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We discuss a discrete approach to the multiscale reductive perturbative method and apply it to
a biatomic chain with a nonlinear interaction between the atoms. This system is important to
describe the time evolution of localized solitonic excitations.

We require that also the reduced equation be discrete. To do so coherently we need to discretize
the time variable to be able to get asymptotic discrete waves and carry out a discrete multiscale
expansion around them. Our resulting nonlinear equation will be a kind of discrete Nonlinear
Schrödinger equation. If we make its continuum limit, we obtain the standard Nonlinear Schrödinger
differential equation.

Keywords: Multiple scale expansions; asymptotic analysis on the lattice; integrable equations;
nonlinear chains; discrete Nonlinear Schrödinger equation; biatomic lattices.

1. Introduction

Nonlinear systems, and in particular nonlinear discrete systems, are gaining an increasing
impact in modern science [33].

In 1955 Fermi, Pasta and Ulam (FPU) [14] considered a unidimensional chain of atoms
with nonlinear nearest neighboring interaction to verify if nonlinearity could produce energy
equipartition. Instead, they found recurrence, i.e. the motion of the chain for small energies
was almost periodic [43]. To explain this result Kruskal and Zabusky found in 1965 [42]
a connection between the FPU system and the Korteweg–De Vries equation (KdV), an
equation introduced in fluid dynamics to describe one dimensional surface waves in the
shallow water context [20]. By introducing the Inverse Scattering Transform, they were
able to solve the Cauchy problem for the KdV equation [15] and to prove the existence of
soliton solutions.
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In 1967 Toda [37] considered a dynamical system with exponential interaction, U(r) =
e−r + r − 1, the “Toda potential”, whose small amplitude approximation gives the FPU
system, and shares many of the integrability properties of the KdV equation. So the FPU
system turns out to be an approximation of a discrete soliton model.

Later more complicate atomic chains have been considered, as, for example, the biatomic
one [6, 9, 11, 12, 16, 26]. These systems have various applications in physics and biology
as, for example, in the study of ferroelectric perovskites, materials that, in certain crystal-
lographic directions have an almost unidimensional frame, and in organic molecular chains.
A biatomic chain of neighboring atoms A1 and A2 is described by the discrete indepen-
dent variable n and a continuous time t. However, the simplest nonlinear coupled lattice
dynamical equations one can construct for this system are not solvable. Only special exact
solutions may be found.

Multiscale expansions [7, 8, 19–21, 35, 36] have proved to be important tools to find
approximate solutions for many physical problems by reducing a given nonlinear par-
tial differential equation to a simpler equation, which is often integrable [5]. Recently,
few attempts to carry over this approach to partial difference equations have been pro-
posed [2, 10, 22, 23, 32]. Almost all approaches considered contain some approximation,
either based on physical or on mathematical reasoning as scaling transformations of the
lattice provide a nonlocal result. In the following we prefer to stick to mathematical
approximations as in this case it will be more evident what to do to improve the final
result [17].

In [9] a biatomic chain obtained as a first nonlinear approximation of a complex Lenard–
Jones interaction between atoms has been considered. There the multiscale expansion of
the continuous limit of the lattice model showed that the modulation of periodic solutions is
governed by the Nonlinear Schrödinger differential Equation (NLSE). Here we consider the
same model but we are interested in carrying out the multiscale expansion on the lattice,
i.e. we are looking for a lattice equation which in the asymptotic regime approximate the
biatomic nonlinear lattice. To do so we need to discretize time to be able to allow for discrete
asymptotic waves. If we keep a continuous time variable an asymptotic wave travelling on
the lattice by necessity will be described by a continuous variable. So by necessity we go
over to a differential system.

Discretization of variables, besides representing an interesting problem in mathematical
physics for its computerizability, it is also useful in itself. Measurements, for example, are
based on sampling of physical variables such as space and time. It follows that physical
models in which variables are defined on the lattice are easier to be compared with the real
world we see in our measurements.

In this work, we propose to continue the previous researches of biatomic chains consid-
ering both t and n as discrete variables. In particular, we shall assume, as these authors,
that the system has an unharmonic cubic potential as in nature, potentials usually are
non–symmetric. We shall thus apply a discrete multiscale reductive perturbative method to
the model introduced by Campa et. al. [9] consisting of a biatomic chain with a nonlinear
nearest neighbor interaction.

In Sec. 2, we describe in detail the biatomic chain and write down the dynamical equa-
tions. Then in Sec. 3, we introduce some notions of discrete calculus and multiple scales
defined on the lattice which we apply in Sec. 4 to the biatomic chain introduced in Sec. 2.



October 8, 2010 8:54 WSPC/1402-9251 259-JNMP S1402925110000957

Discrete Multiscale Analysis 359

In Sec. 5, we analyze the resulting nonlinear discrete equation obtained and carry out its
continuum limit. Finally, in Sec. 6, we draw some final conclusions.

2. The Model

We want to describe here a chain suitable to represent, for example, an α-helix channel, see
Scott (1999) [33]. Our model consists of a biatomic chain formed by a sequence of pairs of
neighboring atoms A1 and A2, with masses M1 and M2, respectively. Each pair, made of
an atom of mass M1 and the following one of mass M2, can be considered as a “molecule”.
We denote by the index n the nth molecule formed by the atom A1 and A2 (see Fig. 1).
Let us indicate with xn(t) and yn(t) the displacements of the atoms A1 and A2 belonging
to the same molecule n. For each atom, we assume only nearest neighboring interactions.
Then, the total potential of the chain is given by

U =
∑

n

{U1(yn − xn) + U2(xn+1 − yn)}, (1)

where U1 is the intramolecular potential, between atoms belonging to the same molecule,
and U2 is the potential between different molecules.

