
Journal of Nonlinear Mathematical 
Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251 
Journal Home Page: https://www.atlantis-press.com/journals/jnmp 

Peakons Arising as Particle Paths Beneath Small-Amplitude Water 

Waves in Constant Vorticity Flows 

Delia Ionescu-Kruse 

To cite this article: Delia Ionescu-Kruse (2010) Peakons Arising as Particle Paths Beneath 

Small-Amplitude Water Waves in Constant Vorticity Flows, Journal of Nonlinear 

Mathematical Physics 17:4, 415–422, DOI: 

https://doi.org/10.1142/S140292511000101X 

To link to this article: https://doi.org/10.1142/S140292511000101X 

Published online: 04 January 2021 

https://www.atlantis-press.com/journals/jnmp


January 20, 2011 14:17 WSPC/1402-9251 259-JNMP S140292511000101X

Letter

Journal of Nonlinear Mathematical Physics, Vol. 17, No. 4 (2010) 415–422

c© D. Ionescu-Kruse
DOI: 10.1142/S140292511000101X

PEAKONS ARISING AS PARTICLE PATHS
BENEATH SMALL-AMPLITUDE WATER WAVES

IN CONSTANT VORTICITY FLOWS

DELIA IONESCU-KRUSE

Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, RO-014700, Bucharest, Romania

Delia.Ionescu@imar.ro

Received 10 April 2010
Accepted 16 June 2010

We present a new kind of particle path in constant vorticity water of finite depth, within the
framework of small-amplitude waves.
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1. Introduction

A peakon is a soliton with discontinuous first derivative [17]. The concept was introduced
in 1993 by Camassa and Holm in the paper [4], where they derived the CH shallow water
equation

ut + 2κux + 3uux − utxx = 2uxuxx + uuxxx, (CH) (1.1)

(x, t) ∈ R × (0,∞), κ being a real constant. Alternative derivations of CH equation are
provided in the papers [22, 9, 19]. The peakons arise as solution of this equation for κ = 0.
The CH peakons are given by

u(x, t) = c exp(−|x − ct|), c ∈ R. (1.2)

Since peakon solutions are only piecewise differentiable, they must be interpreted in a
suitable weak sense. The derivative

ux = −c sgn(x − ct) exp(−|x − ct|) (1.3)

has a jump discontinuity at the peak. The second derivative uxx must be taken in the sense
of distributions and will contain a Dirac delta function

uxx = c exp(−|x − ct|) − 2cδ(x − ct). (1.4)
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The function m is defined by

m(x, t) := u − uxx = 2cδ(x − ct). (1.5)

Physically m has the interpretation of momentum [4, 18].
The peakon (1.2) has amplitude c and travels at speed c. At x = ct the momentum (1.5)

blows up at +∞.
A small perturbation of a CH peakon yields another one which remains close to some

translate of the initial one at all later times. In this sense the CH peakons are orbitally
stable [10]. Of particular interest is the description of peakon dynamics in terms of a system
of completely integrable Hamiltonian equations for the locations of the peaks of the solution.
Thus, each peakon solution can be associated with a mechanical system of moving particles.
Being solitons, they retain their shape and speed after interacting with other peakons [1].
The peakon interaction plays an important role in the general dynamics of the solutions to
the equation (see the discussion in [16]) and provided the framework for the construction
of global weak solutions both in the conservative case [2] as well as in the dissipative
case [3]. One of the main interests in CH equation was that, in contrast to other standard
shallow water equations, as for example the KdV equation, it models breaking waves: smooth
solutions that develop singularities in finite time, the solution being bounded but its slope
becoming unbounded. This fact was already noted in [4] and subsequently proved in [6].

Another completely integrable CH-type equation which has peakon solutions [13] is the
Degasperis–Procesi equation [14]

ut + 4uux − utxx = 3uxuxx + uuxxx, (DP) (1.6)

(x, t) ∈ R × (0,∞). The DP equation possesses not only peaked solitons (1.2) but also
discontinuous solitons, so-called shock-peakons [25] of the form

u(x, t) = c exp(−|x|) − 1
t + k

sgn(x) exp(−|x|), k > 0. (1.7)

At the peak they have a finite jump in the function u itself. The shock-peakon solutions
must be interpreted in a proper weak formulation. The derivative ux will contain δ and the
function m := u−uxx will be a linear combination of δ and δ′ distributions. It is not known
to the author if the function m can be in this case interpreted as momentum. We point out
that the CH equation with κ = 0, κ �= 0, is a geodesic equation on the diffeomorphism group
of the circle [8], respectively on the Bott–Virasoro group [26, 7], while the DP equation is
a non-metric equation [15].

