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In the recent paper by one of the authors (MBS) and A. A. Malykh on the classification of second-
order PDEs with four independent variables that possess partner symmetries [1], mixed heavenly
equation and Husain equation appear as closely related canonical equations admitting partner sym-
metries. Here for the mixed heavenly equation and Husain equation, formulated in a two-component
form, we present recursion operators, Lax pairs of Olver–Ibragimov–Shabat type and discover their
Lagrangians, symplectic and bi-Hamiltonian structure. We obtain all point and second-order sym-
metries, integrals and bi-Hamiltonian representations of these systems and their symmetry flows
together with infinite hierarchies of nonlocal higher symmetries.

Keywords: Symmetries; integrals; Noether theorem; Lax pair; symplectic two-form; bi-Hamiltonian
representation.

1. Introduction

In the recent paper [1], one of the authors (MBS) and A. A. Malykh obtained, up to
a change of notation for independent variables, the general form of second-order partial
differential equations (PDEs) with four independent variables t, x, y, z, that possess partner
symmetries [2–5] and contain only second derivatives of the unknown u:

F = a1(utyuxz − utzuxy) + a2(utxuty − uttuxy) + a3(utyuxx − utxuxy)

+ a4(utxutz − uttuxz) + a5(utzuxx − utxuxz) + a6(uttuxx − u2
tx)

+ b1uxy + b2uty + b3uxz + b4utz + b5utt + 2b6utx + b7uxx + b0 = 0, (1.1)

with constant coefficients ai and bi. Partner symmetries, that make it possible to
obtain noninvariant solutions of PDEs of the form (1.1), are generated by the recursion
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relation:

ϕ̃t = −(a2uty + a4utz − a6utx + b6 − ω0)ϕt − (a3uty + a5utz + a6utt + b7)ϕx

+ (a1utz + a2utt + a3utx − b1)ϕy + (−a1uty + a4utt + a5utx − b3)ϕz ,
(1.2)

ϕ̃x = −(a2uxy + a4uxz − a6uxx − b5)ϕt − (a3uxy + a5uxz + a6utx − b6 − ω0)ϕx

+ (a1uxz + a2utx + a3uxx + b2)ϕy + (−a1uxy + a4utx + a5uxx + b4)ϕz,

where ϕ and ϕ̃ are symmetry characteristics [6] and ω0 is a constant. In (1.1) and (1.2),
subscripts denote partial derivatives. The transformation (1.2) maps any symmetry ϕ of
Eq. (1.1) into its partner symmetry ϕ̃.

In [1], we also listed canonical forms to which the general form (1.1) can be reduced by
point and Legendre transformations. Among these forms we find, along with the first and
second heavenly equations of Plebañski [7], a new equation that looks, up to a point, like
the combination of these two equations, which we called mixed heavenly equation:

utyuxz − utzuxy + uttuxx − u2
tx = ε, (1.3)

where ε = ±1. Recursion relation (1.2) for symmetries of Eq. (1.3) becomes

ϕ̃t = (utx + ω0)ϕt − uttϕx + utzϕy − utyϕz,
(1.4)

ϕ̃x = uxxϕt − (utx − ω0)ϕx + uxzϕy − uxyϕz.

Note that in our classification heavenly equations of Plebañski belong to equivalence classes
different from the one to which the mixed heavenly equation belongs, that is, they cannot
be related neither by point nor by Legendre transformations.a

Another form of a canonical equation from the same equivalence class coincides, at
ε = +1, with the Husain heavenly equation:

utyuxz − utzuxy + utt + εuxx = 0, (1.5)

which is an alternative form of a basic self-dual gravity equation arising in the chiral model
approach to self-dual gravity [9, 10]. Recursion relation (1.2) for symmetries of Eq. (1.5)
takes the form

ϕ̃t = utzϕy − utyϕz − εϕx + ω0ϕt,
(1.6)

ϕ̃x = uxzϕy − uxyϕz + ϕt + ω0ϕx.

Though Eq. (1.5) can be obtained from the mixed heavenly equation (1.3) by Leg-
endre transformation (7.2), the main objects of the Hamiltonian formulation of Husain
equation, like Lagrangian, symplectic two-form, Hamiltonian operators and Hamiltonian
densities cannot be obtained that way. Therefore, we study Lax representation, symplectic
and Hamiltonian structures of Eq. (1.5) independently of those of Eq. (1.3).

In this paper, we consider mixed heavenly equation and Husain equation in a two-
component form, which enables us to rewrite the corresponding recursion relation as a

aQuite recently a different classification of integrable PDEs of Plebañski type was done in paper [8].
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single 2 × 2 matrix-differential equation and introduce naturally recursion operators R.
Together with the operator Â of the symmetry condition, which determines symmetries
in a two-component form, the two operators R and Â form Lax pair of Olver–Ibragimov–
Shabat type [11,12]. We construct symplectic and Hamiltonian operators and corresponding
Hamiltonian densities for the two-component mixed heavenly system and Husain system.
The proof of Jacobi identity is a simple check that the corresponding symplectic two-
forms are closed. Thus, both systems are set into Hamiltonian form. Applying the recursion
operator R to first Hamiltonian operator, for each system, we generate explicitly second
Hamiltonian operators for both systems and, thus, we show that they are bi-Hamiltonian
systems, which are integrable in the sense of Magri [13].

In Sec. 2, we derive recursion operator for symmetries and Lax representation for mixed
heavenly system.

In Sec. 3, we present Lagrangian, symplectic two-form, symplectic operator and Hamil-
tonian representation of the mixed heavenly system.

In Sec. 4, using the recursion operator, we obtain explicitly second and third Hamilto-
nian representations of our system and prove that the first two Hamiltonian operators are
compatible, i.e. they form Poisson pencil. Thus, we show that mixed heavenly equation in
a two-component form is an integrable bi-Hamiltonian system in the sense of Magri.

In Sec. 5, we present all point symmetries and second-order symmetries of the mixed
heavenly system and calculate a table of commutators of symmetry generators. In Sub-
sec. 5.1, we study the action of the recursion operator on these symmetries. In Subsec. 5.2,
using inverse Noether theorem for variational symmetries, we determine conserved densities
corresponding to them, which serve as Hamiltonians of the symmetry flows. In Subsec. 5.3,
we study recursions of Hamiltonians for symmetry flows of the mixed heavenly system.

In Sec. 6, we study hierarchies of mixed heavenly system and of its symmetry flows. In
contrast to our previous studies of bi-Hamiltonian structures of second heavenly equation
of Plebañski [14] and complex Monge–Ampère equation [15], the mixed heavenly system,
though being bi-Hamiltonian, does not possess an infinite hierarchy but its hierarchy consists
only of two members (the same is true for Husain system). However, some of its variational
symmetries do form an infinite hierarchy of commuting flows, that contains higher nonlocal
flows. In particular, we present explicitly the first Hamiltonian flow generating a nonlo-
cal symmetry of our system. We also obtain bi-Hamiltonian representations for all local
variational symmetry flows.

In Sec. 7, we convert Husain equation in a two-component form and present a
Lagrangian, suitable for deriving Hamiltonian form of the two-component Husain system.

In Sec. 8, we construct a symplectic two-form, symplectic and Hamiltonian operators
and Hamiltonian density and, thus, obtain Hamiltonian form of the Husain system.

In Sec. 9, we discover recursion operator and obtain Lax representation for Husain
system.

In Sec. 10, we compute second Hamiltonian operator and prove that the two Hamiltonian
operators form Poisson pencil. Thus, we conclude that Husain equation in a two-component
form is an integrable bi-Hamiltonian system in the sense of Magri [13].

In Sec. 11, we present all point and second-order symmetries of Husain system and
calculate a table of commutators of symmetry generators. In Subsec. 11.1, we study the
action of recursion operator on symmetries of Husain system. In Subsec. 11.2, we find
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Hamiltonian densities of variational symmetry flows which are conserved densities of the
Husain system. In Subsec. 11.3, we study the action of recursion operator on Hamiltonians
of the symmetry flows.

In Sec. 12, we show that the hierarchy of Husain system consists of two members only.
We obtain an infinite hierarchy of commuting symmetry flows that contains higher nonlocal
flows. We present explicitly the first nonlocal Hamiltonian flow in this hierarchy. We obtain
bi-Hamiltonian representations for all local variational symmetry flows of Husain system.

2. Recursion Operator for Symmetries and Lax Representation
of the Mixed Heavenly System

By choosing ut = v as the second unknown, we present mixed heavenly equation (1.3) in
the form of a two-component evolution system

ut = v, vt =
1
uxx

(v2
x + vzuxy − vyuxz + ε) ≡ Q, (2.1)

which we shall call mixed heavenly system. Lie groups of symmetry transformations of
system (2.1) in the canonical form, when only dependent variables are transformed, are
determined by the Lie equations

uτ = ϕ, vτ = ψ, (2.2)

where τ is the group parameter. The symmetry condition amounts to compatibility of Lie
equations (2.2) and Eqs. (2.1): utτ−uτt = 0 and vtτ−vτt = 0. We introduce a two-component
symmetry characteristic of system (2.1): Φ =

(
ϕ
ψ

)
. Then the symmetry condition results in

the linear matrix equation

Â(Φ) = 0, (2.3)

where Â is the Frechét derivative of the flow (2.1)

Â =


 Dt −1

Q

uxx
D2

x − vz

uxx
DxDy +

vy

uxx
DxDz, Dt − 2vx

uxx
Dx +

uxz

uxx
Dy − uxy

uxx
Dz


. (2.4)

Here Dt,Dx,Dy,Dz are operators of total derivatives with respect to t, x, y, z. In particular,
the first row of (2.3) yields ϕt = ψ. Using this relation and a similar one for the partner
symmetry, ψ̃ = ϕ̃t, we rewrite the recursion relation (1.4) with ω0 = 0 and ut = v, vt = Q

in the two-component form

ψ̃ = (−QDx + vzDy − vyDz)ϕ+ vxψ,
(2.5)

ϕ̃x = (−vxDx + uxzDy − uxyDz)ϕ+ uxxψ.

After integrating the second equation (2.5) with respect to x at constant y, z and t and
using the notation Φ̃ =

(ϕ̃
ψ̃

)
, the recursion relation takes the matrix form Φ̃ = R(Φ), where

the recursion operator R is the 2 × 2 matrix

R =

(
D−1

x (−vxDx + uxzDy − uxyDz) D−1
x uxx

−QDx + vzDy − vyDz vx

)
. (2.6)
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For the commutator of the recursion operator R and operator Â of the symmetry con-
dition (2.3), computed without using the equations of motion, we obtain

[R, Â] =




(vt −Q)x −D−1
x [(vt −Q)xx

+(ut − v)xzDy − (ut − v)xyDz]
−D−1

x (ut − v)xx

1
uxx

[−Q(ut − v)xx + vz(ut − v)xy

−vy(ut − v)xz + 2vx(vt −Q)x − uxz(vt −Q)y
+uxy(vt −Q)z]Dx − (vt −Q)zDy + (vt −Q)Dz

−(vt −Q)x



. (2.7)

Therefore, on solutions of the system (2.1) operators R and Â commute and hence R acting
on any two-component symmetry generates again a symmetry. This proves that R is indeed
a recursion operator. Moreover, vanishing of the commutator (2.7) reproduces (2.1) and
hence operators R and Â form a Lax pair of the Olver–Ibragimov–Shabat type [11,12] for
mixed heavenly system (2.1).