Given a natural [3, 6, 38] asymmetric potential with an absolute minimum in the equi-
librium position as, for example, a Lenard–Jones potential, by taking the first terms of its
Taylor expansion around the equilibrium position we can write the potentials U1 and U2 as

U1(r) =
1
2
k1r

2 +
ε

3
β1r

3, U2(r) =
1
2
k2r

2 +
ε

3
β2r

3,

where k1 and k2 are the harmonic constants, β1 and β2 are the cubic interaction constants
and ε is a small parameter which will play the role of the perturbative parameter. We
assume that the interaction between atoms of the same site is stronger than that of atoms
of different sites; thus k1 > k2 and |β1| > |β2|. So, the Hamiltonian of our molecular chain
turns out to be

H =
∑
n

{
1
2
[M1ẋ

2
n + M2ẏ

2
n] +

1
2
[k1(yn − xn)2 + k2(xn+1 − yn)2]

+
ε

3
[β1(yn − xn)3 + β2(xn+1 − yn)3]

}
,

Fig. 1. Pattern of a biatomic molecular chain in one dimension. The chain is formed by a sequence of pairs
of neighboring atoms A1 and A2. The displacements of the atoms of the molecule n are indicated with xn

and yn.
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where ẋ(t)≡dx(t)
dt and the equations of motion are

M1ẍn = − ∂H

∂xn

= k1(yn − xn) − k2(xn − yn−1) + εβ1(yn − xn)2 − εβ2(xn − yn−1)2, (2)

M2ÿn =
∂H

∂yn

= −k1(yn − xn) + k2(xn+1 − yn) − εβ1(yn − xn)2 + εβ2(xn+1 − yn)2. (3)

Equations (2) and (3) are a natural extension of the FPU model [14] to a biatomic
system.

3. Multiple Scales on a Lattice

Here we introduce the concepts necessary to extend the multiscale reductive perturbative
approach introduced by Poincaré [5] for the study of the asymptotic expansion of ordi-
nary differential equations and extended by Taniuti to the reduction of partial differential
equations [35, 36] to the case of difference equations [17, 24, 32].

3.1. Lattices and functions defined on them

Given a lattice, we will denote by n the running index of the points separated by a constant
spacing h. Thus to the lattice index n, we can associate a continuous variable x = nh

defining the position of the points with respect to the origin, for convenience chosen to be
with no loss of generality x0 = 0.

If we introduce a small parameter ε = N−1, where N is a large integer positive number,
we can define on the same lattice the slowly varying discrete variables nj(j = 1, 2, 3, . . .) of
constant spacing Hj and the continuous variables xj (see Fig. 2) where

n = N jnj, xj = εjx. (4)

Fig. 2. Rescaled lattices.
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If nj varies by one, n varies by N j , a number much larger than unity. For this reason,
nj is a “slow variable” and provide an asymptotic behavior of the system. For each j there
is a slow lattice variable corresponding to the slow index nj. nj will be an integer only if n

is a common multiple of N j.
Let us consider Fn, a function of the discrete index n. An equation on the lattice is

a functional relation which involves the function F at various lattice points, {Fn+�}. In
the case of the model considered before (2, 3), � = ±1. We are interested to transform
the system, defined on a lattice n, to the slowly varying lattices nj, providing the scales
of the asymptotic behavior of the original system. This is equivalent to say that we are
interested in transforming the system defined on x to the one with the slowly varying
variables xj . We can consider the function Fn written in terms of the slowly varying lattice
variables {nj}, with, for example, j = 1, 2, Fn ≡ fn1,n2, and we can carry out the ε expansion
of the function Fn+�.

Let us consider at the beginning the case of one slowly varying lattice n1, i.e. Fn ≡ fn1.
As the shift operator Tn acting on Fn gives TnFn = Fn+1, we have Fn+� = T �

nFn. In order
to extract the behavior of the function Fn+1 = F (x + h) on the new scales, let us carry
out the Taylor expansion of Fn+1 in powers of h. In such a case the shift operator can be
expressed as an infinite order differential operator with respect to x, i.e.

Tn = exp(h∂x) =
∞∑

k=0

(h∂x)k

k!
. (5)

Moreover, if we define a ∆ operator as ∆(+)
n ≡ (Tn − 1)/h, we have

∂x =
log(1 + h∆(+)

n )
h

, (6)

and Eq. (5) could be written as

Tn =
∞∑

k=0

(log(1 + h∆(+)
n ))k

k!
. (7)

Formulas (6) and (7) are written in terms of ∆(+)
n . However on the lattice we can define

an infinite number of different difference operators which in the continuum limit, when h

goes to zero, go over to the first order derivative. Among them it is important, as it is
self-adjoint, the symmetric shift operators ∆(s)

n ≡ 1
2h(Tn − T−1

n ). In this case we have

∂x =
arcsinh(h∆(s)

n )
h

, → Tn =
∞∑

k=0

(arcsinh(h∆(s)
n ))k

k!
. (8)

Introducing the slowly varying variable x1 and the corresponding lattice n1 in Eq. (5), as
∂x = ε∂x1, we have

T �
n = e�h∂x = e�εh∂x1 = T �ε

n1
=

∞∑
k=0

(�hε∂x1)
k

k!
. (9)
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If we introduce more lattice variables, for example {nj}, with j = 1, 2, then Tn becomes

T �
n = T �ε

n1
T �ε2

n2
=

∞∑
k=0

(�εh∂x1)
k

k!

∞∑
j=0

(�ε2h∂x2)
j

j!
. (10)

Once we expand the operator ∂xj in terms of shift operators we get an expression for F (n±�)
in terms of variations of f(n1, n2) with coefficients depending on ε and �.

As delta operators are linear combinations of shift operators, from Eq. (13) it can be
proved [18, 24] that for ∆ = ∆(+) we have the following formula

(∆(+)
n1

)kfn1 =
∞∑

i=k

k!
i!

