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We propose a simple procedure to identify the collective coordinate ) which is used to generate the
isochronous Hamiltonian. The new isochronous Hamiltonian generates more and more isochronous
oscillators, recursively.
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In recent years considerable interest has been shown to identify and classify isochronous sys-
tems. In this direction Calogero and his coworkers have introduced a number of systematic
procedures to generate isochronous oscillator systems [1-7]. In a different direction the exis-
tence of amplitude independent frequency of nonlinear oscillators have been identified using
nonlocal transformations [8,9]. Recently Calogero and Leyvraz [6,7] proposed a new pow-
erful technique to generate isochronous Hamiltonian systems. In this technique they have
shown that the real autonomous Hamiltonian H (p, q) can be transformed to an 2-modified
Hamiltonian, that is, H() = %(H(p, 9)? + Q%2Q(p,q)?), which has the isochronous prop-
erty. Here H behaves as the new momentum and @ is the canonically conjugate/collective
coordinate conjugate to the Hamiltonian, such that the Poisson bracket {H,Q} = 1.  is
an arbitrary constant. Due to the nature of the 2-modified Hamiltonian system, now the
new momentum H and coordinate @ evolve periodically with period T' = 27/, and so
the momentum p and coordinate ¢ also evolve periodically with the same period. In [10],
the authors have shown the interesting connection between symplectic rectification and
isochronous Hamiltonian systems.

In this brief communication, we propose a simple procedure to identify the collective
coordinate ) which is used to generate the isochronous Hamiltonian. We also point out
the further interesting possibility to generate recursively more isochronous oscillators from
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the newly constructed isochronous Hamiltonian. We also illustrate this possibility with an
example. To identify ) we start with the following theorem:

Theorem 1. If H = H(p,q) is the Hamiltonian of a given system such that it can be
inwverted to find a single valued q or p in terms of the other variable and H explicitly, then
the system admits at least one integral of the form I = —t + Q(p,q), and Q(p,q) is a
collective coordinate conjugate to the Hamiltonian in an appropriate phase space (avoiding
multivaluedness and singularities).

Proof. The Hamilton equations of the Hamiltonian H (p, q) are

q= on = fi(p, ), ﬁz—a—Hzfz(p,Q)- (0.1)

= % =
Now inverting the Hamiltonian H(p,q) in terms of p or ¢ and substituting the resultant
expression into the right-hand side of the ¢ or p equation we get

q¢= fi(p,q) = f3(¢, H), or p= fa(p,q) = fa(p, H). (0.2)

Integrating the above equation we get

Y or T4t= [P ___
I+t_/f3(q,H)_Q1(p,q), I+t /f4(p7H) Q2(p, q) (0.3)

where [ is the integration constant and )1 and ()2 are two of the possible collective coor-
dinates (where the phase space chosen such that the coordinates are single valued and
non-singular). The latter fact can be easily proved by noting that the total differentiation
of any one of the Q(p, q) yields on using (0.1),

1Q _ 09 00

i~ o, TP, ={H,Q} =1 (0.4)

Thus @1 or ()9 is canonically conjugate to H and can serve as the required collective
coordinate. O

Now considering the above Hamiltonian H as a new momentum and () as a new collective
coordinate and substituting these into the ©-modified isochronous Hamiltonian H ) given
by Calogero and Leyvraz [6,7],

Hgy = %(H(p,Q)Q +9%Q(p. q)?), (0.5)

one can show that the dynamical system in p and ¢ is indeed isochronous. This has been
proved in [6,7].

Example 1. Let us consider H = pq, then () = log ¢q. Then the (2-modified Hamiltonian
Hpy = $(p%q* + Q%(log g)?) is isochronous.

Next we note that the collective coordinate Q1) = %tan_l (%), confined to the prin-

cipal branch of the right-hand side, is conjugate to the Hamiltonian H ;) which is obtained
using Theorem 1, and Eq. (0.3). Then we note the following theorem.
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Theorem 2. Let Hy) —a() and Q) = %tan_l (%) , where the latter is confined to the
principal branch of the arctan function, be the new momentum and the collective coordinates,
respectively, then the - modified Hamiltonian Hgy = %[(H(l) - a(l))2 + Q%I)Q%l)]
also has isochronous dynamics, where a(yy and (1) are suitable arbitrary positive system
parameters.

Proof. From the nature of H(y), the solutions for H(j) — a(;) and (1) are written as

Awy .

H(l) — a(l) = A(l) COS[Q(l)t + 5(1)], Q(l) = % SIH[Q(l)t + 5(1)], (0.6)
where Ay and §(;) are arbitrary constants. Substituting Eq. (0.6) into the expressions for
Hy (Eq. (0.5)) and Q1) and inverting we get the solutions for H and @ in the forms

H=,/2 24 Qyt + 6 240 @+ 8
_\/ aqy + (1) COS( 1t + (1))COS Q(l) Sln( (1t + (1))

(0.7)

sin(Qyt + 6 .
o) (Quyt+ow))

1 .
Q= 5\/2(1(1) + 2A(1) cos(Qpyt + (1)) sin [

These solutions evolve periodically with period T = 27r/Q(1), for a() > |A(1)| so that the
quantity inside the square root remain positive for all times. The expressions for p and ¢
can be obtained upon inverting H and (). Now, as we already know that H and () evolve
periodically, it is obvious that p and ¢ must also evolve periodically with the same period,
namely 71y = 27 /€y, but in general different from 7|y = 27 /€. O