3. Lagrangian, Symplectic and Hamiltonian Structure of the Mixed
Heavenly System

We start with the Lagrangian for the mixed heavenly system (2.1)

L =
(
vut − 1

2
v2

)
uxx +

1
3
ut(uyuxz − uzuxy) + εu, (3.1)

which yields the canonical momenta

πu =
∂L

∂ut
= vuxx +

1
3

(uyuxz − uzuxy), πv =
∂L

∂vt
= 0, (3.2)

that cannot be inverted for the velocities ut and vt, and therefore the Lagrangian (3.1) is
degenerate. Following Dirac’s theory of constraints [16], we treat the definitions (3.2) as
constraints of the second class

φu = πu − vuxx − 1
3

(uyuxz − uzuxy) = 0, φv = πv = 0, (3.3)

compute the Poisson brackets of the constraints (for details of this procedure see [14])

[φi(x, y, z), φj(x′, y′, z′)] = Kij , i, j = 1, 2, u1 = u, u2 = v (3.4)

as entries of the 2 × 2 matrix

K =


Dxvx + vxDx +

1
2

(Dzuxy + uxyDz) − 1
2

(Dyuxz + uxzDy) , −uxx

uxx 0


, (3.5)

which is an explicitly skew-symmetric symplectic operator. The corresponding symplectic
two-form is a volume integral Ω =

∫
V ωdxdydz of the density

ω =
1
2
dui ∧Kij du

j

= vxdu ∧ dux − uxxdu ∧ dv +
1
2
(uxydu ∧ duz − uxzdu ∧ duy). (3.6)
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The form Ω is closed since the exterior differential of (3.6) is a total divergence

dω =
1
2
dux ∧ duy ∧ duz

=
1
6
(Dx(du ∧ duy ∧ duz) +Dy(dux ∧ du ∧ duz) +Dz(dux ∧ duy ∧ du)), (3.7)

which is equivalent to zero under the volume integral in Ω, at appropriate boundary con-
ditions. Therefore, Ω is indeed a symplectic form and so K, defined by (3.5), is indeed a
symplectic operator. Hence its inverse is a Hamiltonian operator

J0 = K−1 =




0
1
uxx

− 1
uxx

vx

uxx
Dx

1
uxx

+
1
uxx

Dx
vx

uxx
− uxz

2uxx
Dy

1
uxx

− 1
2uxx

Dy
uxz

uxx
+

uxy

2uxx
Dz

1
uxx

+
1

2uxx
Dz

uxy

uxx



, (3.8)

since it is explicitly skew-symmetric and Jacobi identity is satisfied as a consequence of the
closeness of symplectic two-form Ω.

The Hamiltonian density, corresponding to J0, is defined as

H1 = πuut + πvvt − L

with the result

H1 =
1
2
v2uxx − εu⇔ H1 =

1
2

(v2 − εx2)uxx, (3.9)

where the equivalent Hamiltonian densities differ only by a total x-derivative which vanishes
in the Hamiltonian Hi =

∫∫∫ +∞
−∞ H idxdydz due to appropriate boundary conditions at

infinity. Indeed, 1
2 x

2uxx = u+Dx(1
2 x

2ux − xu) ⇔ u.
Thus, the mixed heavenly equation in two-component form (2.1) can be presented as

the Hamiltonian system (
ut

vt

)
= J0

(
δuH1

δvH1

)
, (3.10)

where δu and δv are Euler–Lagrange operators [6] with respect to u and v applied to the
Hamiltonian density H1 (they correspond to variational derivatives of the Hamiltonian
functional

∫
V H1dV ).

4. Bi-Hamiltonian Representation of the Mixed Heavenly System

By a theorem of Magri [13], we can generate second Hamiltonian operator by acting with
the recursion operator (2.6) on the Hamiltonian operator (3.8)

J1 = RJ0 =


−D−1

x
vx

uxx

− vx

uxx
J22

1


, (4.1)
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where J22
1 , in an explicitly skew-symmetric form, is defined as

J22
1 =

1
2

{
−
(
Q−Dx

1
uxx

+
1
uxx

DxQ−
)

+
(
vzDy

1
uxx

+
1
uxx

Dyvz

)

−
(
vyDz

1
uxx

+
1
uxx

Dzvy

)
−
(
vx

uxx
Dy

uxz

uxx
+
uxz

uxx
Dy

vx

uxx

)

+
(
vx

uxx
Dz

uxy

uxx
+
uxy

uxx
Dz

vx

uxx

)}
, (4.2)

where we have denoted

Q− = Q− 2v2
x

uxx
=

1
uxx

(−v2
x + vzuxy − vyuxz + ε).

The proof of Jacobi identity is straightforward and lengthy. The calculations can be sim-
plified by using P. Olver’s criterion (Theorem 7.8 in [6]) formulated in terms of functional
multivectors.

We have also performed a straightforward check for compatibility of two Hamiltonian
operators J0 and J1 using P. Olver’s criterion (Corollary 7.21 in his book [6]) and proved
that every linear combination aJ0 +bJ1 with arbitrary constant coefficients a and b satisfies
Jacobi identity, i.e. J0 and J1 form Poisson pencil (called Hamiltonian pair in [6]).

The mixed heavenly flow (2.1) can be generated by Hamiltonian operator J1 from the
Hamiltonian density

H0 = (c− x)vuxx, (4.3)

where c is a constant, so that the mixed heavenly equation in the two-component form (2.1)
admits two Hamiltonian representations(

ut

vt

)
= J0

(
δuH1

δvH1

)
= J1

(
δuH0

δvH0

)
(4.4)

and thus it is a bi-Hamiltonian system.
We note that we could drop out the term h0 = cvuxx in the Hamiltonian H0 and set

c = 0 in (4.3), so that H0 = xvuxx, because the vector of variational derivatives of h0

belongs to the kernel of J1

J1

(
δuh0

δvh0

)
=

(
0

0

)
. (4.5)

According to Magri’s theorem, by repeated applications of recursion operator to the
first Hamiltonian operator J0, we could generate an infinite sequence of Hamiltonian
operators

Jn = RnJ0. (4.6)
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In particular, for n = 2 we obtain a new Hamiltonian operator J2 = R2J0 = RJ1, which
has the following explicitly skew-symmetric form

J2 =




1
2
D−1

x (uxyDz +Dzuxy

−uxzDy −Dyuxz)D−1
x

D−1
x (Dyvz −Dzvy)

+
1
uxx

(vyuxz − vzuxy − ε)

−{(vzDy − vyDz)D−1
x

+
1
uxx

(vyuxz − vzuxy − ε)
} J22

2



, (4.7)

where J22
2 is defined by

J22
2 =

vx

u2
xx

{
(vyuxz − vzuxy − ε)Dx +

(
vzuxx − 1

2
vxuxz

)
Dy

−
(
vyuxx − 1

2
vxuxy

)
Dz

}
+
{
Dx(vyuxz − vzuxy − ε)

+Dy

(
vzuxx − 1

2
vxuxz

)
−Dz

(
vyuxx − 1

2
vxuxy

)}
vx

u2
xx

. (4.8)

Surprisingly enough, the Hamiltonian density, from which the Hamiltonian operator J2

generates the system (2.1), is proportional to H1 defined by (3.9)

H−1 = −εH1 = u− ε

2
v2uxx, (4.9)

so that the mixed heavenly system admits the three-Hamiltonian representation(
ut

vt

)
= J0

(
δuH1

δvH1

)
= J1

(
δuH0

δvH0

)
= J2

(
δu(H−1)

δv(H−1)

)
. (4.10)

The result (4.9) for H−1 is derived in a regular way in (5.39) (at c(y, z) = 0) in Subsec. 5.3
(see also (6.6)).

Computing Jn in (4.6) for n = 3, 4, . . . , we can generate an infinite series of Hamiltonian
operators, which shows that the mixed heavenly equation, considered in a two-component
form, is a multi-Hamiltonian system in the above-mentioned sense.

5. Symmetries and Conservation Laws for the Mixed Heavenly System

Using the software packages LIEPDE and CRACK by T. Wolf [17], run under REDUCE
3.8, we have calculated all point and Lie–Bäcklund second-order symmetries of mixed heav-
enly system (2.1). For point symmetries, we list generators and two-component symmetry
characteristics Φ = (ϕ,ψ)T , where T means transpose:

X1 = t∂u + ∂v, ϕ1 = t, ψ1 = 1

X2 = −∂x, ϕ2 = ux, ψ2 = vx

Xa
3 = a(y, z)∂u, ϕ3a = a(y, z), ψ3a = 0

Xa
4 = ay(y, z)∂z − az(y, z)∂y , ϕ4a = azuy − ayuz, ψ4a = azvy − ayvz
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X5 = −
{

1
2
(y∂y + z∂z) + t∂t + u∂u

}
,

ϕ5 = tv − u+
1
2
(yuy + zuz), ψ5 = tQ+

1
2
(yvy + zvz)

(5.1)
X6 = t∂t − x∂x − v∂v, ϕ6 = xux − tv, ψ6 = xvx − tQ− v

Xc(x,v) = −cv(x, v)∂t + (c− vcv)∂u, ϕc = c(x, v), ψc = cv(x, v)Q,

where c(x, v) is an arbitrary smooth solution of the equation

cxx(x, v) + εcvv(x, v) = 0 (5.2)

and we have used the equations of motion (2.1) for eliminating ut and vt. Such obvious
symmetries as translations in y, z and u, which do not appear explicitly in the list (5.1),
can be obtained as simple particular cases of Xa

3 and Xa
4 , while translations in t are obtained

from Xc at c = −v.
All second-order Lie–Bäcklund symmetries [18] modulo point symmetries have genera-

tors of the form

X̂a = a(t, x, v, ux)∂u + (at + avQ+ auxvx)∂v + · · · ,
ϕa = a(t, x, v, ux), ψa = at + avQ+ auxvx, (5.3)

where the dots denote an infinite prolongation part and a(t, x, v, ux) is an arbitrary smooth
solution of the equations

atx − εavux = 0, atv + axux = 0, axx + εavv = 0, att + εauxux = 0. (5.4)

Corresponding Lie equations have the form of a second-order flow, due to the definition of
Q in (2.1),

uτ = a(t, x, v, ux), vτ = at + avQ+ auxvx (5.5)

where the “time” τ is the group parameter. We note that mixed heavenly system itself in
(2.1) is a particular case of (5.5) at a = v, that obviously satisfies conditions (5.4). We
also note that (ϕ6, ψ6) correspond to the particular case of second-order symmetries (5.3)
with a = xux − tv. We point out that the symmetry characteristic (ϕc, ψc) in (5.1) together
with the condition (5.2) is a particular case of the symmetry (ϕa, ψa) in (5.3) with a =
c(x, v) satisfying the conditions (5.4). Similarly, we see that symmetry generators X1 and
X2 in evolutionary form are also particular cases of the second-order symmetry generator
X̂a(t,x,v,ux) while Xa(y,z)

3 , Xa(y,z)
4 and X5 are not.

