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In this note we give new examples of algebraic geodesics on some two-dimensional quadrics, namely,
on ellipsoids, one-sheet hyperboloids, and hyperbolic paraboloids. It appears that in all considered
cases, such geodesics are rational space curves.
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1. Introduction

The problem of geodesics on the second order surfaces (quadrics) is a classical one. For
two-dimensional ellipsoid, an explicit description of geodesics was given by Jacobi [4] and
Weierstrass [10]. For other quadrics, their formulae should be modified and this problem
was considered by Halphen [3] and Hadamard [2] (for modern exposition of this topic, see
[5–7]).

It is well known that the generic geodesic on a two-dimensional quadric is a transcen-
dental space curve. However, in some cases, this geodesic becomes an algebraic space curve.
Hence, such geodesics may be considered as the complete intersection (or a connected com-
ponent of the intersection) of the two-dimensional quadric with the algebraic surface in the
space R

3.
In papers [1] and [8] some explicit examples of algebraic geodesics on two-dimensional

quadrics were given.
In this note we describe another approach for finding of algebraic geodesics on two-

dimensional quadrics. This approach is elementary one and will be illustrated on some
examples. It appears that in all considered cases such geodesics are rational space curves
and I conjecture that all algebraic geodesics on two-dimensional quadrics are rational curves.

Note that in paper [1] it was shown that closed geodesics on two-dimensional ellipsoid
may be only elliptic or rational curves, but examples of elliptic geodesics were not given. In
particular, in this paper it was shown that geodesics of type A are rational curves, but the
explicit parametrization of these curves (see formulae (6) and (7)) was not given.

Let Q(x) ≡ Q(x1, x2, x3) = 0 be a quadric in three-dimensional Euclidean space
R

3, x = (x1, x2, x3), x(t) = (x1(t), x2(t), x3(t)) be a space curve in some parametrization
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(here and below, t is some parameter, not the time),

ẋj(t) =
dxj(t)

dt
, ẍj(t) =

d2xj(t)
dt2

, nj =
∂Q

∂xj
. (1)

The necessary condition for the curve to be situated on quadric is

Q(x1(t), x2(t), x3(t)) = 0. (2)

Let us recall that on such quadric there are two families of straight lines (generators).
Two lines of the same familiy are not crossed, and two lines of different families are crossed.
The algebraic curve on quadric Q crosses m times any generator of the first family and n

times any generator of the second one. We denote such curve as Cm,n. As it is known, the
degree of this curve is equal to (m + n), and its genus is equal to (m − 1)(n − 1) [9].

Consider the equation

M = 0, M = det

∣∣∣∣∣∣
n1 n2 n3

ẋ1 ẋ2 ẋ3

ẍ1 ẍ2 ẍ3

∣∣∣∣∣∣ . (3)

Let us recall the well-known proposition.

Proposition. If Eqs. (2) and (3) are satisfied then the curve x(t) = (x1(t), x2(t), x3(t)) is
the geodesic on quadric Q(x) in some parametrization.

Proof. From Eq. (3) it follows that the vectors ẍ(t), ẋ(t), and n(t) are linearly dependent,
i.e.,

ẍ(t) + α(t) ẋ(t) + β(t)n(t) = 0, (4)

where α(t) and β(t) are some functions of t. This is exactly the equation for geodesics in
some parametrization.

At the rest of this paper we give some examples of algebraic geodesics obtained by means
of this proposition.

2. Ellipsoid

We give three examples of algebraic geodesics xj(t), j = 1, 2, 3 on ellipsoid in R
3 defined by

equations

Q = b1 x2
1 + b2 x2

2 + b3 x2
3 − 1 = 0, xj(t) = cj fj(t). (5)

2.1. Geodesics of type C2,2 with one double point

Let

f1(t) =
b − sin2 t

a − sin2 t
, f2(t) =

sin t cos t

a − sin2 t
, f3(t) =

cos t

a − sin2 t
, (6)

where a, b, bj , cj are unknown coefficients.

Theorem 1. There is one-parametric family of geodesics of type C2,2 with one double point
(i.e. the rational curves) parametrized by quantity a. The quantities b, bj , and cj are given
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by the formulae

b =
a − 2
2a − 1

, b1 = 4(a2 − a + 1), b2 = (2a − 1)2, b3 = (a − 2)2, (7)

c1 =
(a − 1)(2a − 1)

2(a + 1)
√

a2 − a + 1
, c2 = 2

√
a(a − 2)(a2 − a + 1)
(a + 1)(2a − 1)

,

c3 = 2

√
(2a − 1)(a2 − a + 1)

(a + 1)(a − 2)
.

(8)

Parameters bj of ellipsoid satisfy the relation

F1 = 12 (b2 + b3 − b1)2 + 4 (b2 − b3)2 − 3b2
1 = 0. (9)

The curve C2,2 is an intersection of ellipsoid Q with elliptic cylinder defined by the equation

A1(x1 + α)2 + A2x
2
2 − 1 = 0,

α =
2a − 1

2a(a + 1)(
√

a2 − a + 1
, A1 =

4a2 (a + 1)2

a2 − a + 1
, A2 =

(a + 1)2(2a − 1)2(a − 1)
(a − 2)(a2 − a + 1)

.

(10)

Proof. Recall that fj(t) have the form (6). Substituting the quantities xj(t) = cj fj(t) to
Eq. (3), we get the system of polynomial equations for quantities b and bj . Solving them
we obtain (7). The reader may easily check that Eqs. (8)–(10) are also valid.

