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Recently, J. A. Tirao [Proc. Nat. Acad. Sci. 100(14) (2003) 8138–8141] considered a matrix-valued
analogue of the 2F1 Gauß hypergeometric function and showed that it is the unique solution of
a matrix-valued hypergeometric equation analytic at z = 0 with value I , the identity matrix,
at z = 0. We give an independent proof of Tirao’s result, extended to the more general setting
of hypergeometric functions over an abstract unital Banach algebra. We provide a similar (but
more complicated-looking) result for a second type of noncommutative 2F1 Gauß hypergeometric
function. We further give q-analogues for both types of noncommutative hypergeometric equations.
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1. Introduction

Hypergeometric series with noncommutative parameters and argument, in the special case
involving square matrices, have been the subject of recent study, see e.g. [3, 6, 7, 13–15,
24, 25, 29]. (For the classical theory of (basic) hypergeometric series, cf. [2, 11, 26].) In
particular, Tirao [29] considered a specific type of matrix-valued hypergeometric function
2F1, and showed, among other results, that it satisfies a matrix-valued differential equation
of the second order (a “matrix-valued hypergeometric equation”), and conversely that any
solution of the latter is a matrix-valued hypergeometric function of the considered type.
This result was reformulated by one of the present authors [25] in the more general set-
ting of hypergeometric functions with parameters and argument over an unital Banach
algebra R. Specifically, in [24, 25] two related types of noncommutative hypergeometric
and Q-hypergeometric series were studied, “type I” and “type II”, from the view-point of
explicit summation theorems they satisfy. In the terminology of [24, 25], Tirao’s extension
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of the Gauß hypergeometric function belongs to type I. As a matter of fact, the explicit
form of the noncommutative hypergeometric equation satisfied by the type II Gauß hyper-
geometric function has so far not been determined. (A priori, it is not clear that the type II
hypergeometric equation would be of second order or even have a reasonable compact form.)
Nor has any of the corresponding noncommutative basic (or Q-) hypergeometric equations
been determined. In this paper we give an independent derivation of Tirao’s result for the
type I Gauß hypergeometric function and succeed in providing an analogous (however, more
complicated-looking) result for the type II case. We further give Q-analogues of the above
results, hereby establishing the explicit forms of the type I and type II noncommutative
basic hypergeometric equations. (In the basic type II case we just state the result which is
not very elegant and omit the proof.)

To eliminate possible misconception, we would like to stress that the series considered in
this paper, as they involve noncommuting parameters and argument, are much more general
than the series of (sole) matrix argument as considered, e.g. by Gross and Richards [12].
In particular, since in the latter series all parameters (being scalars) commute, the specific
issue of noncommutativity does not arise, and the hypergeometric equation is just the
usual one.

We point out that certain first order ordinary differential operators applied to the Gauß
hypergeometric function have been successfully used in order to study representations of
quadratic R-matrix algebras appearing in quantum inverse scattering method, see [20],
while the study of q-hypergeometric functions (and difference equations for them) have
been recently used to study representation theory of Lie algebras, quantum affine algebras,
quantum groups, Yangians and quantum Yang–Baxter equations, see [10, 16, 27, 28, 30, 31].
We refer to [4, 21] for surveys on R-matrices and Yangians, and to [8, 9] for comprehen-
sive references on dynamical Yang–Baxter equations and quantum theory. Our results may
cast new light and give a better insight on the investigation of certain twisted versions of
Yangians related to the representation theory of infinite dimensional Lie algebras, see [22],
and apt to spring further inspection upon quantum conformal field theory using infinite
dimensional noncommutative geometry, see [17, 32, 33].

We refer to [5, 23, 34], and [1, 18, 19], for comprehensive references on Banach algebras,
and on differential equations in Banach spaces, respectively.

In the following section, we collect some definitions and notations, taken almost verbatim
from [24, 25]. These are needed in Secs. 3 and 4 for the study of the type I and type II
noncommutative (basic) hypergeometric equations.

2. Preliminaries

Let R be a unital Banach algebra, i.e. an associative ring (over some field K) with a
multiplicative identity element, together with some norm ‖·‖ such that R is norm-complete.
Throughout this paper, the elements of R will be denoted by capital letters A,B,C, . . . .
In general these elements need not commute with each other; however, we may sometimes
specify certain commutation relations explicitly. We denote the identity by I and the zero
element by O. Whenever a multiplicative inverse element exists for any A ∈ R, we denote
it by A−1. (Since R is a unital ring, we have AA−1 = A−1A = I.) On the other hand, as
we shall implicitly assume that all the expressions which appear are well defined, whenever
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we write A−1 we assume its existence. For instance, in (2.1a) and (2.1b) we assume that
Ci + jI is invertible for all 1 ≤ i ≤ r, 0 ≤ j < k.