All second-order Lie–Bäcklund symmetries can be obtained by taking linear combina-
tions of the generators (5.3) and point symmetries generators Xa(y,z)

3 , Xa(y,z)
4 and X5.

In Table 1 we present commutators of symmetry generators, where the commutator
[Xi,Xj ] is given at the intersection of ith row and jth column. We have used here the
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Table 1. Commutators of symmetries of mixed heavenly system.

X1 X2 X
f(y,z)
3 X

b(y,z)
4 X5 X6 Xc(x,v) X̂b(t,x,v,ux)

X1 0 0 0 0 0 −X1 Xcv X̂bv

X2 0 0 0 0 0 −X2 −Xcx −X̂bx

X
a(y,z)
3 0 0 0 X

∂(a,b)
∂(y,z)
3

1
2X

â(y,z)
3 0 0 0

X
a(y,z)
4 0 0 −X

∂(f,a)
∂(y,z)
3 X

∂(a,b)
∂(y,z)
4

1
2X

â(y,z)
4 0 0 0

X5 0 0 − 1
2X f̂

3 − 1
2X b̂

4 0 0 Xc −X̂b ′

X6 X1 X2 0 0 0 0 Xc̃ X̂b̃

Xd(x,v) −Xdv
Xdx

0 0 −Xd −Xd̃ 0 −X̂〈b,d〉
X̂a(t,x,v,ux) −X̂av X̂ax 0 0 X̂a ′ −X̂ã X̂〈a,c〉 X̂�a,b�

following shorthand notation:

∂(a, b)
∂(y, z)

= aybz − azby, 〈a, c〉 = atcv − auxcx, �a, b� =
∂(a, b)
∂(t, v)

+
∂(a, b)
∂(x, ux)

,

ã = tat − xax + uxaux − vav, â = yay + zaz − 2a, a ′ = tat + uxaux − a. (5.6)

Let X̂Φ be an evolution form of a symmetry generator with the characteristic Φ =
(
ϕ
ψ

)
.

Consider the evolution system of PDEs(
ut

vt

)
= F ([u], [v], 
r ) ≡

(
f

g

)
, (5.7)

where 
r = (x, y, z) and [u], [v] denote unknown functions u and v of 
r together with their
partial derivatives with respect to the components of 
r. Let X̂F be an evolutionary generator
of the flow (5.7) with the characteristic F =

(
f
g

)
. Then X̂Φ generates a symmetry of the

flow (5.7) if and only if the following commutator relation is satisfied [19,20]

[X̂Φ, X̂F ] = X̂Φt , (5.8)

where Φt denotes partial derivative of Φ with respect to t. In particular, if Φ does not depend
explicitly on time t, then these two generators must commute: [X̂Φ, X̂F ] = 0. For mixed
heavenly system (2.1) we have F = (v,Q)T and then the results of Table 1 for X̂b = X̂v

show that Eq. (5.8) is indeed satisfied for all the generators in the left column of the table,
which provides an independent test for all of the symmetries of (2.1).

5.1. Action of recursion operator on symmetries of the

mixed heavenly system

In order to obtain correctly the action of recursion operator R on the space of symmetries, we
note that the operator D−1

x in R should be understood as an indefinite integral with respect
to x with the “constant” of integration C(y, z, t). Indeed, the integrability condition for the
recursion relation (1.4) in a two-component notation (2.5) has the form ϕ̃xt = ψ̃x, which
implies ϕ̃t = ψ̃ + C(y, z, t) with an arbitrary function C(y, z, t). Therefore, the required
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relation ϕ̃t = ψ̃ does not follow from (2.5) but may present an additional constraint on
the t-dependence of C(y, z, t) when R is applied to symmetries Φ =

(
ϕ
ψ

)
, while the additive

term c(y, z) in C(y, z, t) will still be completely arbitrary. In the Lax representation (2.7)
and Definition (4.1) of J1 we have to choose c(y, z) = 0.

Proceeding to the action of the recursion operator on symmetries, we start with the
recursion (

ϕ̃1

ψ̃1

)
= R

(
ϕ1

ψ1

)
= R

(
t

1

)
=

(
D−1

x uxx

vx

)
=

(
ux + C(y, z, t)

vx

)
, (5.9)

but due to the constraint ϕ̃t = ψ̃ we have Ct = 0 and so C = c(y, z) with an arbitrary
function c(y, z). Finally we have(

ϕ̃1

ψ̃1

)
=

(
ux + c(y, z)

vx

)
=

(
ϕ2

ψ2

)
+

(
ϕ3c

ψ3c

)
, (5.10)

where (ϕ3c

ψ3c

)
=
(
c(y, z)

0

)
. Our next step is to compute

(
ϕ̃2

ψ̃2

)
= R

(
ϕ2

ψ2

)
= R

(
ux

vx

)
=

(
D−1

x (0)

−ε

)
=

(
C(y, z, t)

−ε

)
(5.11)

using in R the definition of Q from (2.1). Here the “constant” of integration C(y, z, t) could
not be neglected since the choice C = 0 will violate our constraint ϕ̃t = ψ̃, so that

(
0
−ε
)

will
not be a symmetry. Instead, the constraint yields Ct(y, z, t) = −ε so that C = −εt+ c(y, z)
with an arbitrary function c(y, z), which implies the result(

ϕ̃2

ψ̃2

)
= −ε

(
t

1

)
+

(
c(y, z)

0

)
= −ε

(
ϕ1

ψ1

)
+

(
ϕ3c

ψ3c

)
. (5.12)

Similarly, we obtain(
ϕ̃3a

ψ̃3a

)
= R

(
ϕ3a

ψ3a

)
= R

(
a(y, z)

0

)
=

(
ϕ3c

ψ3c

)
−
(
ϕ4a

ψ4a

)
. (5.13)

At the next step we obtain the first nonlocal symmetry(
ϕ̃4a

ψ̃4a

)
= R

(
ϕ4a

ψ4a

)
= R

(
azuy − ayuz

azvy − ayvz

)

=

(
D−1

x {uxxψ4a + uxz(ayvx + ϕ4a,y) − uxy(azvx + ϕ4a,z)}
vz(ϕ4a,y − ayvx) − vy(ϕ4a,z − azvx) −Qϕ4a,x

)
(5.14)

with ϕ4a,y = Dy(ϕ4a) and so on, since the expression in curly braces in the first row is not
a total x-derivative. Another nonlocal symmetry is obtained by the action of R on X5:(

ϕ̃5

ψ̃5

)
= R

(
ϕ5

ψ5

)
=

1
2

(
D−1

x {uxx(yvy + zvz) − vxwx + vzwy − vywz} + εtx

vx(yvy + zvz) −Qwx + vzwy − vywz

)
, (5.15)
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where we have denoted w = yuy + zuz − 2u. The action of R on X6 yields(
ϕ̃6

ψ̃6

)
= R

(
ϕ6

ψ6

)
= −

(
uxv + εxt

uxQ+ vvx + εx

)
+

(
c(y, z)

0

)
. (5.16)

where we have again used the constraint ϕ̃6 t = ψ̃6 on the “constant” of integration C(y, z, t).
Finally we consider the action of R on the symmetry Xc in (5.1) with c(x, v) satisfying (5.2):(

ϕ̃c

ψ̃c

)
= R

(
ϕc

ψc

)
= R

(
c(x, v)

cv(x, v)Q

)
=

(
D−1

x (−vxcx + εcv)

−cxQ

)
. (5.17)

Equation (5.2) in the form (cx)x = −ε(cv)v implies local existence of the function f(x, v)
such that fv = cx and fx = −εcv and hence f(x, v) satisfies the same equation as c(x, v):
fxx + εfvv = 0. The result (5.17), being expressed in terms of f(x, v), becomes(

ϕ̃c

ψ̃c

)
= −

(
D−1

x Dx[f(x, v)]

fvQ

)
= −

(
f(x, v)

f(x, v)Q

)
+

(
a(y, z)

0

)
, (5.18)

where a(y, z) is the “constant” of integration. If we neglect a(y, z), then the result (5.18)
reads

(ϕ̃c

ψ̃c

)
= −(ϕf

ψf

)
, so that recursion acts on the solution space of Eq. (5.2).

Next we consider action of R on second-order symmetries X̂a in (5.3) with a(t, x, v, ux)
that satisfies four linear equations (5.4):(

ϕ̃a

ψ̃a

)
= R

(
ϕa

ψa

)
= R

(
a(t, x, v, ux)

at + avQ+ auxvx

)
=

(
D−1

x (atuxx − axvx + εav)

−εaux − axQ+ atvx

)
. (5.19)

Equations (5.4) imply the existence of b(t, x, v, ux) related to a by the equations

bt = −εaux , bx = εav, bv = −ax, bux = at. (5.20)

As a consequence of (5.20), the potential b(t, x, v, ux) satisfies the same equations (5.4) as
a(t, x, v, ux). In terms of b, the result (5.19) becomes(

ϕ̃a

ψ̃a

)
=

(
D−1

x (bx + buxuxx + bvvx)

bt + bvQ+ buxvx

)
=

(
D−1

x Dx[b]

bt + bvQ+ buxvx

)

=

(
b(t, x, v, ux)

bt + bvQ+ buxvx

)
+

(
c(y, z)

0

)
=

(
ϕb

ψb

)
+

(
ϕ3c

ψ3c

)
, (5.21)

so that, up to an arbitrary “constant” of integration c(y, z), the recursion acts on the space
of second-order symmetries and on solutions of linear system (5.4).

The repeated application of the transformation (5.20) to ã = b takes us back to a:
b̃ = −εa, so that the action of the recursion on (5.21) results in the formula( ˜̃ϕa

˜̃ψa

)
= R

(
ϕ̃a

ψ̃a

)
= −ε

(
ϕa

ψa

)
−
(
czuy − cyuz,

czvy − cyvz

)
+

(
d(y, z)

0

)
, (5.22)

where we have used the relation (5.13) and d(y, z) is an arbitrary “constant” of integration.
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The transformed characteristics of X6, (ϕ̃6, ψ̃6) in (5.16), can be obtained by the trans-
formation (5.20) from a(t, x, v, ux) = ϕ6 = xux − tv, which yields ϕ̃6 = b = −(uxv + εxt).

