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There exists a particular class of boundary value problems for integrable nonlinear evolution equa-
tions formulated on the half-line, called linearizable. For this class of boundary value problems, the
Fokas method yields a formalism for the solution of the associated initial-boundary value problem,
which is as efficient as the analogous formalism for the Cauchy problem. Here, we employ this
formalism for the analysis of several concrete initial-boundary value problems for the nonlinear
Schrödinger equation. This includes problems involving initial conditions of a hump type coupled
with boundary conditions of Robin type.
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1. Introduction

A new method for analyzing initial-boundary value problems for nonlinear integrable evo-
lution equations, based on ideas of the inverse scattering transform was introduced in [1]
and further developed by several authors, see for example [2–6]. This, so-called “Fokas
method” is based on two novel ideas: (a) The derivation of an integral representation for
the solution which involves the formulation of a Riemann–Hilbert problem. This derivation
employs the simultaneous spectral analysis of both parts of the associated Lax pair (this is
to be contrasted with the inverse scattering transform method which employs the spectral
analysis of only the t-dependent part of the Lax pair). This integral representation involves
the nonlinear Fourier transforms of the boundary values. (b) The characterization of the
unknown boundary values in terms of the given boundary conditions. This involves the anal-
ysis of the so-called global relation [7, 2]. In general the global relation yields a nonlinear
Volterra integral equation. However, for a particular class of boundary conditions, called
linearizable, this “nonlinearity” can be bypassed, and one can characterize the unknown
boundary conditions using a linear procedure. In this case, the nonlinear Fourier transform
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of both the initial and the boundary conditions can be obtained via the spectral analysis of
the x-dependent part of the Lax pair, as well as via certain algebraic manipulations. Here,
we will analyze certain linearizable boundary value problems for the focusing nonlinear
Schrödinger equation (NLS).

Let q(x, t) satisfy the focusing NLS on the half-line

iqt + qxx + 2|q|2q = 0, 0 < x < ∞, t > 0. (1.1)

This equation admits the following types of linearizable boundary conditions:

q(0, t) = 0; qx(0, t) = 0; qx(0, t) − χq(0, t) = 0, χ ∈ R
∗. (1.2)

We will analyze three classes of Initial Boundary Value (IBV) problems. These problems
involve one of the boundary conditions (1.2), as well as initial conditions characterized by
the following three functions: (a) a soliton evaluated at t = 0; (b) a function describing a
hump; and (c) an exponential function.

Regarding (a) we note that the focusing NLS formulated on the line admits solitons.
Thus, we can construct a solution of the IBV problem by simply restricting a soliton solution,
denoted by qs(x, t), and choosing {q(x, 0) = qs(x, 0), q(0, t) = qs(0, t)}.

The IBV problem associated with a hump-shaped initial condition is defined as follows

q0(x) =




0, 0 ≤ x < x1

h, x1 ≤ x ≤ x2, h > 0

0, x2 < x < ∞
(1.3)

and

either q(0, t) = 0 or qx(0, t) = 0, t > 0. (1.4)

The eigenfunctions associated with the function q0(x) can be computed explicitly in
terms of trigonometric functions. This leads to an explicit formula for the functions a(k)
and ∆(k) defined in (2.3)–(2.6); the zeros of these functions characterize the asymptotic
behavior of the solution. Although the explicit formulae of a(k) and ∆(k) are complicated,
the relevant zeros can be computed numerically. In this way we find that as t → ∞, q0(x)
generates, as expected, a finite number of solitons, whose number depends on the area under
the graph of q0(x).

The IBV problem associated with an initial condition of an exponential function is
defined as follows

q(x, 0) =

{
erx, 0 ≤ x < s,

0, s < x < ∞ (1.5)

qx(0, t) − rq(0, t) = 0, t > 0 (1.6)

and we will consider two subcases, namely either r < 0, s = ∞ or r > 0, s < ∞.
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This paper is organized as follows: In Sec. 2, we review the main result of [6] and [3]
regarding linearizable IBV problems. In Secs. 3–5, we analyze the IBV problems mentioned
earlier.

2. Linearizable Conditions

Theorem 2.1. Let q(x, t) satisfy (1.1), the initial condition

q(x, 0) = q0(x), 0 < x < ∞
and the boundary condition

qx(0, t) − χq(0, t) = 0, χ ∈ R, t > 0. (2.1)

We define

Γχ(k) =
2k − iχ

2k + iχ

b(−k̄)
a(k)∆χ(k)

, χ ∈ R, k ∈ R
− ∪ iR+ (2.2)

and

∆χ(k) = a(k)a(−k̄) − 2k − iχ

2k + iχ
b(k)b(−k̄), χ ∈ R, arg k ∈ [0, π], (2.3)

where the functions a(k) and b(k) can be defined in terms of q0(x) as follows:(
b(k)
a(k)

)
= ϕ(0, k), (2.4)

where the vector-valued function ϕ(x, k) is defined in terms of q0(x) by

∂xϕ(x, k) + 2ik
(

1 0
0 0

)
ϕ(x, k) =

(
0 q0(x)

−q̄0(x) 0

)
ϕ(x, k), 0 < x < ∞, Im k ≥ 0, (2.5)

limx→∞ ϕ(x, k) =
(

0
1

)
. (2.6)

Assume that the initial and boundary conditions are compatible at x = t = 0. Further-
more assume that:

(i) a(k) has a finite number of simple zeros for Im k > 0.
(ii) ∆χ(k) has a finite number of simple zeros in the second quadrant which do not coincide

with any zero of a(k).