An important special case is when R is the ring of n× n square matrices (our notation
is certainly suggestive with respect to this interpretation), or, more generally, one may view
R as a space of some abstract operators.

For any nonnegative integers m and l with m ≥ l − 1 we define the noncommutative
product as follows:

m∏
j=l

Aj =

{
I m = l − 1

AlAl+1 · · ·Am m ≥ l.

In [24, 25] a more general definition was given, which however we will not need here.
For nonnegative integers k and r we define the generalized noncommutative shifted

factorial of type I by⌈
A1, A2, . . . , Ar

C1, C2, . . . , Cr
;Z

⌋
k

:=
k∏

j=1

[(
r∏

i=1

(Ci + (k − j)I)−1(Ai + (k − j)I)

)
Z

]
, (2.1a)

and the noncommutative shifted factorial of type II by⌊
A1, A2, . . . , Ar

C1, C2, . . . , Cr
;Z

⌉
k

:=
k∏

j=1

[(
r∏

i=1

(Ci + (j − 1)I)−1(Ai + (j − 1)I)

)
Z

]
. (2.1b)

Note the unusual usage of brackets (“floors” and “ceilings” are intermixed) on the left-
hand sides of (2.1a) and (2.1b) which is intended to suggest that the products involve
noncommuting factors in a prescribed order. In both cases, the product, read from left to
right, starts with a denominator factor. The brackets in the form “�−�” are intended to
denote that the factors are falling, while in “�−�” that they are rising.

We define the noncommutative hypergeometric series of type I by

r+1Fr

⌈
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr

;Z

⌋
:=

∑
k≥0

⌈
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr, I
;Z

⌋
k

,

and the noncommutative hypergeometric series of type II by

r+1Fr

⌊
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr

;Z

⌉
:=

∑
k≥0

⌊
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr, I
;Z

⌉
k

.

In each case, the series terminates if one of the upper parameters Ai is of the form −nI.
If the series is nonterminating, then the series converges in R if ‖Z‖ < 1. If ‖Z‖ = 1 the
series may converge in R for some particular choice of upper and lower parameters. Exact
conditions depend on the Banach algebra R.

Throughout this paper, Q will be a parameter which commutes with any of the other
parameters appearing in the series. (For instance, a central element such as Q = qI, a scalar
multiple of the unit element in R, for qI ∈ R, trivially satisfies this requirement.)
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For nonnegative integers k and r we define the generalized noncommutative Q-shifted
factorial of type I by⌈

A1, A2, . . . , Ar

C1, C2, . . . , Cr
;Q,Z

⌋
k

:=
k∏

j=1

[(
r∏

i=1

(I − CiQ
k−j)−1(I −AiQ

k−j)

)
Z

]
,

and the noncommutative Q-shifted factorial of type II by⌊
A1, A2, . . . , Ar

C1, C2, . . . , Cr
;Q,Z

⌉
k

:=
k∏

j=1

[(
r∏

i=1

(I − CiQ
j−1)−1(I −AiQ

j−1)

)
Z

]
.

We define the noncommutative basic hypergeometric series of type I by

r+1φr

⌈
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr
;Q,Z

⌋
:=

∑
k≥0

⌈
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr, Q
;Q,Z

⌋
k

,

and the noncommutative basic hypergeometric series of type II by

r+1φr

⌊
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr
;Q,Z

⌉
:=

∑
k≥0

⌊
A1, A2, . . . , Ar+1

C1, C2, . . . , Cr, Q
;Q,Z

⌉
k

.

We also refer to the respective series as (noncommutative) Q-hypergeometric series. In each
case, the series terminates if one of the upper parameters Ai is of the form Q−n. If the series
does not terminate, then it converges if ‖Z‖ < 1.

Finally we recall the following well known definition.
A Banach ∗-algebra is a Banach algebra R over a field K equipped with an involutive

antiautomorphism, i.e. a map ∗ : R → R which satisfies the following properties for every
X,Y ∈ R:

(X∗)∗ = X, viz. the map ∗ is an involution,

(X + Y )∗ = X∗ + Y ∗,

(XY )∗ = Y ∗X∗,

‖X∗‖ = ‖X‖,

and such that the restriction ∗ :K → K is an involutive automorphism, since K is
commutative.

For instance, the ring of complex n × n square matrices is a Banach ∗-algebra, where
the map ∗ is the adjoint operator, viz. conjugate transposition.

3. Type I and Type II Noncommutative Hypergeometric Equations

Tirao [29] proved the following result:

Proposition 3.1. For a positive integer n, let R = Mn×n(C) be the ring of complex n× n

square matrices. Let A,B,C, F0 ∈ R be such that the spectrum of C contains no negative
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integers, and let z ∈ C. Then F (z) = 2F1

⌈
A, B

C ; zI
⌋
F0 is the unique solution analytic at z = 0

of the matrix-valued hypergeometric equation

z(1 − z)F ′′(z) + (C − z(1 +A+B))F ′(z) −ABF (z) = 0,

where F (0) = F0.