The transformation (5.20), being applied to mixed heavenly system (2.1) itself, trans-
forms a = v into b = ε(x − C), where C is an arbitrary constant, so that the transformed
flow becomes (

ut̃

vt̃

)
= R

(
v

Q

)
=

(
ε(x−C)

0

)
+

(
c(y, z)

0

)
, (5.23)

where t̃ is the time transformed by the recursion. We note that the action of R on (ϕc, ψc)
in (5.18) is a particular case of the action of R on second-order symmetries in (5.21).

5.2. Hamiltonian structure of symmetry flows and conservation laws

Hamiltonian operators provide the natural link between commuting symmetries in evolution
form [6] and conservation laws (integrals of motion) in involution with respect to Poisson
brackets. We write Lie equations for symmetries with the two-component characteristics
(ϕi, ψi) in the Hamiltonian form(

uτi

vτi

)
=

(
ϕi

ψi

)
= J0

(
δuH

i

δvH
i

)
, (5.24)

where the symmetry group parameter τi plays the role of ith time for the flow (5.24) and
Hi =

∫∫∫ +∞
−∞ H idxdydz is an integral of the motion along the flow (2.1), with the conserved

density H i. The second equality in (5.24) is the Hamiltonian form of Noether’s theorem that
gives a relation between symmetries and integrals. We determine conserved densities H i,
corresponding to known symmetry characteristics (ϕi, ψi), by inverting the relation (5.24)
in the form of inverse Noether theorem(

δuH
i

δvH
i

)
= K

(
ϕi

ψi

)
=

(
uxyϕi z − uxzϕi y + 2vxϕi x + vxxϕi − uxxψi

uxxϕi

)
, (5.25)

where symplectic operator K = J−1
0 is defined in (3.5).

By using (5.25), we find Hamiltonians for the first four symmetries from the list (5.1)

X1 : H1
1 =

(
tv − 1

2
u

)
uxx ⇔ H1 = (tv − xux)uxx, X2 : H2 = vuxuxx,

Xa
3 : H3

a(y,z) = a(y, z)vuxx +
u

2
(azuxy − ayuxz),

Xa
4 : H4

a(y,z) = (azuy − ayuz)
{
vuxx +

1
3
(uyuxz − uzuxy)

}
, (5.26)

while for the symmetry X5 Hamiltonian does not exist and hence this is not a varia-
tional symmetry. Equivalent Hamiltonian densities H1

1 and H1 in (5.26) differ by a total
x-derivative, which vanishes in the Hamiltonian. Hamiltonians for symmetries Xc and X6

are obtained below as specializations of Hamiltonians for second-order symmetries.
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Lie equations of second-order symmetries (5.5) of system (2.1) admit Hamiltonian
form (5.24) with the Hamiltonian density

Ha = A(t, x, v, ux)uxx − γ(t)u, (5.27)

where γ(t) is an arbitrary function and A is defined in terms of the function a(t, x, v, ux) in
(5.5) by the relation Av(t, x, v, ux) = a(t, x, v, ux). Here A should satisfy the equations

Atx − εAvux = α(t, x, ux), Atv +Axux = 0,

Axx + εAvv = γ(t), Att + εAuxux = δ(t, x, ux) (5.28)

as a consequence of the corresponding equations (5.4) for the function a with restrictions
on some “constants” of integration, that follow from (5.25). We note that at A = v2/2 we
have a = v and, as a consequence of (5.28), γ = ε and the Hamiltonian (5.27) reduces to
the Hamiltonian density H1 defined in (3.9), while second-order Lie equations (5.5) reduce
to mixed heavenly system (2.1). Therefore, the mixed heavenly system is embedded into
the hierarchy of second-order flows commuting with it.

We show now that Hamiltonians for the symmetry flows generated by Xc, X1, X2 and
X6 can be obtained as particular cases of Hamiltonians (5.27) for second-order symmetries.
The resulting Hamiltonians below are simplified by eliminating the terms which are total
x-derivatives.

Hamiltonian H1 of the flow generated by X1, given in (5.26), is a particular case of Ha

in (5.27) at a = Av = t with A = tv − xux, that satisfies Eqs. (5.28) with α = γ = δ = 0.
Hamiltonian H2 in (5.26) of the flow generated by X2 is a particular case of Ha in (5.27)
at a = Av = ux with A = vux, that satisfies Eqs. (5.28) with α = −ε and γ = δ = 0.

Hamiltonian H6 of the flow generated by X6 in (5.1) is obtained from the Hamilto-
nian (5.27) of the second-order flow by setting a = Av = ϕ6 = xux − tv which, on account
of Eqs. (5.28) for A, implies γ = 0 and specifies A and H in (5.27) as

A6 =
1
2
t(εx2 − v2) + xuxv, H6 = A6(t, x, v, ux)uxx. (5.29)

Here again we have dropped the terms which are total x-derivatives which resulted in the
simplification of H6 and A6 in (5.29), so that Eqs. (5.28) for A are now satisfied with
α = γ = δ = 0.

Hamiltonian of the flow generated by Xc in (5.1) is obtained from Ha in (5.27) by setting
a = Av = c(x, v):

Hc = d(x, v)uxx, where dxx(x, v) + εdvv(x, v) = 0 (5.30)

and the function d(x, v) is defined in terms of c(x, v) by the relation dv(x, v) = c(x, v). Here
A = d(x, v) again satisfies Eqs. (5.28) with α = γ = δ = 0.

5.3. Action of recursion operator on Hamiltonians of symmetry flows

Transformation (5.10) of the symmetry (ϕ1, ψ1) implies the following transformation of
Hamiltonian H1

H̃1 = H2 +H3
c(y,z) = vuxuxx + c(y, z)vuxx +

u

2
(czuxy − cyuxz), (5.31)

where H3
c(y,z) is determined in (5.26) with a(y, z) replaced by c(y, z).
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The action of R on the symmetry (ϕ2, ψ2) in (5.12) induces the transformation of H2

H̃2 = −εH1 +H3
c(y,z) = −ε(tv − xux)uxx +H3

c(y,z). (5.32)

Recursion (5.13) for the symmetry (ϕ3, ψ3) in terms of its Hamiltonian H3
a(y,z) becomes

H̃3
a(y,z) = −H4

a(y,z) +H3
c(y,z), (5.33)

whereH4
a(y,z) is determined in (5.26). For the symmetry (ϕ4, ψ4), transformed by R in (5.14),

the resulting nonlocal symmetry (ϕ̃4, ψ̃4) has a nonlocal Hamiltonian in the representa-
tion (5.24) with Hamiltonian operator J0. In the next section, we will show that the cor-
responding nonlocal symmetry flow has local Hamiltonian density H4 with respect to the
Hamiltonian operator J1 = RJ0, as will follow from (6.11).

A recursion for Hamiltonian H6 of the symmetry flow generated by X6 will be more
convenient to consider at the end of this section as a particular case of a recursion for
Hamiltonians (5.27) of second-order symmetries (5.3).

Recursion (5.18) for the symmetry (ϕc(x,v), ψc(x,v)) implies the following transformation
of Hamiltonian Hc of this flow defined in (5.30)

H̃c = −Hg +H3
a(y,z) = −g(x, v)uxx + a(y, z)vuxx +

u

2
(azuxy − ayuxz), (5.34)

where a(y, z) is an arbitrary function, g(x, v) satisfies the equations gxx + εgvv = 0 and
gv(x, v) = f(x, v), with f(x, v) being determined in terms of c(x, v) by the relations fv =
cx, fx = −εcv.

Recursion formula (5.21) for second-order symmetries implies the following recursion for
their Hamiltonians:

H̃a = Hb +H3
c(y,z) = [B(t, x, v, ux) + c(y, z)v]uxx +

u

2
(czuxy − cyuxz − 2γ(t)), (5.35)

where Bv = b(t, x, v, ux), b is related to a(t, x, v, ux) by Eqs. (5.20) and b satisfies the same
equations (5.4) as a(t, x, v, ux).

For the symmetry flow (ϕ̃6, ψ̃6) in (5.16), obtained by the action of R on the flow
generated by X6, we take for b = Bv in the Hamiltonian (5.35) the solution b = −(uxv+εxt)
of Eqs. (5.20) with a = xux−tv. The resulting Hamiltonian H̃6 for the symmetry flow (5.16)
reads

H̃6 = Ã6(t, x, v, ux)uxx +H3
c(y,z), Ã6 =

1
2

(εx2 − v2)ux − εxtv, (5.36)

where Eqs. (5.28) for Ã6 = B are satisfied at γ = α = δ = 0.
For mixed heavenly system given in Hamiltonian form (3.10) with Hamiltonian H1,

defined in (3.9), we apply transformation (5.20) to a = v to get b = Bv = ε(x− c), where c
comes from a constant of integration. Then we determine B in (5.35), solving (5.28) with
A �→ B, to obtain the transformed H1 in the form

H̃1 = ε(x− c)vuxx +H3
c(y,z) = −εH0 +H3

c(y,z), (5.37)

where H0 is defined in (4.3). The second application of the same transformation to (5.37)
takes us back to H1 (modulo the transformed “constant” of integration H̃3

c(y,z) determined
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by (5.33)):

˜̃H1 =
1
2
(x2 − εv2)uxx + H̃3

c(y,z) = −εH1 + H̃3
c(y,z). (5.38)

The last equation in (5.38) is obvious from the alternative formula for H1 in (3.9).
For the second Hamiltonian density H0 = (c − x)vuxx, the transformed Hamiltonian

coincides with H1: H̃0 = H1. This is obvious if one compares bi-Hamiltonian representa-
tion (4.4) of the mixed heavenly system with the second formula in (6.4) applied to H = H0.

The transformation inverse to (5.35): H̃−1 = H0 (with a and b interchanged and b =
Bv = c− x), yields

H−1 =
1
2
(x2 − εv2)uxx +H3

c(y,z) ⇔ H−1 = −εH1 +H3
c(y,z), (5.39)

where the equivalent Hamiltonian is obtained by dropping a total x-derivative.
All the flows for the variational symmetries generated by X1,X2,X3,X4,X6,Xc(x,v),

Xa(t,x,v,ux) and X̃1, X̃2, X̃3, X̃6, X̃c, X̃a, where X̃i = RXi, have the Hamiltonian form (5.24)
with the local Hamiltonian densities presented above, while the nonlocal symmetry gener-
ated by X̃4 has the Hamiltonian form with the local Hamiltonian H4

(
uτ̃4

vτ̃4

)
=

(
ϕ̃4

ψ̃4

)
= J1

(
δuH

4

δvH
4

)
(5.40)

with respect to Hamiltonian operator J1, as will be shown in (6.11).
All Hamiltonians of symmetry flows are integrals of mixed heavenly system (2.1).