P (i, k)(∆(+)
n )iFn, (11)

where (∆(+)
n1 )kfn1 is the kth-difference of fn1 respect to n1, and the coefficients P (i, k) are

given by P (i, j) =
∑i

α=j wαSα
i Gj

α, where ω is the ratio of the increment in the lattice of
variable n with respect to that of variable n1. In this case, taking into account Eq. (4),
ω = N . The coefficients Sα

i and Gj
α are the Stirling coefficients of the first kind and second

kind, respectively. The result (11) can be inverted, providing:

(∆(+)
n )kFn =

∞∑
i=k

k!
i!

Q(i, k)(∆(+)
n1

)ifn1, (12)

where Q(i, j) is the same as P (i, j), but with w = N−1 = ε.
A general way to get these formulas is provided by the finite operator calculus [13, 29, 30].

The finite operator calculus prescribes the following formula [25]

T j
n =

∞∑
k=0

(ε)kpk(j)
k!

(∆n1)
k, (13)

where the functions pk(j) are the unique basic sequence associated to the operator ∆n1 , i.e.
such that they satisfy the following conditions

p0(n1) = 1, pk(0) = 0 for all k > 0,

∆n1pk(n1) = kpk−1(n1).
(14)

The basic sequences can be directly obtained by the transfer formulae:

pk(n1) = n1

(
∆n1

h∂x1

)−k

n1
k−1. (15)

When ∆n1 = ∆(+)
n1 or ∆n1 = ∆(s)

n1 , the basic sequences are:

p
(+)
k (n1) = hkn1

(
eh∂x1 − 1

h∂x1

)−k

n1
k−1 = (x1)k ≡ x1(x1 − h) · · · (x1 − kh + h),

p
(s)
k (n1) = hkn1

(
eh∂x1 − e−h∂x1

2h∂x1

)−k

n1
k−1 = 2kGk(x1;−h, 2h),

(16)
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where Gk(y; a, b) are the Gould polynomials [29] given by

Gk(y; a, b) ≡ y

y − ka

(
y − ka

b

)
k

=
y

(y − ka)(b)k
(y − ka)(y − ka − b) · · · (y − ka − (k − 1)b). (17)

Let us also mention that for each ∆n1 operator we can write from Eq. (13)

(∂x1)
j =

1
hj

∞∑
k=0

1
k!

[
dj

dyj
pk(y)

] ∣∣∣∣
y=0

(∆n1)
k, (18)

i.e. we can express the partial derivative as an infinite sum of differences whose coefficients
depends from the type of difference we are expanding into. In terms of ∆(+), from Eqs. (13)
and (16), Eq. (9) reads

T �
nFn =

∞∑
k=0

(hε)k(�)k
k!

(∆(+)
n1

)kfn1, (19)

while, in the symmetric difference case, it reads

T �
nFn =

∞∑
k=0

(2hε)k

k!
Gk(l;−1, 2)(∆(s)

n1
)kfn1. (20)

From Eqs. (19) and (20) we get that any finite shift in the original equation will give rise
to an expression in the slowly varying variables which involves an infinity of lattice points
or, equivalently, contains differences at all orders of the function fn1. So to get a reduced
equation on a finite number of points we need to cut the series by requiring that the function
fn1 be of finite order of variation. Let us introduce the following definition:

Definition. The function fn is a slow varying function of order p if

∆p+1fn = 0. (21)

Then we can prove the following Theorem:

Theorem. The function Fn is a slow varying function of order p iff fn1 is a slowly varying
function of order p in its own variable, i.e. if ∆p+1

n1 fn1 = 0.

Proof. The proof of this theorem will be given in the case of ∆ = ∆+, but it is easy to see
that it is valid for any delta operator. It is divided into two parts:

(a) Let fn1 be a slowly varying function of order p. From formula (12) it follows that

∆p+1
n Fn =

∞∑
i=p+1

(p + 1)!
i!

Q(i, p + 1)∆i
n1

fn1 = 0, (22)

i.e. Fn is also a slow function of order p.
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(b) Let Fn be a slowly varying function of order p. From formula (11) it follows that

∆p+1
n1

fn1 =
∞∑

i=p+1

(p + 1)!
i!

P (i, p + 1)∆i
nFn = 0, (23)

i.e. fn1 is also a slow function of order p.

The expansion (20) can be performed in two steps: at first we write the shift operator
in the n variable in terms of the derivatives with respect to x1 by formula (9) and then
we expand the derivatives with respect to x1 in term of delta operators by formula (18).
In doing so we will have formulas in derivatives which are valid for any delta operator.
Moreover the first expansion has ε dependent coefficients while the second will provide a
finite number of terms only if we use the slow varying condition for the functions fn1,n2.

Let us now explicitate the first terms of Eq. (20) for future use, at first in terms of the
derivatives and then in delta operators assuming that the function fn1,n2 is a slow function
at most of order 2. At first we shall consider the case in which we have only one slow lattice,
just the variable n1 is present and then we extend the result to the case of two slow lattices,
n1 and n2 and to partial lattices n and m.

3.1.1. Fn = fn1 = f(x1)

From Eq. (9) we get

Fn±1 = f(x1) ± hε∂x1f(x1) +
hε2

2!
∂2

x1
f(x1) + O(ε3). (24)

As from Eq. (18) for p = 2, ∂x1 = ∆n1 and ∂2
x1 = (∆n1)

2, then Eq. (24) reads

Fn±1 = fn1 ±
1

2N
(fn1+1 − fn1−1) +

1
2N2

(fn1+1 − 2fn1 + fn1−1) + O(N−3). (25)

3.1.2. Fn = fn1,n2 = f(x1, x2)

p = 2 is the lowest nontrivial value of p for which we can consider Fn as a function of the
two scales, n1 and n2. Taking l = 1, from Eq. (10) we have

Fn±1 = f(x1, x2) ± hε
∂f(x1, x2)

∂x1
+

h2ε2

2
∂2f(x1, x2)

∂x2
1

± hε2 ∂f(x1, x2)
∂x2

+ h2ε3 ∂

∂x1

∂f(x1, x2)
∂x2

+ O(ε4). (26)

If Fn is a slowly varying function of order two in n1, it might be of order one in n2. In this
case, Eq. (26) becomes

Fn±1 = f(x1, x2) ± hε
∂f(x1, x2)

∂x1
+

h2ε2

2
∂2f(x1, x2)

∂x2
1

± hε2 ∂f(x1, x2)
∂x2

+ O(ε3). (27)
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Moreover, from Eq. (18) it follows that ∂x2 = ∆n2, ∂
2
x1

= (∆n1)
2 and ∂x1∂x2 = ∆n1∆n2.