As was indicated without proof in [25, Remark 2.1] this readily extends to the following:

Theorem 3.1. Let R be a unital Banach algebra with norm ‖·‖, let A,B,C, F0 ∈ R such
that C + jI is invertible for all nonnegative integers j. Further let Z be central (i.e. Z ∈
{X ∈ R : XY = Y X, ∀Y ∈ R}) with ‖Z‖ < 1. Then

F (Z) = 2F1

⌈
A,B

C
;Z

⌋
F0 (3.1)

is the unique solution analytic at Z = O of the noncommutative hypergeometric equation

Z(I − Z)F ′′(Z) + (C − Z(I +A+B))F ′(Z) −ABF (Z) = O, (3.2)

where F (O) = F0.

We provide an operator proof of Theorem 3.1. On the contrary, Tirao’s proof of the
above Proposition given in [29] is essentially different. Starting with the matrix-valued
hypergeometric equation it involves the computation of the coefficients Fk in the analytic
series F (z) =

∑
k≥0 Fkz

k by a generic Ansatz.

Proof. First of all, the (right multiple of the) type I noncommutative hypergeometric series

2F1

⌈
A,B

C
;Z

⌋
F0 =

∑
k≥0

 k∏
j=1

(C + (k − j)I)−1(A+ (k − j)I)(B + (k − j)I)

Zk

k!

F0

is clearly analytic at Z = O and 2F1

⌈
A, B

C ;O
⌋
F0 = F0.

Next we show that 2F1

⌈
A, B

C ;Z
⌋
F0 is a solution of the differential equation (3.2). We

define the linear operator

DT := T + Z
d

dZ
,

where T ∈ R, acting (from the left) on functions of Z over R.
If F (Z) is analytic at Z = O we can write F (Z) =

∑
k≥0 FkZ

k, where Fk ∈ R for any
nonnegative integer k. It is immediate that

DTF (Z) =
∑
k≥0

(T + kI )FkZ
k.

Hence

DA

(
DB 2F1

⌈
A,B

C
;Z

⌋)
=

∑
k≥0

(A+ kI)(B + kI)
⌈
A,B

C, I
;Z

⌋
k

,
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and

DC−I2F1

⌈
A,B

C
;Z

⌋
=

∑
k≥0

(C + (k − 1)I)
⌈
A,B

C, I
;Z

⌋
k

= C − I +
∑
k≥1

(A+ (k − 1)I)(B + (k − 1)I)

×
k−1∏

j=1

(C + (k − 1 − j)I)−1(A+ (k − 1 − j)I)(B + (k − 1 − j)I)

Zk

k!

= C − I +
∑
k≥0

(A+ kI)(B + kI)

×
 k∏

j=1

(C + (k − j)I)−1(A+ (k − j)I)(B + (k − j)I)

 Zk+1

(k + 1)!
.

Thus we have

d
dZ

(
DC−I 2F1

⌈
A,B

C
;Z

⌋)
= DA

(
DB 2F1

⌈
A,B

C
;Z

⌋)
. (3.3)

Since the differential equation

d
dZ

(DC−I F (Z)) = DA(DB F (Z)), (3.4)

or, more explicitly,

d
dZ

(
C − I + Z

d
dZ

)
F (Z) =

(
A+ Z

d
dZ

)(
B + Z

d
dZ

)
F (Z),

is equivalent to (3.2), it follows from (3.3) (and multiplication of a constant from the right)
that 2F1

⌈
A, B

C ;Z
⌋
F0 satisfies the differential equation (3.2).

The uniqueness of the solution (3.1) of (3.2) with F (O) = F0 readily follows from the
theorem of existence and uniqueness of solutions of differential equations in Banach spaces
(hence in Banach algebras), cf. e.g. [19]. All we need to show is that if there were two
solutions F1(Z) and F2(Z) then F ′

1(O) = F ′
2(O). (As we are considering a second order

differential equation, two initial conditions, fixing F (O) and F ′(O), are required to make
the solution unique.)

Assume that F1(Z) and F2(Z) are solutions of (3.2) with F1(O) = F2(O) = F0. Then
we have

Z(I − Z)F ′′
1 (Z) + (C − Z(A+B + I))F ′

1(Z) −ABF1(Z)

= Z(I − Z)F ′′
2 (Z) + (C − Z(A+B + I))F ′

2(Z) −ABF2(Z).