6. Hierarchy and Bi-Hamiltonian Representations for Symmetry Flows
of Mixed Heavenly System

We know from the work of B. Fuchssteiner and A. S. Fokas [19] (see also the survey [20]
and references therein) that if a recursion operator has a factorized form, as in our case
R = J1J

−1
0 ≡ J1K, and the factors J0 and J1 are compatible Hamiltonian operators, then R

is a hereditary (Nijenhuis) recursion operator. The skew symmetry of Hamiltonian operators
J†

1 = −J1 and J†
0 = −J0 implies R† = J−1

0 J1 = KJ1, so that RJ0 = J1 = J0R
†. Note that

in this section, in contrast to Subsecs. 5.1 and 5.3, we have D−1
x =

∫ x
−∞ dx′ (for functions

vanishing rapidly at −∞) in the definition (2.6) of R, same as in Definition (4.1) of J1, so
that D−1

x Dx = 1.
Now, the Hermitian conjugate hereditary recursion operator

R† =

(
(−Dxvx + uxzDy − uxyDz)D−1

x DxQ− vzDy + vyDz

−uxxD
−1
x vx

)
, (6.1)

acting on the vector of variational derivatives of an integral of the flow, again yields a
vector of variational derivatives of some integral of this flow [19]. Therefore, acting with the
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recursion operator on a variational symmetry flow(
uτ

vτ

)
= J0

(
δuH

δvH

)
, (6.2)

we obtain

R

(
uτ

vτ

)
=

(
uτ̃

vτ̃

)
= J1

(
δuH

δvH

)
= J0R

†
(
δuH

δvH

)
= J0

(
δuH̃

δvH̃

)
, (6.3)

where τ̃ and H̃ are the group parameter (“time”) and Hamiltonian of the transformed sym-
metry obtained by the action of R on (6.2). The transformed flow (6.3) and its Hamiltonian
H̃ have been determined in Subsecs. 5.1 and 5.3, respectively, where we now have to skip all
arbitrary “constants” of integration c(y, z) and a(y, z) for transformed symmetries (ϕ̃, ψ̃)T

and transformed Hamiltonians H̃ due to the restricted definition of R given at the beginning
of this section. Thus, an alternative (to Subsec. 5.3) way of transforming a Hamiltonian by
the recursion operator is to act by the Hermitian conjugate recursion operator on the vector
of variational derivatives of this Hamiltonian

R†
(
δuH

δvH

)
=

(
δuH̃

δvH̃

)
⇒ J1

(
δuH

δvH

)
= J0

(
δuH̃

δvH̃

)
, (6.4)

where both relations follows from (6.3). Similarly, J2

(
δuH
δvH

)
= J1

(
δuH̃

δvH̃

)
and so on.

We now use these remarks for constructing hierarchies of mixed heavenly system (2.1)
and its symmetry flows, together with bi-Hamiltonian representations of the symmetry
flows. We start by applying R to this system in Hamiltonian form (3.10)(

ut1

vt1

)
= J1

(
δuH1

δvH1

)
= J0

(
δuH̃1

δvH̃1

)
= ε

(
x− C

0

)
, (6.5)

where we have used the result (5.23), C is an arbitrary constant, t1 = t̃ is the parameter
of the group transformed by the recursion and H̃1 = −εH0 according to (5.37) with H3

a(y,z)

skipped, where H0 is defined in (4.3).
Applying again the recursion operator to the Hamiltonian system (6.5) we obtain

(
ut2

vt2

)
= J1

(
δuH̃1

δvH̃1

)
= J0


δu ˜̃H1

δv
˜̃H1


 = −εJ0

(
δuH1

δvH1

)
= −ε

(
v

Q

)
, (6.6)

where t2 = t̃1 and the transformation (5.38) of Hamiltonian H̃1 was used: ˜̃H1 = −εH1. This
result shows that we are back to the mixed heavenly system and so further applications of
the recursion operator will not generate an infinite hierarchy. We also note that by applying
J0 to H0 we will not get anything new:(

ut0

vt0

)
= J0

(
δuH0

δvH0

)
=

(
C − x

0

)
. (6.7)
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We now apply R to Hamiltonian symmetry flows from (5.1), that commute with the
mixed heavenly flow (2.1), to obtain the following results:

(
u

t̃1

v
t̃1

)
= J1

(
δuH

1

δvH
1

)
= J0

(
δuH̃1

δvH̃1

)
= J0

(
δuH

2

δvH
2

)
=

(
ux

vx

)
, (6.8)

(
u

t̃2

v
t̃2

)
= J1

(
δuH

2

δvH
2

)
= J0

(
δuH̃2

δvH̃2

)
= −εJ0

(
δuH

1

δvH
1

)
= −ε

(
t

1

)
, (6.9)

(
u

t̃3

v
t̃3

)
= J1

(
δuH

3
a(y,z)

δvH
3
a(y,z)

)
= J0

(
δuH̃3

a(y,z)

δvH̃3
a(y,z)

)
= −J0

(
δuH

4
a

δvH
4
a

)
= −

(
ϕ4a

ψ4a

)
. (6.10)

By applying R to the flow of H4 we obtain the first nonlocal Hamiltonian flow in the infinite
hierarchy of symmetries of mixed heavenly system:(

u
t̃4

v
t̃4

)
= J1

(
δuH

4
a

δvH
4
a

)
= J0

(
δuH̃4

a

δvH̃4
a

)
=

(
ϕ̃4a

ψ̃4a

)
, (6.11)

where ϕ̃4a and ψ̃4a are defined in (5.14). The next higher flow of this hierarchy can be
obtained by applying J2 to (δuH4, δvH

4) and so on.
Finally, we consider the action of the recursion operator on the general flow of second-

order symmetries (5.3) with the Hamiltonian (5.27)
(
ut

vt

)
= J0

(
δuH

a

δvH
a

)
=

(
a(t, x, v, ux)

at + avQ+ auxvx

)
. (6.12)

Transformation (5.35) of Hamiltonian (5.27) under the action of R, H̃a = Hb, implies the
following transformation of the flow(

ut̃

vt̃

)
= J0

(
δuH̃a

δvH̃a

)
= J0

(
δuH

b

δvH
b

)
=

(
b(t, x, v, ux)

bt + bvQ+ buxvx

)
, (6.13)

where b = ã is related to a by transformation (5.20), with a and b satisfying same equa-
tions (5.4). Repeated application of R to (5.35) yields ˜̃Ha = H̃b = −εHa, because b̃ = −εa,
and therefore

(
u˜̃t

v ˜̃t

)
= J0


δu ˜̃Ha

δv
˜̃Ha


 = −εJ0

(
δuH

a

δvH
a

)
= −ε

(
a(t, x, v, ux)

at + avQ+ auxvx

)
, (6.14)

so that we are back to original flow (6.12). This is quite similar to the behavior of the mixed
heavenly system which is a very particular case of this general flow.

By definition of a hereditary recursion operator, R generates an Abelian symme-
try algebra out of commuting symmetries. Since [Xa(y,z)

3 ,X
a(y,z)
4 ] = 0 this implies

[X̃a(y,z)
3 , X̃

a(y,z)
4 ] = 0, where X̃ is the symmetry generator obtained from X by the action
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of R. Now, X̃a(y,z)
3 = −Xa(y,z)

4 for vanishing constant of integration c(y, z) and therefore
[Xa(y,z)

4 , X̃
a(y,z)
4 ] = 0. A straightforward calculation shows that the flows (ut4 , vt4)T =

(ϕ4a, ψ4a)T and (u
t̃4
, v

t̃4
)T = (ϕ̃4a, ψ̃4a)T indeed commute.

Repeating this reasoning for powers of R applied to the last result, we see that the
hierarchy of symmetries generated by R from X

a(y,z)
3 consists of commuting flows.

7. Two-Component Form and Lagrangian of Husain Heavenly Equation

Husain equation (ε = +1 in [9])

vtyvpz − vtzvpy + vtt + εvpp = 0 (7.1)

can be obtained from the mixed heavenly equation (1.3) by the partial Legendre transfor-
mation in x

x = −vp, u = v − pvp, p = ux, v(t, p, y, z) = u− xux. (7.2)

Up to a change of notation of variables, Eq. (7.1) with ε = ±1 is a particular case (1.5) of
our general equation (1.1) admitting partner symmetries.

To discover its bi-Hamiltonian structure, we have to consider Husain equation in a two-
component form, without using Ashtekar’s Hamiltonian formulation of general relativity [21,
22], which was a starting point in the paper [9] by V. Husain.

We start with the Lagrangian of Eq. (7.1) in a one-component form

L =
1
2

(v2
t + εv2

p) +
1
3
vt(vyvpz − vzvpy), (7.3)

which for ε = +1 is equivalent to the one given in [23].
In a two-component evolution form, Eq. (7.1) becomes{

vt = q

qt = qzvpy − qyvpz − εvpp.
(7.4)

We shall call Eq. (7.4) Husain system.
The determining equation and recursion for symmetries of Husain equation in a one-

component form could easily be obtained by Legendre transformation (7.2) from correspond-
ing formulas for mixed heavenly equation and then converted to a two-component form,
resulting in a Lax representation of Husain system (7.4). However, the main objects of
the Hamiltonian formulation, like Lagrangian, symplectic two-form, Hamiltonian operators
and Hamiltonian densities cannot be obtained that way. Therefore, we have to undertake
an independent study of Husain system along the same lines as we have done before for
mixed heavenly system. Lagrangian for Husain system (7.4) reads

L =
1
2

(2vtq − q2 + εv2
p) +

1
3
vt(vyvpz − vzvpy). (7.5)

Note that the form of the Lagrangian (7.5) is not uniquely defined by one-component
Lagrangian (7.3) and it requires some skill in order to arrive at the form of Lagrangian that
will be suitable for a Hamiltonian form of Husain system (7.4).
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8. Symplectic and Hamiltonian Structure of Husain System

Lagrangian (7.5) yields the canonical momenta

πv = q +
1
3

(vyvpz − vzvpy), πq = 0, (8.1)

that cannot be inverted for the velocities ut and vt, and, therefore, Lagrangian (7.5) is
degenerate. According Dirac’s theory of constraints [16], we treat the definitions (8.1) as
constraints of the second class

φv = πv − q − 1
3

(vyvpz − vzvpy) = 0, φq = πq = 0. (8.2)

Poisson brackets of the constraints yield the skew-symmetric symplectic matrix operator

K =

(
vpyDz − vpzDy −1

1 0

)
. (8.3)

The corresponding symplectic two-form Ω =
∫
V ωdxdydz of the density

ω =
1
2
(vpydv ∧ dvz − vpzdv ∧ dvy − 2dv ∧ dq) (8.4)

is closed since the exterior differential of (8.4) is a total divergence (similar to (3.7))

dω =
1
2
dvz ∧ dvp ∧ dvy,

which is equivalent to vanishing Ω at appropriate boundary conditions. Therefore, Ω and K
in (8.3) is indeed a symplectic form and symplectic operator, respectively. Hence, its inverse
K−1 is a Hamiltonian operator

J0 = K−1 =

(
0 1

−1 vpyDz − vpzDy

)
. (8.5)

Indeed, it is explicitly skew-symmetric and Jacobi identity is satisfied as a consequence of
closeness of the form Ω.