The solution q(x, t) can be constructed through equation

q(x, t) = 2i lim
k→∞

(kM(x, t, k))12 . (2.7)

where M satisfies the RH

• M is sectionally meromorphic in k ∈ C\{R ∪ iR}.
• M satisfies the jump condition

M−(x, t, k) = M+(x, t, k)J(x, t, k), k ∈ R ∪ iR,
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where M is M− for arg k ∈ [π2 , π]∪ [3π
2 , 2π], M is M+ for arg k ∈ [0, π

2 ]∪ [π, 3π
2 ], with jump

matrices

J(x, t, k) =




J4, arg k = 0,

J1, arg k =
π

2
,

J2 = J3J
−1
4 J1, arg k = π,

J3, arg k =
3π
2

,

(2.8)

with

J1 =
(

1 0
Γχ(k)e2iθ 1

)
, J4 =

(
1 −γ(k)e−2iθ

−γ̄(k)e2iθ 1 + |γ(k)|2
)

, J3 =

(
1 Γχ(k̄)e−2iθ

0 1

)
; (2.9)

θ(x, t, k) = kx + 2k2t; γ(k) = b(k)
ā(k) , k ∈ R (2.10)

and residues conditions

Res
kj

[M(x, t, k)]1 =
1

ȧ(kj)b(kj)
e2iθ(kj)[M(x, t, kj)]2, j = 1, . . . , n1 (2.11a)

Res
k̄j

[M(x, t, k)]2 =
1

¯̇a(kj)b̄(kj)
e−2iθ(k̄j)[M(x, t, k̄j)]1, j = 1, . . . , n1 (2.11b)

Res
λj

[M(x, t, k)]1 = Resλj
Γχ(k)e2iθ(λj )[M(x, t, λj)]2, j = 1, . . . ,Λ (2.11c)

Res
λ̄j

[M(x, t, k)]2 = Resλ̄j
Γχ(k̄)e−2iθ(λ̄j)[M(x, t, λ̄j)]1, j = 1, . . . ,Λ (2.11d)

where θ(kj) = kjx + 2k2
j t.

Proof. The derivation of the above result is given in [6].

In the particular cases when (2.1) is given by either

q(0, t) = 0 or qx(0, t) = 0,

the solution is given by (2.7) with χ = ∞ or χ = 0, respectively.

3. Solitons

The one-soliton solution of the focusing NLS is given by

qs(x, t) =
1
L

e
i
h

v
2
x−

“
v2

4
− 1

L2

”
t
i

cosh x−vt−x0
L

, (3.1)

where v, x0, L are positive constants. The functions qs(0, t) and (qs)x(0, t) satisfy the third
of the linearizable boundary conditions (1.2) provided that

v = 0 and χ =
1
L

tanh
x0

L
. (3.2)
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The fact that v vanishes, indicates that the relevant soliton is a stationary soliton. In
this case

q0(x) =
1

L cosh x−x0
L

. (3.3)

Hence, the definitions of a(k) and ∆(k) imply

a(k) =
k − i

2L tanh x0
L

k + i
2L

, ∆(k) =

(
k − iχ

2

) (
k − i

2L

)
(
k + iχ

2

) (
k + i

2L

) . (3.4)

Thus the zeros of a(k) and ∆(k) are given by k = i
2L tanh x0

L and k = i
2L .

4. Hump-Shaped Initial Profiles

The definition of a(k) for the function q0(x) defined in (1.3) yields

a(k) =
eikl

√−h2 − k2

[
−ik sinh

(
l
√

−h2 − k2
)

+
√

−h2 − k2 cosh
(
l
√

−h2 − k2
)]

, (4.1)

where l = x2 − x1. Using the transformation

k = ih sin θ, θ ∈ C, Re{sin θ} > 0, (4.2)

we find that a(k) = 0 is equivalent to the equation

A cos θ − θ = nπ +
π

2
, n ∈ Z, θ �= nπ +

π

2
, A = hl. (4.3)

Writing θ = γ + iδ, γ, δ ∈ R, it is straightforward to show that the solitons of (4.3)
which satisfy the condition of the transformation (4.2), i.e. Re{sin θ} > 0, exist only when
sin θ > 0. Hence, with no loss of generality, we can solve numerically equation (4.3) with
0 < θ < π