The shock-peakon (1.7) moves at constant speed c (in particular, does not move if
c = 0 [25]) which is equal to the average amplitude at the jump. The shock “dissipates
away” like 1/t as t → +∞.

The peakons of the DP equation are also true solitons that interact via elastic collisions
under the DP dynamics [24], and are also orbitally stable [23].

In what follows we will see that in the study of particle motion beneath small-amplitude
water waves in constant vorticity flows a peakon trajectory comes up. This solution contains
arctanh(·) function, having a vertical asymptote in the positive direction.
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2. Particle Path Beneath Small-Amplitude Water Waves
in Constant Vorticity Flows

We consider two-dimensional gravity waves on constant vorticity water of finite depth. They
are described, in non-dimensional scaled variables, by the following boundary value problem
(see, for example [21]):

ut + ε(uux + vuz) = −px

δ2[vt + ε(uvx + vvz)] = −pz

ux + vz = 0

uz = δ2vx +
√

gh0

g
ω0

v = ηt + εuηx on z = 1 + εη(x, t)

p = η on z = 1 + εη(x, t)

v = 0 on z = 0,

(2.1)

where (x, z) are the space coordinates, (u(x, z, t), v(x, z, t)) is the velocity field of the water,
p(x, z, t) denotes the pressure, g is the constant gravitational acceleration in the negative
z direction, ω0 being the constant vorticity. We have introduced the amplitude parameter
ε = a/h0 and the shallowness parameter δ = h0/λ, with a the amplitude of the wave and λ

the wavelength. h0 > 0 is the undisturbed depth of the fluid and z = 1 + εη(x, t) represent
the free upper surface of the fluid in non-dimensional scaled variables. The existence of
solutions of large and small amplitude was recently proved in [11] where it is also shown
that linearization provides an accurate approximation for waves of small amplitude.

By letting ε → 0, δ being fixed, we obtain a linear approximation of our problem, that is,

ut + px = 0

δ2vt + pz = 0

ux + vz = 0

uz = δ2vx +
√

gh0

g
ω0

v = ηt on z = 1

p = η on z = 1

v = 0 on z = 0.

(2.2)

The system (2.2) has the solution

η(x, t) = cos(2π(x − ct))

u(x, z, t) =
2πδc

sinh(2πδ)
cosh(2πδz) cos(2π(x − ct)) +

ω0
√

gh0

g
z + c0

v(x, z, t) =
2πc

sinh(2πδ)
sinh(2πδz) sin(2π(x − ct))

p(x, z, t) =
2πδc2

sinh(2πδ)
cosh(2πδz) cos(2π(x − ct))

(2.3)
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with the non-dimensional speed of the linear wave given by

c2 =
tanh(2πδ)

2πδ
. (2.4)

Let (x(t), z(t)) be the path of a particle in the fluid domain, with location (x(0), z(0)) :=
(x0, z0) at time t = 0. The motion of the particles below the small-amplitude gravity water
waves given by (2.3), is described by the following system of differential equations


dx

dt
= u(x, z, t) =

2πδc

sinh(2πδ)
cosh(2πδz) cos(2π(x − ct)) +

ω0
√

gh0

g
z + c0

dz

dt
= v(x, z, t) =

2πc

sinh(2πδ)
sinh(2πδz) sin(2π(x − ct)).

(2.5)

Notice that the constant c0 is the average of the horizontal fluid velocity on the bottom
over any horizontal segment of length 1, that is,

c0 =
1
1

∫ x+1

x
u(s, 0, t)ds. (2.6)

This is accordance with Stokes’ definition of the wave speed for irrotational flows (see the
discussion in [12]).