Hamiltonian density, corresponding to J0, reads

H1 = πvvt + πqqt − L =
1
2
q2 − ε

2
v2
p, (8.6)

so that Husain system (7.4) is the Hamiltonian system

(
vt

qt

)
= J0

(
δvH1

δqH1

)
, (8.7)

where δv and δq are Euler–Lagrange operators [6] with respect to v and q.
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9. Recursion Operator and Lax Representation for Husain System

Recursion relation (1.6) for symmetries of Eq. (7.1), with the change of notation u �→ v and
x �→ p, becomes

ϕ̃t = vtzϕy − vtyϕz − εϕp + ω0ϕt,
(9.1)

ϕ̃p = vpzϕy − vpyϕz + ϕt + ω0ϕp.

As before, we introduce two-component symmetry characteristics of Husain system
determined by the Lie equations (with independent variables not transformed by the
group) (

vτ

qτ

)
=

(
ϕ

ψ

)
≡ Φ, (9.2)

where τ is the group parameter. The symmetry condition is the linear matrix equation, the
compatibility condition of Lie equations (9.2) and Eqs. (7.4){

vtτ − vτt = 0

qtτ − qτt = 0
⇔ Â(Φ) = 0, (9.3)

where Â is Frechét derivative of the flow (7.4)

Â =

(
Dt −1

εD2
p − qzDpDy + qyDpDz, Dt + vpzDy − vpyDz

)
. (9.4)

Then the first row of (9.3) yields ϕt = ψ.
Using the relations ψ = ϕt, and ψ̃ = ϕ̃t for the transformed symmetry, we rewrite the

recursion relation (9.1) with ω0 = 0 and vt = q in the two-component form

ϕ̃p = (vpzDy − vpyDz)ϕ+ ψ,

ψ̃ = (qzDy − qyDz − εDp)ϕ. (9.5)

In the notation Φ̃ =
(ϕ̃
ψ̃

)
, the recursion relation takes the form Φ̃ = R(Φ), where recursion

operator R has the 2 × 2 matrix form

R =

(
D−1

p (vpzDy − vpyDz) D−1
p

qzDy − qyDz − εDp 0

)
. (9.6)

As in the case of the mixed heavenly system, recursion relation (9.5) for symmetries implies
that D−1

p should be understood as an indefinite integral with respect to p with the “con-
stant” of integration C(y, z, t) determined by the constraint ϕ̃t = ψ̃ up to an arbitrary
additive term c(y, z). However, in the Lax representation (9.7) and definition of the second
Hamiltonian operator J1 = RJ0 in (10.1) we should use the restricted definition of D−1

p as
the definite integral

∫ p
−∞ dp′ satisfying the condition D−1

p Dp = 1 (on assumption that all
functions vanish at p = −∞).
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The commutator of recursion operator R and operator Â of symmetry condition (9.3),
computed without using the equations of motion, reads

[R, Â] =

[
D−1

p [(vt − q)pyDz − (vt − q)pzDy], 0

(qt − qzvpy + qyvpz + εvpp)yDz − (qt − qzvpy + qyvpz + εvpp)zDy, 0

]
. (9.7)

Thus, on solutions of the system (7.4) operators R and Â commute and therefore R acting
on any symmetry Φ generates again a symmetry, so that R is indeed a recursion operator.
Furthermore, vanishing of the commutator (9.7) reproduces Husain system (7.4) and hence
the operators R and Â form a Lax pair of the Olver–Ibragimov–Shabat type [11,12].

10. Bi-Hamiltonian Representation of the Husain System

By a theorem of Magri [13], second Hamiltonian operator is obtained by acting with recur-
sion operator (9.6) on Hamiltonian operator (8.5)

J1 = RJ0 =

(
−D−1

p 0

0 qzDy − qyDz − εDp

)
, (10.1)

which is explicitly skew-symmetric. The proof of the Jacobi identity has been performed by
using P. Olver’s criterion [6] in terms of functional multivectors.

We have also made a check for compatibility of the two Hamiltonian operators J0 and
J1 by using P. Olver’s criterion and proved that every linear combination aJ0 + bJ1 with
arbitrary constant coefficients a and b satisfies the Jacobi identity, i.e. J0 and J1 form a
Poisson pencil (a compatible Hamiltonian pair). The flow (7.4) is generated by J1 from the
Hamiltonian density

H0 = qvp. (10.2)

Thus, Husain equation in two-component form (7.4) is a bi-Hamiltonian integrable system:(
vt

qt

)
= J0

(
δvH1

δqH1

)
= J1

(
δvH0

δqH0

)
. (10.3)

11. Symmetries and Conservation Laws for Husain System

Using symmetry package LIEPDE in REDUCE [17], we have computed all generators and
two-component characteristics ϕ,ψ of point symmetries of Husain system (7.4):

X1 = ∂t, ϕ1 = −q, ψ1 = qyvpz − qzvpy + εvpp

X2 = −t∂t − p∂p + q∂q, ϕ2 = tq + pvp, ψ2 = q + pqp + t(qzvpy − qyvpz − εvpp)

X3 = ∂p, ϕ3 = −vp, ψ3 = −qp
X4 =

1
2
(y∂y + z∂z) + v∂v + q∂q, ϕ4 = v − 1

2
(yvy + zvz), ψ4 = q − 1

2
(yqy + zqz)

Xa
5 = a(y, z)∂v , ϕ5a = a(y, z), ψ5a = 0

Xa
6 = ay(y, z)∂z − az(y, z)∂y, ϕ6a = azvy − ayvz, ψ6a = azqy − ayqz

Xc(t,p) = ct(t, p)∂v + ctt(t, p)∂q, ϕc = ct(t, p), ψc = ctt(t, p),

(11.1)
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where c(t, p) is an arbitrary smooth solution of the equation

ctt + εcpp = 0 (11.2)

and we have used equations of motion (7.4) for eliminating vt and qt. Translations in y, z

and v can be obtained as simple particular cases of Xa
6 and Xa

5 , respectively.
All second-order Lie–Bäcklund symmetries of Husain system modulo point symmetries

have the generators

X̂f = f(t, p, q, vp)∂v + {ft + fq(qzvpy − qyvpz − εvpp) + qpfvp}∂q + · · · ,
ϕf = f(t, p, q, vp), ψf = ft + fq(qzvpy − qyvpz − εvpp) + qpfvp ,

(11.3)

where f(t, p, q, vp) satisfies the equations

ftvp + εfpq = 0, fpvp − fqt = 0, fqq + εfvpvp = 0, ftt + εfpp = 0. (11.4)

Lie equations corresponding to (11.3) have the form of a second-order flow

vτ = f(t, p, q, vp), qτ = ft + fq(qzvpy − qyvpz − εvpp) + qpfvp , (11.5)

where the “time” τ is the group parameter. Husain system is itself a particular case of (11.5)
at f = q obviously satisfying conditions (11.4), so that symmetry generator X1 in evolution-
ary form is a particular case of X̂f . Similarly, we note that symmetries X2, X3 and Xc(t,p)

are also particular cases of the second-order symmetry Xf(t,p,q,vp), while the symmetries X4,

X
a(y,z)
5 and Xa(y,z)

6 are not.
All second-order Lie–Bäcklund symmetries can be obtained by taking linear combi-

nations of generators (11.3) and point symmetry generators X4, X
a(y,z)
5 and X

a(y,z)
6 in

evolutionary form. In Table 2 we present commutators of symmetry generators, where the
commutator [Xi,Xj ] is given at the intersection of ith row and jth column. We have used
here the following shorthand notation:

c′ = tct + pcp − c, g̃ = tgt + pgp − qgq − vpgvp , â = yay + zaz − 2a

ğ = qgq + vpgvp − g, 〈d, g〉 = dttgq + dtpgvp , �f, g� =
∂(f, g)
∂(t, q)

+
∂(f, g)
∂(p, vp)

. (11.6)

Table 2. Commutators of symmetries of Husain system.

X1 X2 X3 X4 X
f(y,z)
5 X

b(y,z)
6 Xc(t,p) X̂g(t,p,q,vp)

X1 0 −X1 0 0 0 0 Xct X̂gt

X2 X1 0 X3 0 0 0 −Xc′ −X̂g̃

X3 0 −X3 0 0 0 0 Xcp X̂gp

X4 0 0 0 0 1
2X

f̂(y,z)
5

1
2X

b̂(y,z)
6 −Xc X̂ğ

X
a(y,z)
5 0 0 0 − 1

2X â
5 0 X

∂(a,b)
∂(y,z)
5 0 0

X
a(y,z)
6 0 0 0 − 1

2X â
6 −X

∂(f,a)
∂(y,z)
5 X

∂(a,b)
∂(y,z)
6 0 0

Xd(t,p) −Xdt
Xd′ −Xdp

Xd 0 0 0 X̂〈d,g〉
X̂f(t,p,q,vp) −X̂ft

X̂f̃ −X̂fp
−X̂

f̆
0 0 −X̂〈c,f〉 X̂�f,g�
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11.1. Action of recursion operator on symmetries of Husain system

Here we study the action of recursion operator (9.6) on symmetry characteristics of Husain
system. We start with the recursion

(
ϕ̃1

ψ̃1

)
= R

(
ϕ1

ψ1

)
= R

(
−q

qyvpz − qzvpy + εvpp

)
= ε

(
D−1

p vpp

qp

)

= ε

(
vp

qp

)
+

(
c(y, z)

0

)
= −ε

(
ϕ3

ψ3

)
+

(
ϕ5c(y,z)

ψ5c(y,z)

)
, (11.7)

where the “constant” of integration C(y, z, t) = c(y, z) is time-independent due to the
constraint ϕ̃t = ψ̃. We continue with the formula

(
ϕ̃2

ψ̃2

)
= R

(
ϕ2

ψ2

)
= R

(
tq + pvp

q + pqp + t(qzvpy − qyvpz − εvpp)

)

=

(
D−1

p Dp [pq − εtvp]

p(qzvpy − qyvpz − εvpp) − ε(tqp + vp)

)
=

(
ϕf=pq−εtvp

ψf=pq−εtvp

)
+

(
ϕ5c(y,z)