Then Eqs. (26) and (27), written in terms of differences instead of derivatives, are given by

Fn±1 = fn1,n2 ±
1

2N
(fn1+1,n2 − fn1−1,n2)

+
1

2N2
(fn1+1,n2 − 2fn1,n2 + fn1−1,n2) ±

1
2N2

(fn1,n2+1 − fn1,n2−1)

+
1

4N3
(fn1+1,n2+1 − fn1−1,n2+1 − fn1+1,n2−1 + fn1−1,n2−1) + O(N−4) (28)

and

Fn±1 = fn1,n2 ±
1

2N
(fn1+1,n2 − fn1−1,n2)

+
1

2N2
(fn1+1,n2 − 2fn1,n2 + fn1−1,n2)

± 1
2N2

(fn1,n2+1 − fn1,n2−1) + O(N−3), (29)

respectively.

3.1.3. Fn,m = fn1,m1,m2 = f(x1, t1, t2)

In this case we have

Fn,m±1 = f(x1, t1, t2) ± τε
∂f(x1, t1, t2)

∂t1

+
τ2ε2

2
∂2f(x1, t1, t2)

∂t21
± τε2 ∂f(x1, t1, t2)

∂t2
+ O(ε3), (30)

and

Fn±1,m = f(x1, t1, t2) ± hε
∂f(x1, t1, t2)

∂x1
+

h2ε2

2
∂2f(x1, t1, t2)

∂x2
1

+ O(ε3). (31)

In terms of differences, the last two equations are given by

Fn,m±1 = fn1,m1,m2 ±
1

2N
(fn1,m1+1,m2 − fn1,m1−1,m2)

+
1

2N2
(fn1,m1+1,m2 − 2fn1,m1,m2 + fn1,m1−1,m2)

± 1
2N2

(fn1,m1,m2+1 − fn1,m1,m2−1) + O(N−3) (32)

and

Fn±1,m = fn1,m1,m2 ±
1

2N
(fn1+1,m1,m2 − fn1−1,m1,m2)

+
1

2N2
(fn1+1,m1,m2 − 2fn1,m1,m2 + fn1−1,m1,m2) + O(N−3). (33)

For future use we can further rescale the lattice with some extra parameter by defining
n1 = L1n

N ,m1 = L2m
N e m2 = m

N2 , where the order 1 parameters L1 and L2 are divisors of N
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and N2 respectively if we require that n1 and n2 be integer numbers. In this case, Eqs. (30)
and (31) become

Fn,m±1 = f(x1, t1, t2) ± τL2ε
∂f(x1, t1, t2)

∂t1
+

τ2L2
2ε

2

2
∂2f(x1, t1, t2)

∂t21

± τε2 ∂f(x1, t1, t2)
∂t2

+ O(ε3), (34)

and

Fn±1,m = f(x1, t1, t2) ± hL1ε
∂f(x1, t1, t2)

∂x1
+

h2L2
1ε

2

2
∂2f(x1, t1, t2)

∂x2
1

+ O(ε3). (35)

Moreover, from Eq. (34) we have

Fn,m+1 − 2Fn,m + Fn,m−1 = τ2L2
2ε

2 ∂2f(x1, t1, t2)
∂t21

+ O(ε3). (36)

In terms of symmetric difference operators these equations can be written as

Fn,m±1 = fn1,m1,m2 ±
L2

2N
(fn1,m1+1,m2 − fn1,m1−1,m2)

+
L2

2

2N2
(fn1,m1+1,m2 − 2fn1,m1,m2 + fn1,m1−1,m2)

± 1
2N2

(fn1,m1,m2+1 − fn1,m1,m2−1) + O(N−3), (37)

Fn±1,m = fn1,m1,m2 ±
L1

2N
(fn1+1,m1,m2 − fn1−1,m1,m2)

+
L2

1

2N2
(fn1+1,m1,m2 − 2fn1,m1,m2 + fn1−1,m1,m2) + O(N−3) (38)

and

Fn,m+1 − 2Fn,m + Fn,m−1 =
L2

2

N2
(fn1,m1+1,m2 − 2fn1,m1,m2 + fn1,m1−1,m2)

+ O(N−3). (39)

The last three equations will be used in the following section to apply the multiscale method
to the biatomic lattice model we introduced in Sec. 2.

4. Multiscale Reduction of the Discrete Biatomic System

4.1. Equations of motion

In the equations of motion of the biatomic chain (see Eqs. (2) and (3)), the nonlinear terms
(proportional to β1 and β2) are of order ε respect to the remaining terms, and thus we can
use perturbative methods to look for approximate solutions of xn(t) and yn(t). This has
been done in 1993 by Campa et al. [9] using the multiscale perturbative method with just
the lowest order differential terms. In this way, performing at the same time a multiscale
expansion and a continuum limit they were able to reduce the system to the NLSE (69).
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Here we discretize time and look for completely discrete equations, i.e. passing from
the differential terms in the expansion (see Eqs. (24), (26), (27), (30), (31), (34)–(36)) to
difference terms corresponding to the lowest order of slow varyness p, i.e. to Eqs. (25),
(28), (29), (32), (33), (37)–(39). To discretize time we replace the time t with a discrete
variable m, so that t ≡ mτ , where τ is the temporal scale. Thus, when τ reduces to
an infinitesimal quantity and m approaches infinity in such a way that t remains finite
we recover the continuous case. We consider the simplest approximation of the second
derivative by differences using a central difference so as to get a real dispersive relation.
The discretized equations of motion are given by

m1(xn,m+1 − 2xn,m + xn,m−1) = k1(yn,m − xn,m) − k2(xn,m − yn−1,m)