2 . The graph at Fig. 1 indicates that there exist finitely many zeros (the inter-
sections of the two graphs). The number of these zeros depends on the value of A and
particularly if A ∈ (mπ + π

2 , (m + 1)π + π
2 ), then there exist exactly m solutions θi, which

satisfy

A cos θi − θi = nπ +
π

2
, n ∈ Z. (4.4)

Hence, the set of the roots of a(k) is {ki, ki = ih sin θi}m
1 , where {θi}m

1 satisfy (4.4).
Using the definition of ∆χ(k) in Theorem 2.1 for χ = ∞ and 0, i.e. for q(0, t)= 0

and qx(0, t) = 0, t > 0, and denoting the corresponding values of ∆ by ∆+ and ∆−, we
obtain the following expressions:

∆±(k) = a(k)a(−k̄) ± b(k)b(−k̄), arg k ∈
[π
2
, π
]
.
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Fig. 1. The intersections of these plots correspond to the roots of a(k) = 0 for A = 13.

Using (4.2), we find that ∆±(k) = 0 are equivalent with the following equations

sin(2A cos θ − θ) sin θ ± 1 = 0. ((4.5)±)

We first consider Eq. (4.5)+. Writing again in (4.5)+, θ = γ + iδ, γ, δ ∈ R, we find that
the numerical plots of Re{sin(2A cos θ − θ) sin θ} = −1 and Im{sin(2A cos θ − θ) sin θ} = 0,
see Fig. 2, imply again that there exists only a finite number of solutions (the intersections of
the two graphs). The number of these solutions depends on the value of A, and in particular
if A ∈ ((m − 1

2)π
√

2
2 , (m + 1

2)π
√

2
2 ), then there exist exactly m solutions θi, which satisfy

sin(2A cos θi − θi) sin θi + 1 = 0. (4.6)

Hence the set of the roots of d(k) is {λi, λi = ih sin θi}m
1 , where {θi}m

1 satisfy (4.6).

Fig. 2. The intersections of these plots are corresponding to the roots of d(k) = 0 for A =
5
2

π
√

2
2 , 6

2
π
√

2
2 , 7

2
π
√

2
2 , respectively.
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The analysis of Eq. (4.5)− is similar. In particular, if A ∈ ((m − 1)π
√

2
2 ,mπ

√
2

2 ), there
exist exactly m solutions θi, which satisfy

sin(2A cos θi − θi) sin θi − 1 = 0. (4.7)

Hence the set of the roots of d(k) is {λi, λi = ih sin θi}m
1 , where {θi}m

1 satisfy (4.7).

5. Exponential Initial Profiles

In this section we first consider the case q0(x) = erx, r < 0, x > 0. The definition of a(k)
for this initial condition yields the following expression:

a(k) =
(2a)−

1
2
+i k

r

Γ
(

1
2 − ik

r

)
cosh kπ

r

I− 1
2
+i k

r

(
−1

r

)
, (5.1)

where Ia(x) denotes the modified Bessel function of the first kind and Γ(z) is the Euler
gamma function. Making the transformation k = −irν, Re ν > 0, we conclude that the
zeros of a(k) coincide with the zeros of Iν− 1

2
(−1

r ). Arguments analogous with those used
in Sec. 4, imply that the roots of this Bessel function exist only when ν > 0. Figure 3
implies that there exist finitely many zeros depending on the value of r. In particularly, if
−1

r ∈ (mπ − π
2 ,mπ + π

2 ), then there exist exactly m solutions νi. Note that the area below
the graph of the initial data q0(x) = erx is given by A(r) = −1

r .
The computation of ∆χ(k) with χ = r shows that the roots of d(k) have the same

distribution on the imaginary axis, as the roots of a(k). Hence, asymptotically there exist
finitely many stationary solitons and the number of these solitons depends only on the area
under the graph of the initial condition.

We now discuss the subcase {r > 0, s < ∞}. In this case the formulae of a(k) and ∆(k)
are more complicated. Actually, a(k) is given by

a(k) = −ers(1
2
+i k

r )π
2r

[
I 1

2
+i k

r

(
ers

r

)
I− 1

2
−i k

r

(
1
r

)
− I 1

2
+i k

r

(
1
r

)
I− 1

2
−i k

r

(
ers

r

)]
. (5.2)

Using arguments similar with those used in the previous case, it can be shown that the
zeros of the functions a(k) and ∆(k) are on the imaginary axis and depend again on the
area below the graph of the initial condition,

A(r, s) =
ers

r
− 1

r
.

Fig. 3. The plot of Iν− 1
2
(− 1

r ) with ν > 0 and − 1
r = 5π

2 , 6π
2 , 7π

2 , respectively.
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