A
Ω

sin(Ωt+δ) (0.14)

which are periodic with period T = 2π/Ω, so the system for p and q is isochronous.
Now consider the Ω-modified Hamiltonian H(1)−a(1) as the new momentum and Q(1) =

1
Ω tan−1

(
ΩQ
H

)
as the collective coordinate in the Ω(1)-modified Hamiltonian H(2), that is,

H(2) =
1
2

([
1
2
((pq)2 + Ω2 log(q)2) − a(1)

]2

+ Ω2
(1)

[
1
Ω

tan−1

(
Ω log(q)

pq

)]2
)

. (0.15)
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Now we can obtain the solutions for p and q as

p(t) =
√

2a(1) + 2A(1) cos[Ω(1)t + δ(1)] cos
[
ΩA(1)

Ω(1)
sin(Ω(1)t + δ(1))

]/
q(t),

q(t) = e
1
Ω

√
2a(1)+2A(1) cos[Ω(1)t+δ(1)] sin

[ΩA(1)
Ω(1)

sin(Ω(1)t+δ(1))
]
.

(0.16)

Choosing the arbitrary parameters such that a1 > |A1|, the system for p and q is isochronous
since the solution (0.16) is periodic with period T = 2π/Ω(1). This is in conformity with
Theorem 2.

Then we may extended the above analysis to the Ω(2) modified Hamiltonian. In this

case H(2) − a(2) can be taken as the momentum and Q(2) = 1
Ω(1)

tan−1
(

Ω(1)Q(1)

H(1)−a(1)

)
as the

conjugate coordinate and therefore

H(3) =
1
2


Ω2

(2)

Ω2
(1)

tan−1


 2Ω(1) tan−1

[
Ω log(q)

pq

]
Ω((pq)2 + Ω2 log(q)2 − 2a(1))




2

+
1
4

(
Ω2

(1)

Ω2
tan−1

[
Ω log(q)

pq

]2

− 2a(2) +
1
4
((pq)2 + Ω2 log(q)2 − 2a(1))

2

)2

 .

(0.17)

The solutions for p and q can now be written as

p(t) = (
√

2
√

a(1) + f(1) cos(f(2)) cos(f(3)))/q(t),

q(t) = e
1
Ω

√
2
√

a(1)+f(1) cos(f(2)) sin(f(3)),

(0.18)

where f(1) = (2(a(2) + A(2) cos[Ω(2)t + δ(2)]))1/2, f(2) = A(2)Ω(1) sin[Ω(2)t + δ(2)]/(Ω(2)) and
f(3) = (Ω/Ω(1))f(1) sin[f(2)]. We assume here again that a2 > |A2| and a1 >

√
2(a2 + A2)

so that p and q are real. Here also the canonical variables p and q are periodic with period
T = 2π/Ω(2) confirming the isochronous character of the dynamics. Following a similar
analysis, one can generate more and more isochronous Hamiltonians.

To conclude, we have proposed a simple procedure to identify the collective coordinate
Q which is conjugate to the given Hamiltonian H in order to generate isochronous systems.
Using the known Hamiltonian H and collective coordinate Q, we have proved the possibility
of generating more and more isochronous oscillator systems recursively.

The work is supported by a Department of Science and Technology (DST), Government
of India, Ramanna Fellowship program and a DST–IRHPA research project, Government
of India.
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