+ ε[β1(yn,m − xn,m)2 − β2(xn,m − yn−1,m)2], (40)

m2(yn,m+1 − 2yn,m + yn,m−1) = −k1(yn,m − xn,m) + k2(xn+1,m − yn,m)

− ε[β1(yn,m − xn,m)2 − β2(xn+1,m − yn,m)2], (41)

where xn,m ≡ xn(mτ), yn,m ≡ yn(mτ) and m1,2 ≡ M1,2

τ2 . We are looking for xn,m and yn,m as
bounded solutions written as a modulation of the harmonic wave solutions of the linearized
equations which one obtains when setting ε = 0. The harmonic waves are given by

En,m = ei[kn−ω(k)m], (42)

with ω(k) real for any real value of k. The physical reason for choosing harmonic waves is
that the atoms of the chain make only small oscillations around their equilibrium position.
When we introduce this ansatz into Eqs. (40) and (41), we realize at once that the solution
of the nonlinear equations of motion can be represented as a modulated linear combination
of harmonic functions.

A solution of the linear part of Eqs. (40) and (41) (β1 = β2 = 0), written in terms of
the harmonic waves (42), is given by

xn,m = AEn,m, yn,m = BEn,m,

where

B

A
= r ≡ k1 + k2 + 2m1(cos ω(k) − 1)

k1 + k2e−ik
=

k1 + k2e
ik

k1 + k2 + 2m2(cos ω(k) − 1)
, (43)

with the dispersion relation

ω(k) = arc cos

{
1 − 1

4m1m2

[
(k1 + k2)(m1 + m2)

±
√

(k1 + k2)2(m1 + m2)2 − 16k1k2m1m2sin
2 k

2

]}
. (44)

It can be proved that the term inside the square root of the dispersion relation is always
positive, so that the argument of “arccos” is always real.

In Eq. (44), the positive sign corresponds to the optical branch ωopt(k), whereas the
negative one to the acoustical branch ωac(k). It can be proved that the function ω(k) is real
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for all real values of k iff the temporal scale τ satisfies the following inequalities:

τ ≤
√

4M1M2

(k1 + k2)(M1 + M2)
≡ τo (45)

for the optical branch, and

τ ≤
√

8M1M2

(k1 + k2)(M1 + M2) −
√

(k1 + k2)2(M1 + M2)2 − 16k1k2M1M2

≡ τa (46)

for the acoustical one. It is easy to show that τa is always larger than τo. In Figs. 3, 4 we
show how ω(k) varies as a function of τ . We have chosen, following Campa [9], the following
numerical values for the parameters, M1 = 1, M2 = 1.5, k1 = 1 and k2 = 0.3, so that
τo � 1.358732 and τa � 2.910816. So the obtained threshold values τo and τa are consistent
with the request that τ , the discretization parameter, be smaller than one.

Let us seek a finite amplitude solution of the nonlinear system (40), (41). To do so, we
write xn,m and yn,m in terms of the harmonics of the linearized Eq. (42)

xn,m =
∞∑

s=0

Gs
n,m(En,m)s +

∞∑
s=1

Ḡs
n,m(En,m)−s, (47)

yn,m =
∞∑

s=0

Hs
n,m(En,m)s +

∞∑
s=1

H̄s
n,m(En,m)−s, (48)

where, as the variables xn,m and yn,m are real, (Ḡs
n,m, H̄s

n,m) are the complex conjugates
of the modulation coefficients (Gs

n,m,Hs
n,m). We choose Gs

n,m = gs
n1,m1,m2

and Hs
n,m =

hs
n1,m1,m2

as slowly varying functions of the second order in n1 and m1 and of the first order

Fig. 3. Graph of ω(k) against k, with k lying in the interval [0, π]. We have chosen M1 = 1, M2 = 1.5,

k1 = 1, k2 = 0.3 and τ = 10−1/2.



October 8, 2010 8:54 WSPC/1402-9251 259-JNMP S1402925110000957

Discrete Multiscale Analysis 369

Fig. 4. Graph of ω(k) against k, with k lying in the interval [0, π]. The parameters M1, M2, k1, and k2 are
the same as in Fig. 4, but τ = τo.

in m2, defined in such a way to avoid secular terms. Moreover we expand the functions
gs
n1,m1,m2

and hs
n1,m1,m2

in the small parameter ε. So we have:

Gs
n,m ≡

∞∑
l=0

εlg(s,l)
n1,m1,m2

, (49)

Hs
n,m ≡

∞∑
l=0

εlh(s,l)
n1,m1,m2

. (50)

4.2. Derivation of the equations of motion

Substituting ansatz (47), (48) into the equations of motion (40), (41) and taking into account
Eqs. (49) and (50) we get two equations of the form

∞∑
s=0

∞∑
l=0

εlF (s,l)
n1,m1,m2

(En,m)s +
∞∑

s=0

∞∑
l=0

εlF̄ (s,l)
n1,m1,m2

(En,m)−s = 0, (51)

where the F
(s,l)
n1,m1,m2 are function only of the slow variables. As (En,m)s and (En,m)−s are

independent functions, its coefficients must be equal to zero. So for each power of (En,m)
and ε we get sets of equations F

(s,l)
n1,m1,m2 = 0 for the slow varying modulation coefficients

g
(s,l)
n1,m1,m2 and h

(s,l)
n1,m1,m2 together with their complex conjugate.