To study the exact solution of the system (2.5) it is more convenient to rewrite it in the
following moving frame

X = 2π(x − ct), Z = 2πδz. (2.7)

This transformation yields


dX

dt
=

4π2δc

sinh(2πδ)
cosh(Z) cos(X) +

ω0
√

gh0

gδ
Z + 2π(c0 − c)

dZ

dt
=

4π2δc

sinh(2πδ)
sinh(Z) sin(X).

(2.8)

We denote by

A :=
4π2δc

sinh(2πδ)
and Ω0 :=

ω0
√

gh0

gδ
. (2.9)

With the notations (2.9), the system (2.8) becomes:


dX

dt
= A cosh(Z) cos(X) + Ω0Z + 2π(c0 − c)

dZ

dt
= A sinh(Z) sin(X).

(2.10)

We write the second equation of this system in the form

dZ

sinh(Z)
= A sin X(t) dt. (2.11)
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Integrating, we get

log
[
tanh

(
Z

2

)]
=

∫
A sin X(t) dt. (2.12)

If ∫
A sin X(t) dt < 0 (2.13)

then

Z(t) = 2 arctanh
[
exp

(∫
A sin X(t) dt

)]
. (2.14)

Taking into account the formula:

cosh(2x) =
1 + tanh2(x)
1 − tanh2(x)

, (2.15)

and the expression (2.14) of Z(t), the first equation of the system (2.10) becomes

dX

dt
= A

1 + w2

1 − w2
cos(X) + 2Ω0 arctanh (w) + 2π(c0 − c), (2.16)

where we have denoted by

w = w(t) := exp
(∫

A sin X(t) dt

)
. (2.17)

With (2.13) in view, we have

0 < w < 1. (2.18)

From (2.17) we get

A sin X(t) =
1

w(t)
dw

dt
. (2.19)

Differentiating with respect to t this relation, we obtain

A cos(X)
dX

dt
=

1
w2

[
d2w

dt2
w −

(
dw

dt

)2
]

. (2.20)

From (2.19) we have furthermore

A2 cos2(X) = A2 − 1
w2

(
dw

dt

)2

. (2.21)

Thus, taking into account (2.20), (2.21), Eq. (2.16) becomes

d2w

dt2
+

2w
1 − w2

(
dw

dt

)2

− A2w
1 + w2

1 − w2

−
√

A2w2 −
(

dw

dt

)2

[2Ω0 arctanh (w) + 2π(c0 − c)] = 0. (2.22)
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We make the following substitution

ξ2(w) := A2w2 −
(

dw

dt

)2

. (2.23)

Differentiating with respect to t this relation, we get

ξ
dξ

dw
= A2w − d2w

dt2
. (2.24)

We replace (2.23), (2.24) into Eq. (2.22) and we obtain the equation

ξ
dξ

dw
+

2w
1 − w2

ξ2 + [2Ω0 arctanh(w) + 2π(c0 − c)]ξ = 0. (2.25)

A solution of Eq. (2.25) is

ξ = 0 (2.26)

which, in view of (2.23) and (2.19) implies

sin X(t) = ±1. (2.27)

Therefore, from (2.14) with the condition (2.13), and further from (2.7), a solution of the
system (2.5) is

x(t) = ct + k1

z(t) =
1
πδ

arctanh[exp(−A|t|)],
(2.28)

k1 being a constant. We observe that

lim
t→0

x(t) = k1, lim
t→0
t>0

z(t) = lim
t→0
t<0

z(t) = +∞ (2.29)

and

lim
t→±∞x(t) = ±∞, lim

t→±∞ z(t) = 0. (2.30)

Therefore, x = k1 will be a vertical asymptote and z = 0 will be a horizontal asymptote for
the curve (2.28). The graph of the parametric curve (2.28) is drawn in Fig. 1.

Fig. 1.
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Notice that within the setting of irrotational flows with no underlying current (see
[5]) there are no such paths but in the context of irrotational flows with an underlying
(uniform) current, the possibility of such paths was already noticed: see [12] for the exact
solutions, where this shape can be thought of as a limiting case of the situation depicted
in Fig. 4.4(ii), as well as [20] for the linearized problem, where somewhat similar particle
paths are encountered.
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