ψ5c(y,z)

)
, (11.8)

where the first term in the right-hand side of the last equation is a two-component char-
acteristic of the second-order symmetry (11.3) with f = pq − εtvp, that obviously satisfies
conditions (11.4). Now we compute

(
ϕ̃3

ψ̃3

)
= R

(
ϕ3

ψ3

)
= R

(
−vp

−qp

)
= −

(
q

qzvpy − qyvpz − εvpp

)
+

(
c(y, z)

0

)

=

(
ϕ1

ψ1

)
+

(
ϕ5c(y,z)

ψ5c(y,z)

)
. (11.9)

At the next step, we obtain the first nonlocal symmetry

(
ϕ̃4

ψ̃4

)
= R

(
ϕ4

ψ4

)
= R

(
v − 1

2 (yvy + zvz)

q − 1
2 (yqy + zqz)

)
=

1
2

(
D−1

p [vpywz − vpzwy − wt]

qywz − qzwy + εwp

)
, (11.10)

where we have denoted w = yvy + zvz − 2v, so that wt = yqy + zqz − 2q. Next, we obtain

(
ϕ̃5a(y,z)

ψ̃5a(y,z)

)
= R

(
ϕ5a(y,z)

ψ5a(y,z)

)
= R

(
a(y, z)

0

)
=

(
ayvz − azvy

ayqz − azqy

)
+

(
c(y, z)

0

)

= −
(
ϕ6a(y,z)

ψ6a(y,z)

)
+

(
ϕ5c(y,z)

ψ5c(y,z)

)
. (11.11)
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Another nonlocal symmetry stems out from the transformation of symmetry X6a(y,z):(
ϕ̃6a(y,z)

ψ̃6a(y,z)

)
= R

(
ϕ6a(y,z)

ψ6a(y,z)

)
= R

(
azvy − ayvz

azqy − ayqz

)

=
(
D−1

p [vpzϕ6a,y − vpyϕ6a,z + ψ6a]
qzϕ6a,y − qyϕ6a,z − εϕ6a,p

)
. (11.12)

The remaining point symmetry transforms under the recursion in the following way:(
ϕ̃c(t,p)

ψ̃c(t,p)

)
= R

(
ϕc(t,p)

ψc(t,p)

)
= R

(
ct(t, p)

ctt(t, p)

)
=

(
D−1

p ctt(t, p)

−εctp(t, p)

)
=

(
D−1

p dtp(t, p)

dtt(t, p)

)

=

(
dt(t, p)

dtt(t, p)

)
+

(
c1(y, z)

0

)
=

(
ϕd(t,p)

ψd(t,p)

)
+

(
ϕ5c1(y,z)

ψ5c1(y,z)

)
, (11.13)

where c1(y, z) is a “constant” of integration. Here d(t, p) is related to c(t, p) by the trans-
formation dp = ct, dt = −εcp, so that d(t, p) satisfies the same equation (11.2) as c(t, p):
dtt + εdpp = 0. The existence of the potential d(t, p) for c(t, p) follows from (11.2) presented
in the form (ct)t = (−εcp)p.

Finally, we consider the action of R on second-order symmetries Xf in (11.3) with
f = f(t, p, q, vp) satisfying four linear equations (11.4):

(
ϕ̃f(t,p,q,vp)

ψ̃f(t,p,q,vp)

)
= R

(
ϕf(t,p,q,vp)

ψf(t,p,q,vp)

)
= R

(
f(t, p, q, vp)

ft + qtfq + qpfvp

)

=

(
D−1

p (ft − εvppfq + qpfvp)

−ε(fp + qpfq) + qtfvp

)
, (11.14)

where qt = qzvpy − qyvpz − εvpp. Equations (11.4) imply the existence of a potential
g(t, p, q, vp) for f defined by the relations

gt = −εfp, gp = ft, gq = fvp , gvp = −εfq. (11.15)

As a consequence of (11.15), g(t, p, q, vp) satisfies the same equations (11.4) as f(t, p, q, vp).
In terms of g, our result (11.14) becomes

(
ϕ̃f

ψ̃f

)
= R

(
ϕf

ψf

)
=

(
D−1

p (gp + vppgvp + qpgq)

gt + qpgvp + qtgq

)
=

(
D−1

p Dp[g]

Dt[g]

)

=

(
g

Dt[g]

)
+

(
c(y, z)

0

)
=

(
ϕg(t,p,q,vp)

ψg(t,p,q,vp)

)
+

(
ϕ5c(y,z)

ψ5c(y,z)

)
, (11.16)

so that, up to an arbitrary “constant” of integration c(y, z), the recursion acts on the space
of second-order symmetries and on solutions of linear system (11.4). We note that the second
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application of this recursion takes us back to the original second-order symmetry, up to the
factor −ε: ( ˜̃ϕf

˜̃ψf

)
= R

(
ϕ̃f

ψ̃f

)
= −ε

(
ϕf

ψf

)
−
(
ϕ6c(y,z)

ψ6c(y,z)

)
+

(
ϕ5d(y,z)

ψ5d(y,z)

)
(11.17)

modulo “constants” of integration c(y, z) and d(y, z).

11.2. Hamiltonian structure of symmetry flows and conservation laws

for Husain system

Presenting Lie equations for variational symmetries with the two-component characteristics
(ϕi, ψi) in the Hamiltonian form(

vτi

qτi

)
=

(
ϕi

ψi

)
= J0

(
δvH

i

δqH
i

)
, (11.18)

we determine conserved densities H i, corresponding to known symmetry characteristics
(ϕi, ψi), using the inverse Noether theorem(

δvH
i

δqH
i

)
= K

(
ϕi

ψi

)
=

(
vpyϕiz − vpzϕiy − ψi

ϕi

)
, (11.19)

where the symplectic operator K = J−1
0 is defined in (8.3). Using this relation for sym-

metries from the list (11.1), we find the corresponding Hamiltonians which serve also as
conserved densities for Husain system

X1 : H1 =
1
2

(εv2
p − q2) = −H1, X2 : H2 = pvpq +

1
2
t(q2 − εv2

p),

X3 : H3 = −qvp = −H0, X
a(y,z)
6 : H6

a = q(azvy − ayvz) − vyvz(azvpy + ayvpz),

X
a(y,z)
5 : H5

a(y,z) = aq +
1
2

(ayvz − azvy)vp, Xc : Hc = ct(t, p)q + εcpp(t, p)v,

(11.20)

where c(t, p) satisfies Eq. (11.2). For the symmetry X4, Hamiltonian does not exist and so
it is not a variational symmetry.

Lie equations (11.5) of second-order symmetries of Husain system (7.4) can also be
presented in the Hamiltonian form (11.18) with the Hamiltonian density

Hf = F (t, p, q, vp), (11.21)

where F is defined in terms of the function f(t, p, q, vp) in (11.5) as Fq(t, p, q, vp) = f . On
account of Eqs. (11.4) and (11.19) with H = Hf and ϕ = ϕf , ψ = ψf defined by (11.5), F
can be shown to satisfy the equations

Ftvp + εFpq = α(t, p, vp), Fpvp − Fqt = 0,

Fqq + εFvpvp = 0, Ftt + εFpp = δ(t, p, vp),
(11.22)

where all the functions in the right-hand sides of Eqs. (11.22) are arbitrary functions of
their arguments. We note, in particular, that if Hf = F = 1

2 (q2 − εv2
p) in (11.21), then
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F satisfies all the conditions (11.22) with α = 0, δ = 0 and Hamiltonian (11.21) reduces
to Hamiltonian (8.6) of Husain system, while second-order Lie equations (11.5) with τ = t

coincide with the Husain system (7.4). Therefore, Husain system is embedded into the
hierarchy of second-order flows commuting with it.

Hamiltonians of the symmetry flows, presented here, serve as conserved densities for
Husain system. We note that the conservation laws presented in this section seem to be
different from those given in the paper of V. Husain [9].

11.3. Action of recursion operator on Hamiltonians of symmetry flows

Transformation (11.7) of the symmetry (ϕ1, ψ1) corresponds to the following transformation
of Hamiltonian H1

H̃1 = −εH3 +H5
c(y,z) = q[εvp + c(y, z)] +

1
2
(cyvz − czvy)vp, (11.23)

where c(y, z) is a “constant” of integration in (11.7). For Hamiltonian H1 of Husain system
given in (8.6), due to H1 = −H1, we have from (11.23)

H̃1 = εH3 −H5
c(y,z) = −εqvp −H5

c(y,z) = −εH0 −H5
c(y,z), (11.24)

where H0 is the second Hamiltonian (10.2) in the bi-Hamiltonian representation (10.3) of
Husain system, that is, H̃1 = −εH0 modulo arbitrary “constant” of integration c(y, z).

Action of R on the symmetry (ϕ2, ψ2) in (11.8) implies the following transformation of
the Hamiltonian H2

H̃2 = Hf=pq−εtvp +H5
c(y,z) =

p

2
(
q2 − εv2

p

)− εtqvp +H5
c(y,z), (11.25)

that is, H2 transforms to the Hamiltonian Hf = F in (11.21), where F is determined by
f = pq − εtvp due to the relation Fq(t, p, q, vp) = f and Eqs. (11.22) for F . It is obvious
that the specified f satisfies all the equations (11.4).

Transformation (11.9) of the symmetry (ϕ3, ψ3) results in the following transformation
of Hamiltonian H3:

H̃3 = H1 +H5
c(y,z) =

1
2
(εv2

p − q2) +H5
c(y,z). (11.26)

Transformation (11.11) of the symmetry (ϕ5, ψ5) implies

H̃5
a(y,z) = −H6

a(y,z) +H5
c(y,z) = q(ayvz − azvy) + vyvz(azvpy + ayvpz) +H5

c(y,z). (11.27)

Transformation of the symmetry (ϕ6, ψ6) gives rise to nonlocal flow (11.12) and hence
Hamiltonian H̃6

a(y,z) is also nonlocal with respect to the Hamiltonian operator J0. In the
next section, in Eq. (12.6) we will see that the Hamiltonian of this nonlocal flow will be a
local one, notably H6

a(y,z), if considered with respect to second Hamiltonian operator J1.
From transformation (11.13) of the symmetry (ϕc(t,p), ψc(t,p)) we deduce the transfor-

mation of the Hamiltonian Hc(t,p)

H̃c = Hd +H5
c(y,z) = q[dt(t, p) + c(y, z)] + εdpp(t, p)v +

1
2
(cyvz − czvy)vp, (11.28)
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where d(t, p) is related to c(t, p) by the equations dp = ct, dt = −εcp and satisfies the same
Eq. (11.2) as c(t, p): dtt + εdpp = 0.