4.2.1. ε0

We look here for the linearized terms. In this case, the coefficient of the zeroth harmonic
satisfies the equation

g(0,0)
n1,m1,m2

= h(0,0)
n1,m1,m2

, (52)
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whereas the coefficients of the first harmonics gives a set of two equations that are identically
satisfied when ω(k) satisfies the dispersion relation (44) and

h
(1,0)
n1,m1,m2

g
(1,0)
n1,m1,m2

= r. (53)

It can be proven easily that, for q ≥ 2, g(q,0)
n1,m1,m2 = h

(q,0)
n1,m1,m2 = 0.

4.2.2. ε1

The coefficients of the zeroth harmonic are

h(0,1)(x1, t1, t2) = g(0,1)(x1, t1, t2) +
hL1k2

k1 + k2

∂g(0,0)(x1, t1, t2)
∂x1

+
2

k1 + k2
[β2|1 − e−ikr|2 − β1|1 − r|2]|g(1,0)(x1, t1, t2)|2, (54)

or

h(0,1)
n1,m1,m2

= g(0,1)
n1,m1,m2

+
L1k2

2(k1 + k2)
(g(0,0)

n1+1,m1,m2
− g

(0,0)
n1−1,m1,m2

)

+
2

k1 + k2
[β2|1 − e−ikr|2 − β1|1 − r|2]|g(1,0)

n1,m1,m2
|2, (55)

depending if we use the expansions in terms of derivatives or differences.
For s = 1 we find a system of two equations in the two unknowns, g

(1,1)
n1,m1,m2 and

h
(1,1)
n1,m1,m2 . This system is compatible only if

g(1,0)
n1,m1,m2

≡ g(1,0)
n2,m2

, (56)

where n2 = n1 − m1 and

h(1,1)
n1,m1,m2

= rg(1,1)
n1,m1,m2

+
2i sin ωm1ω,k + k2re

−ik

2(k1 + k2e−ik)
L1(g

(1,0)
n2+1,m2

− g
(1,0)
n2−1,m2

), (57)

where ω,k ≡ dω
dk = L2

L1
, with L1 and L2 given in Appendix A.1 by Eqs. (72) and (73). The

differential version of Eq. (56) is

g(1,0)(x1, t1, t2) ≡ g(1,0)(x2, t2),

where x2 ≡ hn2 = h(n1 − m1) = x1 − h
τ t1, and

h(1,1)(x1, t1, t2) = rg(1,1)(x1, t1, t2) +
2i sin ωm1ω,k + k2re

−ik

k1 + k2e−ik
hL1

∂g(x2, t2)(1,0)

∂x2
. (58)

For the second harmonic we get

g(2,1)
n1,m1,m2

= K1g
(1,0)2
n1,m1,m2

, (59)

h(2,1)
n1,m1,m2

= K2g
(1,0)2
n1,m1,m2

, (60)

where K1 and K2 are given in Appendix A.1 by Eqs. (75) and (76). It can be easily proven
that, for q ≥ 3, g(q,1)

n1,m1,m2 = h
(q,1)
n1,m1,m2 = 0.
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4.2.3. ε2

Taking into account Eq. (56), the zeroth harmonic gives a system of two equations that is
satisfied only if

L2
1(g

(0,0)
n2+1,m2

+ g
(0,0)
n2−1,m2

− 2g(0,0)
n2,m2

) = L1
c0

2
(|g(1,0)

n2+1,m2
|2 − |g(1,0)

n2−1,m2
|2)

+ L1
c1

2
{g(1,0)

n2,m2
(ḡ(1,0)

n2+1,m2
− ḡ

(1,0)
n2−1,m2

) + ḡ(1,0)
n2,m2

(g(1,0)
n2+1,m2

− g
(1,0)
n2−1,m2

)}, (61)

where c0 and c1 are two real constants given in Appendix A.3. Defining

An2,m2 ≡ L1(g
(0,0)
n2+1,m2

− g(0,0)
n2,m2

) − c0

2
(|g(1,0)

n2+1,m2
|2 + |g(1,0)

n2,m2
|2)

− c1

2
(g(1,0)

n2,m2
ḡ
(1,0)
n2+1,m2

+ ḡ(1,0)
n2,m2

g
(1,0)
n2+1,m2

), (62)

Eq. (61) reads:

An2+1,m2 − An2,m2 = 0. (63)

Thus An2,m2 = C(m2), where C(m2) is an arbitrary function of m2. Using the fact that
g
(0,0)
n2,m2 is a slowly varying function in n2 we have

L1(g
(0,0)
n2+1,m2

− g
(0,0)
n2−1,m2

) = c0(|g(1,0)
n2+1,m2

|2 + |g(1,0)
n2,m2

|2)

+ c1(g(1,0)
n2,m2

ḡ
(1,0)
n2+1,m2

+ ḡ(1,0)
n2,m2

g
(1,0)
n2+1,m2

) + C(m2). (64)

Equation (64) written in terms of the derivatives reads:

hL1
∂g(0,0)(x2, t2)

∂x2
= (c0 + c1)|g(1,0)

n2,m2
|2 +

C(m2)
2

. (65)

If we transform the derivatives of Eq. (65) into differences (using again Eq. (18), and
recalling that x2 = hn2), we have

L1(g
(0,0)
n2+1,m2

− g
(0,0)
n2−1,m2

) = 2(c0 + c1)|g(1,0)
n2,m2

|2 + C(m2), (66)

an equation simpler than Eq. (64). This difference is due to the fact that Eq. (65) is obtained
using the Leibniz’s rule and an integration, while in the case of Eq. (64) the Leibniz’s rule
is not applicable as we deal with differences.