From the above Theorem 2, one can identify recursively the {2 modified Hamil-
tonian from Hg ) = %[(H(i) — a(i))Q + Q%i)Q%i)], i = 0,1,2,...,n, where Hg = H,
Q) = @, Q0 =, and a() = 0. Here Hj;) — a(;) and Q(;) are the new momentum and
its corresponding canonically conjugate/collective coordinate, respectively. All the above
systems yield periodic solutions with period T{;) = 27/ ;) and they can be deduced using

the relations,
Hy = a@) + 1/ 2H i41) cos[Q() Qi )],

1 . _
Qi) = 2 (\/2H(i+1) SID[Q(i)Q(i—H)]), i=0,1,...,n

and also
Awm) .
H,y = ap) + A(n) COS[Q(n)t + 5(n)], Q(n) = Qin; Sln[Q(n)t + 5(n)]. (0.8)
Here A,y and ¢, are arbitrary constants, {1;) and a(;),t=0,1,2,...,n, are system (arbi-

trary) parameters. Note that for the solution to remain real, one has to impose the condition
ai—1 > +/2(a; + X;) = X1 and ag,) > |Ay| = X, 7 = 1,2,...,n. Using the above periodic
solutions, one can easily see that the canonical variables p and ¢ also evolve periodically
with period T}, = 27 /Q ).
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We now illustrate the above recursive procedure with an example.

Example 2. Let us consider the Hamiltonian H = p"g(q), where g(q) is an arbitrary
function of ¢, for which the Hamilton’s equations can be written as

. OH

o a1 .o
i=5, =" g(q), P "g'(q). (0.9)

dq
Here ¢'(q) = ‘;—g. Note that the integration of the equation dp/dq = —pg'(q)/(ng(q)) (vide
Eq. (0.9)) gives the integration constant I = p™g(q) which is nothing but the Hamiltonian

H. From the Hamiltonian we get p = (H/ g(q))% and substituting this expression into the
¢ equation, we obtain

i =n(H/9())T gla) = n(H)"T g(q)". (0.10)
Integrating (0.10) we get
in
[+t= gn(;% /g(q)—idq. (0.11)
Now the collective coordinate Q(p,q) is of the form
i-n
Qp,q) = gigl_nl /Q(Q)_’lld% (0.12)

which is conjugate to the Hamiltonian, that is {H,Q} = 1. This is in conformity with
Theorem 1.

For simplicity let us consider the case n = 1 and g(q) = ¢. In this case the new momen-
tum and the collective coordinate are written as H = pg and @) = log(q). Substituting these
into the Q-modified Hamiltonian H(;y given in (0.5) we get

Hoy = 3 ((p)* + 97 log(a)?). (0.13)

Using the procedure given in [6,7] or following our procedure given above the solution for
p and ¢ now become

p(t) = Acos(Qt + 8)e™aSn(@UHd)  4(4) = o sin(2+) (0.14)

which are periodic with period T' = 27 /€, so the system for p and ¢ is isochronous.
Now consider the {2-modified Hamiltonian H ;) —a(q) as the new momentum and Q ;) =

%‘cam_1 (%) as the collective coordinate in the 2(;)-modified Hamiltonian H ), that is,

<B((pq)2 + 0% log(q)?) — a(l)] 2 +Qf [% tan ™" <m;7i(q)>] 2) - (0.15)
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Now we can obtain the solutions for p and ¢ as

QAq |
p(t) = \/2(1(1) + 2A(1) COS[Q(l)t + 5(1)] CoS Q(l) SlH(Q(l)t + 5(1)) q(t),
QA

eé\/2a(1)+214(1) cos[Q(1)t+d(1)] sin [ Q((li) sin(Q(l)t—i-(S(l))]

(0.16)

q(t) =

Choosing the arbitrary parameters such that a; > |A;|, the system for p and ¢ is isochronous
since the solution (0.16) is periodic with period 7" = 27 /€2(;). This is in conformity with
Theorem 2.

Then we may extended the above analysis to the }(3) modified Hamiltonian. In this

Q
case H) — a(z) can be taken as the momentum and Qo) = ﬁtan_l (#ﬁig;) as the

conjugate coordinate and therefore

—1 | Qlog(q) 2
Hioy = 1 %tan_ 29(1) tan [ Pq }
972, (pa)? + 2 log(q)? — 2a())
b (0 gt [ D) L s o) - 2000
12 ” a) + 7 ((pg g(q a()
(0.17)
The solutions for p and ¢ can now be written as
p(t) = (V24 /aq) + fay cos(f(2)) cos(f(5)))/a(t),

\/ (1) 1) (2 3) (0.18)

q(t) = es_lz\/ﬁv am+fa) COS(f(Q))Sin(f(s))’

where f(l) = (2(@(2) + A(Q) COS[Q(2)t + 5(2)]))1/2, f(z) = A(Q)Q(l) Sin[Q(Q)t + 5(2)]/(Q(2)) and
fa) = (Q/Qq)) fa)sin[fo)]. We assume here again that ag > [A2| and a1 > /2(az + As)
so that p and ¢ are real. Here also the canonical variables p and ¢ are periodic with period
T = 27 /Q) confirming the isochronous character of the dynamics. Following a similar
analysis, one can generate more and more isochronous Hamiltonians.

To conclude, we have proposed a simple procedure to identify the collective coordinate
() which is conjugate to the given Hamiltonian H in order to generate isochronous systems.
Using the known Hamiltonian H and collective coordinate @), we have proved the possibility
of generating more and more isochronous oscillator systems recursively.
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