We omit the proof of Theorems 2–6 because they may be proved analogously.

2.2. Geodesics of type C3,1 (Steiner quartics)

Let

f1(t) =
cos t

a − sin2 t
, f2(t) =

sin t

a − sin2 t
, f3(t) =

b − sin2 t

a − sin2 t
. (11)

Theorem 2. There is one-parametric family of geodesics of type C3,1 (i.e., the rational
curves) parametrized by quantity a. The quantity b is given by formula (7), and quantities
bj and cj are given by formulae

b1 = (a − 2)2, b2 = (a + 1)2, b3 = 4(a2 − a + 1), (12)

c1 =
2
√

a2 − 1 R1

(2a − 1)(a − 2)
, c2 =

2
√

a(a − 2)R1

(2a − 1)(a + 1)
, c3 =

1
2R1

, R1 =
√

a2 − a + 1. (13)

Parameters bj satisfy relation (9) and also second algebraic relation.
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2.3. Geodesics of type C3,3

Let

f1(t) = sin t (sin2 t − a1), f2(t) = sin t (sin2 t − a2), f3(t) = cos t (sin2 t − a). (14)

Theorem 3. There is one-parametric family of rational geodesics of type C3,3. The quan-
tities a1, a2, bj , and cj are given by formulae

a1,2 =
2a(a + 2) ± R

4a − 1
, b1,2 = 5a2 − 2a + 3 ∓ 2R, b3 = (a + 2)2,

R =
√

a(a + 2)(4a2 − 4a + 3),
(15)

cj =

√
Cj

bj
, C1,2 =

1
4

2R ± (4a2 − 6a − 1)
a2R

, C3 =
1
a2

. (16)

Parameters bj satisfy the relation

F2 = 729(b4
1 + b4

2) − 2916(b2
1 + b2

2)b1b2 + 4374 b2
1b

2
2 − 3888(b3

1 + b3
2)b3 − 9936 b1b2 (b1 + b2) b3

+ 7776(b2
1 + b2

2)b
2
3 + 19520 b1b2b

2
3 − 6912 (b1 + b2) b3

3 + 2304 b4
3 = 0. (17)

3. One-Sheet Hyperboloid

Let Q be one-sheet hyperboloid in R
3 defined by the equation

Q = b1x
2
1 + b2x

2
2 + b3x

2
3 − 1 = 0, (18)

and xj(t) = cj fj(t), j = 1, 2, 3. We consider two cases:

3.1. Geodesics of type C3,1 (Steiner quartics)

Let

f1(t) =
(1 − t4)

(t2 − 1)2 − 4at2
, f2(t) =

2t (1 + t2)
(t2 − 1)2 − 4at2

, f3(t) =
2t (1 − t2)

(t2 − 1)2 − 4at2
. (19)

Theorem 4. On one-sheet hyperboloid there is one-parametric family of geodesics of type
C3,1 (i.e., the rational curves) parametrized by parameter a. The quantities bj and cj are
given by formulae

b1 = (1 + 2a)2, b2 = (2 + a)2, b3 = −(1 − a)2, (20)

c1 =
1

2a + 1
, c2 =

a

a + 2
, c3 =

a + 1
a − 1

. (21)

Parameters bj satisfy the relation

F3 = (b1 + b2 + b3)2 + (b1 − b2)2 − (b1 + b2)2 = 0. (22)
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3.2. Geodesics of type C2,1

Let

f1(t) =
t3 + a1t

t2 + a0
, f2(t) =

t3 + a2t

t2 + a0
, f3(t) =

t2 + a3

t2 + a0
. (23)

Theorem 5. On one-sheet hyperboloid (18) (b1 > 0, b3 > 0, b2 < 0) there is one-parametric
family of geodesics of type C2,1 (i.e., the rational curves) parametrized by parameter u.

The quantities a0, aj , bj , and cj are given by formulae

a1,2 = (u + 9)(u + 1) ± 2R, a3 =
1
3

(u + 9)(u − 3), a0 = −(u − 3)(u + 1), (24)

b1,2 = (u2 − 4u − 9) ± R, b3 = 2(u2 − 9), R =
√

(u + 9)(u + 1)(u2 − 2u + 9),

u ∈ [3,∞), (25)

cj =

√
Cj

bj
, C1 = 9

(u + 3)2

(u + 9)2R
, C2 = −C1, C3 = 9

(u + 1)2

(u + 9)2
. (26)

The parameters b1, b2, and b3 satisfy the condition

F4 = 16 b1b2(b1 − b3)(b2 − b3) − 9(b1 + b2 − b3)4 = 0. (27)

4. Hyperbolic Paraboloid

Let us define the hyperbolic paraboloid by the formula

b1x
2
1 − b2x

2
2 − 2x3 = 0 (28)

and let us take the Ansatz

x1(t) = t, x2(t) = c1t + c2t
−1. (29)

Then we have the theorem

Theorem 6. The curve x(t) = (x1(t), x2(t), x3(t)) is the geodesics of type C2,1 on hyperbolic
parabolod (28) if

b2 =
1
3

b1, c1 =
√

3, c2 = −1
2

√
3. (30)

This case has been considered already in [8] but by means of another method.
In conclusion I would like to formulate the conjecture.

Conjecture. All algebraic geodesics on two-dimensional quadrics are rational curves.
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