Finally, for s = 1, we get a system of two equations in the two unknowns, g
(1,2)
n2,m2 and

h
(1,2)
n2,m2 , which is compatible and not–secular only if

iB1(g
(1,0)
n2,m2+1 − g

(1,0)
n2,m2−1) + B2L

2
1(g

(1,0)
n2+1,m2

+ g
(1,0)
n2−1,m2

− 2g(1,0)
n2,m2

)

+ B3|g(1,0)
n2,m2

|2g(1,0)
n2,m2

+ {B4(|g(1,0)
n2+1,m2

|2 + |g(1,0)
n2,m2

|2) + B5(g(1,0)
n2,m2

ḡ
(1,0)
n2+1,m2

+ ḡ(1,0)
n2,m2

g
(1,0)
n2+1,m2

) + B6C(m2)}g(1,0)
n2,m2

= 0. (67)

Here the coefficients Bi(i = 1, . . . , 6) are real and given in Appendix A.3. This is a NLSE
on the lattice. At difference from the standard discrete–time NLS equation presented by
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Ablowitz and Ladik [1], this is completely local but not integrable [28, 39]. In the develop-
ment of xn,m and yn,m, g

(1,0)
n2,m2 is the main term which multiplies ε0 and En,m. If we require

that g
(s,l)
n2,m2 and h

(s,l)
n2,m2 are localized with respect to n2, we have to set C(m2) = 0 and

Eq. (67) becomes

iB1(g
(1,0)
n2,m2+1 − g

(1,0)
n2,m2−1) + B2L

2
1(g

(1,0)
n2+1,m2

+ g
(1,0)
n2−1,m2

− 2g(1,0)
n2,m2

) + B3|g(1,0)
n2,m2

|2g(1,0)
n2,m2

+ {B4(|g(1,0)
n2+1,m2

|2 + |g(1,0)
n2,m2

|2) + B5(g(1,0)
n2,m2

ḡ
(1,0)
n2+1,m2

+ ḡ(1,0)
n2,m2

g
(1,0)
n2+1,m2

)}g(1,0)
n2,m2

= 0. (68)

5. Continuum Limit of the Discrete NLS

Equation (68) is obtained from Eqs. (40) and (41) by discretizing the continuous time
variable. This discretization was necessary to be able to solve the l = 1, s = 1 system which
otherwise would have been an unsolvable linear differential difference wave equation. By
discretizing we get a discrete wave equation whose general solution is given by an arbitrary
function of a discrete variable.

It is interesting to perform the limit when the discrete time m1 is transformed into a
continuous t–variable. To do so, we take the limit when τ goes to zero and m tends to ∞
in such a way that the product τm = t is finite. So Eq. (68) becomes the integrable NLSE

iA1
∂g(1,0)(z2, t2)

∂t2
+ A2

∂2g(1,0)(z2, t2)
∂z2

2
+ [A3|g(1,0)(z2, t2)|2 + A4C(t2)]g(1,0)(z2, t2) = 0,

(69)

where t2 = limτ→0 limm→∞ τm2 and z2 = 1
N (n1 − dΩ

dk t1) is a new continuous variable. The
coefficients Ai(i = 1, . . . , 4) in this limit are finite and real, and are given by

A1 = lim
τ→0

2τB1 = −Ω
(M1 + M2)(k1 + k2) − 2M1M2Ω2

k1 + k2 − M2Ω2
,

A2 = lim
τ→0

B2 =
[(M1 + M2)(k1 + k2) − 2M1M2Ω2)](Ω,k)2 − M1M2(Ω,k)2 − k1k2 cos k

k1 + k2 − M2Ω2
,

A3 = lim
τ→0

(B3 + 2B4 + 2B5) = lim
τ→0

(B3 + 2(c0 + c1)B6)

= −2β2
1(R̄ − 1)

{
(R − 1)|R − 1|2 2k2(1 − cos k) − (M1 + M2)Ω2

D

+
2(R − 1)
k1 + k2

|1 − R|2
}

+ 2β2
2(1 − R̄eik)

{
−(1 − Re−ik )

× |1 − Re−ik|2 2k1(1 − cos k) − (M1 + M2)Ω2

D
+

2(Re−ik − 1)
k1 + k2

|1 − Re−ik|2
}

+ 2β1β2(R̄ − 1)
{

(R̄ − 1)(1 − Re−ik)2
(M2 + M1e

2ik)Ω2

D
+

2(R − 1)
k1 + k2

|1 − Re−ik|2
}
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+ 2β1β2(1 − R̄eik)
{

(R − 1)2(1 − R̄eik)
(M2 + M1e

−2ik)Ω2

D

+
2(1 − Re−ik)

k1 + k2
|1 − R|2

}
+ 2gA4,

A4 = lim
τ→0

B6 =
k1β2|1 − Re−ik|2 + k2β1|1 − R|2

k1 + k2
,

where

g = lim
τ→0

(c1 + c2)
2β2k1|1 − Re−ik|2 + 2β1k2|1 − R|2
(M1 + M2)(k1 + k2)(Ω,k)2 − k1k2

,

D = [k1 + k2 − M1Ω2][k1 + k2 − M2Ω2] − (k2
1 + k2

2 + 2k1k2 cos 2k), (70)

and

R = lim
τ→0

r =
k1 + k2 − M1Ω2

k1 + k2e−ik
.

Ω(k) = limτ→0
ω(k)

τ gives back the continuous dispersion relation [9].

6. Conclusions

In this work, introducing the concepts necessary for applying the perturbative multiscale
method to discrete equations we have obtained a rescaled discrete equation. We have applied
this technique to a biatomic chain model. In this way we have shown that we can perform
in a coherent way a multiscale expansion on the lattice. If we want to remain on the lattice
and want to avoid nonlocality then we need to restrict ourselves to slow–varying functions.
This restriction on the class of function implies that some of the properties of the starting
system will be lost. Among them by sure that of the integrability, which is strictly related
to the analytic properties of the solutions.