Finally, transformation (11.16) of the general second-order symmetry (ϕf , ψf ), with
f(t, p, q, vp) satisfying Eqs. (11.4), results in the following transformation of the Hamiltonian
Hf :

H̃f = Hg +H5
c(y,z) = G(t, p, q, vp) + c(y, z)q +

1
2
(cyvz − czvy)vp, (11.29)

where Gq = g and g(t, p, q, vp) is determined by Eqs. (11.15) for any given f(t, p, q, vp)
satisfying (11.4). From (11.17) we note that the repeated application of the recursion to H̃f

takes us back to Hf : ˜̃Hf = −εHf modulo “constants” of integration. Since the Hamiltonian
H1 of Husain system is a particular case of Hf with f = q, the same is true for H1:
˜̃H1 = −εH1. Similarly, the second Hamiltonian H0 of Husain system can be obtained from
Hf at f = vp, which yields H̃0 = H1 and ˜̃H0 = −εH0.

12. Hierarchy and Bi-Hamiltonian Representations for Symmetry
Flows of Husain System

Similar to the beginning of Sec. 6, in this section, in contrast to Subsecs. 11.1 and 11.3,
we have D−1

p =
∫ p
−∞ dp ′ (for functions vanishing rapidly at −∞) in the definitions (9.6)

and (10.1) of R and J1, respectively, so that D−1
p Dp = 1. In Sec. 6, we have noted the

identity RJ0 = J1 = J0R
† resulting in the relation (6.4), which signifies that the action

of J1 on variational derivatives of the Hamiltonian H can be replaced by the action of J0

on variational derivatives of the Hamiltonian H̃ obtained from H by the action of R, in
accordance with the formulas derived in Subsec. 11.3, where we now skip all the terms
involving arbitrary “constants” of integration.

We now proceed to use relation (6.4) for constructing hierarchies of Husain system and
its symmetry flows, together with bi-Hamiltonian representations of the symmetry flows.
Applying R to Husain system in Hamiltonian form (8.7), we obtain(

vt1

qt1

)
= J1

(
δvH1

δqH1

)
= J0

(
δvH̃1

δqH̃1

)
= −εJ0

(
δvH0

δqH0

)
= −ε

(
vp

qp

)
, (12.1)

where t1 = t̃ is the parameter of the group transformed by R and we have used H̃1 = −εH0

due to (11.24) modulo H5
c(y,z). The second application of R to Hamiltonian system (12.1)

yields(
vt2

qt2

)
= J1

(
δvH̃1

δqH̃1

)
= J0


δv ˜̃H1

δq
˜̃H1


 = −εJ0

(
δvH1

δqH1

)
= −ε

(
q

qzvpy − qyvpz − εvpp

)
(12.2)

due to ˜̃H1 = −εH1, so that we are back to Husain system and further applications of the
recursion operator will not generate an infinite hierarchy. We also note that applying J0 to
H0 will not yield anything new(

vt0

qt0

)
= J0

(
δvH0

δqH0

)
=

(
vp

qp

)
, (12.3)



January 20, 2011 14:19 WSPC/1402-9251 259-JNMP S1402925110001021

Bi-Hamiltonian Representation of Mixed Heavenly and Husain Systems 481

while J1 applied to H0 is equivalent to J0 applied to H̃0 = H1, which again results in
bi-Hamiltonian representation (10.3) of Husain system.

Next we apply R to Hamiltonian symmetry flows generated by (11.1) that commute
with Husain flow (7.4). We skip the flow of H1 = −H1, which will reproduce (12.1) up to
a sign, and start with H2 from (11.20) with the following results(

vt̃2

qt̃2

)
= J1

(
δvH

2

δqH
2

)
= J0

(
δvH̃

2

δqH̃
2

)
=

(
pq − εtvp

p(vpyqz − vpzqy) − ε(pvp + tq)p

)
, (12.4)

where H̃2 = p
2(q2 − εv2

p) − εtqvp = pH1 − εtH0 according to (11.25).
Since H3 = −H0, we skip the action of J1 on H3. There is no Hamiltonian for the

symmetry generated byX4 in (11.1). Therefore, we proceed with the action of J1 on H5
a(y, z)

in (11.20) to obtain(
vt̃5

qt̃5

)
= J1

(
δvH

5
a(y,z)

δqH
5
a(y,z)

)
= J0

(
δvH̃

5
a

δqH̃
5
a

)
= −J0

(
δvH

6
a

δqH
6
a

)
= −

(
ϕ6a

ψ6a

)

=

(
ayvz − azvy

ayqz − azqy

)
, (12.5)

where we have used that H̃5
a = −H6

a according to (11.27).
Applying J1 to the flow of the symmetry (ϕ6a, ψ6a), defined in (11.1), with the Hamil-

tonian H6
a(y,z) given in (11.20), we obtain the first nonlocal symmetry flow (11.12) in the

hierarchy of variational symmetries of Husain system(
vt̃6

qt̃6

)
= J1

(
δvH

6
a

δqH
6
a

)
= J0

(
δvH̃

6
a

δqH̃
6
a

)
=

(
D−1

p [vpzϕ6a,y − vpyϕ6a,z + ψ6a]

qzϕ6a,y − qyϕ6a,z − εϕ6a,p

)
, (12.6)

because D−1
p obviously acts not on a total p-derivative. Since Xa

5 and Xa
6 commute, consid-

erations presented at the end of Sec. 6 show that the hierarchy of symmetry flows, generated
by powers of R from the symmetry Xa

5 , consists of commuting flows.
We skip a discussion of point symmetry Xc(t,p) in (11.1), since it is a particular case of

the second-order symmetry Xf(t,p,q,vp) in (11.3). So we finally consider the action of R on
the Hamiltonian Hf , defined in (11.21)(

vt̃

qt̃

)
= J1

(
δvH

f

δqH
f

)
= J0

(
δvH̃

f

δqH̃
f

)
= J0

(
δvH

g

δqH
g

)

=

(
g(t, p, q, vp)

gt + gq(qzvpy − qyvpz − εvpp) + qpgvp

)
, (12.7)

where, according to (11.29), H̃f = Hg with g(t, p, q, vp) related to f by Eqs. (11.15). Since
˜̃Hf = −εHf , the second application of R to H̃f takes us back to the original second-
order flow (11.3) with the generating function f . We note that the flow (11.3) is a natural
generalization of the Husain system.
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13. Conclusion

The importance of equations, that admit partner symmetries is that they possess nonlocal
recursion relations for symmetries of a special form, that enable us to obtain noninvariant
solutions by symmetry methods. They are integrable equations also in a more traditional
sense because they admit Lax representation together with infinite sets of symmetries and
conservation laws. Mixed heavenly equation, that combines, up to a point, first and second
heavenly equations of Plebañski, and Husain heavenly equation are among the simplest
canonical equations with these properties. We have reformulated both equations as two-
component evolution systems, which resulted in a natural definition of a single matrix
recursion operator for each system. This operator together with the operator of the symme-
try condition forms a Lax pair of Olver–Ibragimov–Shabat type for each of these systems.

By choosing an appropriate Lagrangian, we have discovered symplectic and Hamiltonian
representations for both mixed heavenly system and Husain system. Applying the recursion
operator to the Hamiltonian operator, we have explicitly generated second Hamiltonian
structures for these systems. Thus, we have shown that the mixed heavenly equation and
Husain equation, set in a two-component form, are bi-Hamiltonian systems with compatible
Hamiltonian structures forming a Poisson pencil. Therefore, they are integrable Hamiltonian
systems also in the sense of Magri. Hamiltonian structure relates symmetries and conserved
densities which serve as Hamiltonian densities for symmetry flows. We have determined
such Hamiltonian densities for all variational point symmetries and generalized second-
order symmetries for both mixed heavenly system and Husain system. We have derived
transformation laws of symmetries and their Hamiltonians under the action of recursion
operator.

We studied hierarchies of the mixed heavenly system and Husain system. A characteristic
feature of these systems is that the repeated action of the recursion operator on each of these
systems takes us back to the original system, so that there are only two members in the
hierarchy containing each of these systems and no infinite hierarchy can be generated from
them by the recursion. This is a remarkable distinctive feature of the mixed heavenly system
and Husain system as compared to the second heavenly equation of Plebañski and complex
Monge–Ampère equation whose bi-Hamiltonian structures we studied earlier. However, we
discovered an infinite hierarchy of Hamiltonian flows commuting with each other and with
the considered system. Such a hierarchy is generated by one of Lie point symmetries of each
system. Higher flows in each hierarchy are nonlocal and we have obtained explicitly first
nonlocal Hamiltonian flows for both systems. Thus, the mixed heavenly system and Husain
system possess an infinite number of (mostly nonlocal) symmetries and conservation laws
which is a customary property of integrable systems. We have obtained bi-Hamiltonian
representations for the flows of all variational point symmetries and all higher second-
order symmetries. Further study of higher-order and nonlocal symmetries may provide an
additional interesting information about the structure of these hierarchies.

There is also a set of all higher second-order symmetries for each system, which have
a functional arbitrariness and commute with this system but not with each other. The
commutators of all the symmetries are presented in the tables. This set of second-order
symmetries of each system includes the original system as a very particular simple case
and looks like a natural generalization of mixed heavenly and Husain systems. It would
be interesting to study symmetries and conservation laws of these more general systems
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of second-order Lie equations (5.5) and (11.5). An important question is if they possess
partner symmetries, may be under some restrictions.

Acknowledgments

The authors are grateful to A. V. Mikhailov for an interesting discussion. We thank the
referee for important remarks which hopefully led to an essential improvement of our paper.
The research of MBS was partly supported by the research grant from Bogazici University
Scientific Research Fund, research project No. 07B301.

References

[1] M. B. Sheftel and A. A. Malykh, On classification of second-order PDEs possessing partner
symmetries, J. Phys. A: Math. Theor. 42 (2009) 395202 (preprint arXiv:0904.2909v3).

[2] A. A. Malykh, Y. Nutku and M. B. Sheftel, Partner symmetries of the complex Monge–Ampère
equation yield hyper-Kähler metrics without continuous symmetries, J. Phys. A: Math. Gen.
36 (2003) 10023–10037.

[3] A. A. Malykh, Y. Nutku and M. B. Sheftel, Partner symmetries and non-invariant solutions of
four-dimensional heavenly equations, J. Phys. A: Math. Gen. 37 (2004) 7527–7545.

[4] A. A. Malykh, Y. Nutku and M. B. Sheftel, Lift of noninvariant solutions of heavenly equations
from three to four dimensions and new ultra-hyperbolic metrics, J. Phys. A: Math. Theor. 40
(2007) 9371–9386.

[5] M. B. Sheftel and A. A. Malykh, Lift of invariant to non-invariant solutions of complex Monge–
Ampère equations, J. Nonlinear Math. Phys. 15 (Suppl 3) (2008) 375–385.

[6] P. J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986).
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