We have found that g(1,0) (the slowly varying coefficient of the first harmonic) satisfies
a totally discrete local version of the discrete NLSE. One interesting feature of our discrete
NLSE is that, when we perform the continuous limit in the time variable, the spatial variable
becomes continuous, and we get the continuous integrable NLSE (69) as in the work by
Campa et al. [9].

A. Appendix

A.1. g(1,1)
n2,m2

and h(1,1)
n2,m2

Let us consider the expansion of the equations of motion with l = s = 1. In this case we
get a system of two equations in two unknowns, g

(1,1)
n1,m1,m2 and h

(1,1)
n1,m1,m2 , that is compatible

only if

[(k1 + k2)(m1 + m2) + 4m1m2(cos ω − 1)] sin(ω)L2(g
(1,0)
n1,m1+1,m2

− g
(1,0)
n1,m1−1,m2

) + k1k2 sin kL1(g
(1,0)
n1+1,m1,m2

− g
(1,0)
n1−1,m1,m2

) = 0. (71)
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It is convenient to choose

L1 = S sin(ω)[(k1 + k2)(m1 + m2) + 4m1m2(cos ω − 1)] (72)

and

L2 = Sk1k2 sin k, (73)

where S is a real number such that L1(L2) is an integer number. In terms of L1 and L2 the
dispersion relation becomes ω,k = L2

L1
. With this choice of L1 and L2, and assuming that

g
(1,0)
n1,m1,m2 = g

(1,0)
n2,m2, with n2 ≡ n1 − m1, we find that Eq. (71) is satisfied. Thus the system

of equations we are studying is compatible, and leads us to the Eq. (57).

A.2. The discrete NLSE

In this Appendix, we show the steps necessary to find the discrete NLSE (68). First, we
take the equations of motion, and select the harmonic s = 1 with l = 2. In this way we get
a system of two equations in the two unknowns g

(1,2)
n2,m2 and h

(1,2)
n2,m2 , which is compatible only

if the nonhomogeneous first order difference equation

[(k1 + k2)(m1 + m2) + 4m1m2(cos ω − 1)] sin(ω)L2(g
(1,1)
n1,m1+1,m2

− g
(1,1)
n1,m1−1,m2

) + k1k2 sin kL1(g
(1,1)
n1+1,m1,m2

− g
(1,1)
n1−1,m1,m2

)

= F (g(0,0)
n2+1,m2

, g
(0,0)
n2−1,m2

, g(1,0)
n2,m2

), (74)

is satisfied. Here F ≡ F (g(0,0)
n2±1,m2

, g
(1,0)
n2,m2) is a given nonhomogeneous term. As the l.h.s. of

this equation is the same as that of Eq. (71) (but with g
(1,1)
n2±1,m2

replaced by g
(1,0)
n2±1,m2

), the
terms depending on g(1,0) contained in F lead to secular terms for the unknown g(1,1). To
avoid secular terms, we must set F = 0 and Eq. (74) gives g

(1,1)
n1,m1,m2 = g

(1,1)
n2,m2 .

If we substitute g(0,0) given by Eq. (64) into F = 0, then this condition will give Eq. (68)
written in terms of g(1,0).

A.3. Constants

We give here the expressions of the coefficients appearing in Eqs. (59), (60), (64) and (68):

(1) Eqs. (59) and (60).

K1 ≡ {β1(r − 1)2[k1 + k2e
ik − r(k1 + k2e

−2ik)]

−β2(1 − re−ik)2[k1 + k2e
ik − r(k1e

2ik + k2)]}/{rD}, (75)

K2 ≡ {β1(r − 1)2[k1 + k2e
2ik − r(k1 + k2e

−ik)]

−β2(1 − re−ik)2[k1 + k2e
2ik − r(k1e

2ik + k2e
ik)]}/{D}, (76)

where

D = [2m1(cos 2ω − 1) + k1 + k2][2m2(cos 2ω − 1) + k1 + k2]

− (k2
1 + k2

2 + 2k1k2 cos 2k). (77)
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(2) Eq. (64):

c0 ≡ −2k2[β2|1 − re−ik|2 + β1|1 − r|2]
(m1 + m2)(k1 + k2)(ω,k)2 − k1k2

,

c1 ≡ 2β2(k1 + k2)|1 − re−ik|2
(m1 + m2)(k1 + k2)(ω,k)2 − k1k2

.

(3) Eq. (68):

B1 = − sin (ω)
(m1 + m2)(k1 + k2) + 4m1m2(cos ω − 1)

2m2(cos ω − 1) + k1 + k2
,

B2 =

[(m1 + m2)(k1 + k2) + 4m1m2(cos ω − 1)]

cos(ω)(ω,k)2 − m1m2sin
2(ω)(ω,k)2 − k1k2 cos k

k1 + k2 + 2m2(cos ω − 1)
,

B3 = −2β2
1(r̄ − 1)

{
(r − 1)|r − 1|2 2k2(1 − cos k) + 2(m1 + m2)(cos ω − 1)

D

+
2(r − 1)
k1 + k2

|1 − r|2
}

+ 2β2
2(1− r̄eik)

{
−(1 − re−ik)|1 − re−ik|2 2k1(1− cos k)+2(m1+m2)(cos ω−1)

D

+
2(re−ik − 1)

k1 + k2
|1 − re−ik|2

}

+ 2β1β2(r̄ − 1)
{

(r̄ − 1)(1 − re−ik)2
−2e2ikm1(cos ω − 1) − 2m2(cos ω − 1)

D

+
2(r − 1)
k1 + k2

|1 − re−ik|2
}

+ 2β1β2(1 − r̄eik)
{

(r − 1)2(1 − r̄eik)
−2e−2ikm1(cos ω − 1) − 2m2(cos ω − 1)

D

+
2(1 − re−ik)

k1 + k2
|1 − r|2

}
,

B4 = c0B6,

B5 = c1B6,

B6 =
k1β2|1 − re−ik|2 + k2β1|1 − r|2

k1 + k2
.
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