Evaluating this equation in Z = O we get C F ′
1(O) = CF ′

2(O) and since C is invertible the
claim follows.
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Now we are ready to state and prove the following new result concerning type II non-
commutative hypergeometric series. It appears to lie in the nature of the type II series that
the result is not as simple and elegant as in the corresponding type I case. In particular,
the following theorem as stated requires the condition C(C−A−B)+AB being invertible,
which has no counterpart in the type I case.

Theorem 3.2. Let R be a unital Banach ∗-algebra with norm ‖·‖, let A,B,C, F0 ∈ R such
that C(C −A−B) + AB and C + jI are invertible for all nonnegative integers j. Further
let Z be central (i.e. Z ∈ {X ∈ R : XY = Y X, ∀Y ∈ R}) with ‖Z‖ < 1. Then

F (Z) = F0 2F1

⌊
A,B

C
;Z

⌉
(3.5)

is the unique solution analytic at Z = O of the noncommutative hypergeometric equation

Z(I − Z)F ′′(Z) + ZF ′(Z)(C − I −A−B) + ((I − Z)F ′(Z) − F (Z)C−1AB)

× (C(C −A−B) +AB
)−1

C
(
C(C −A−B) +AB

)
= O, (3.6)

where F (O) = F0.

Remark 3.1. If, instead of the condition of C(C−A−B)+AB being invertible, C would
commute with A and B, then we would have a much simpler hypergeometric equation, as
the type II hypergeometric function would essentially be a starred type I hypergeometric
function. More precisely, if C commutes with A and B, one has (as one readily verifies)

2F1

⌊
A,B

C
;Z

⌉
= 2F1

⌈
B∗, A∗

C∗ ;Z∗
⌋∗
,

and the corresponding hypergeometric equation in place of (3.6) is just

F ′′(Z)Z(I − Z) + F ′(Z)(C − Z(I +A+B)) − F (Z)AB = O.

As this would not yield anything really new, we prefer not to impose the strong condition
of C commuting with A and B, but nevertheless, in order to make progress at a particular
point in the following proof (namely, after arriving at (3.10)), impose the (slightly awkward-
looking) condition of C(C −A−B) +AB being invertible.

Proof of Theorem 3.2. First of all, the (left multiple of the) type II noncommutative
hypergeometric series

F0 2F1

⌊
A,B

C
;Z

⌉
= F0

∑
k≥0

 k∏
j=1

(C + (j − 1)I)−1(A+ (j − 1)I)(B + (j − 1)I)

Zk

k!

is clearly analytic at Z = O and F0 2F1

⌊
A, B

C ;O
⌉

= F0.
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Next we show that F0 2F1

⌊
A, B

C ;O
⌉

is a solution of the differential equation (3.6).
We have

d
dZ 2F1

⌊
A,B

C
;Z

⌉
=

∑
k≥1

 k∏
j=1

(C + (j − 1)I)−1(A+ (j − 1)I)(B + (j − 1)I)

 Zk−1

(k − 1)!

=
∑
k≥0

k+1∏
j=1

(C + (j − 1)I)−1(A+ (j − 1)I)(B + (j − 1)I)

Zk

k!

=
∑
k≥0

⌊
A,B

C, I
;Z

⌉
k

(C + kI)−1(A+ kI)(B + kI). (3.7)

We define the linear operator D̃T by

D̃T := T +
d̃

dZ
Z,

where T ∈ R, acting from the right on functions over R. Here d̃
dZ is the differential operator

applied from the right side. With other words

F (Z)
d̃

dZ
=

d
dZ

F (Z),

and

F (Z) D̃T = F (Z)T + Z
d

dZ
F (Z),

where F (Z) is any function of Z (Z being central) over R.
In particular, we have

F (Z) D̃T = (D∗
T (F (Z)∗))∗

where D∗
T := T ∗ + Z∗ d

dZ∗ .
If F (Z) is analytic at Z = O we can write F (Z) =

∑
k≥0 FkZ

k, where Fk ∈ R for any
nonnegative integer k. It is immediate that

F (Z) D̃T =
∑
k≥0

FkZ
k (T + kI), (3.8a)

and

F (Z) D̃−1
U =

∑
k≥0

FkZ
k (U + kI)−1, (3.8b)

provided U + kI is invertible in R for all nonnegative integers k. (As U is invertible, so is
D̃−1

U = (U+ d̃
dZZ)−1 = U−1(I+ d̃

dZZU
−1)−1 where the last expression can be expanded as a

geometric series and becomes meaningful. Independently, it is easy to see from (3.8a)/(3.8b)
that the action of D̃−1

U on a power series is inverse to that of D̃U .)



January 20, 2011 14:17 WSPC/1402-9251 259-JNMP S1402925110000982

Noncommutative Hypergeometric and Basic Hypergeometric Equations 437

Hence((
2F1

⌊
A,B

C
;Z

⌉
D̃−1

C

)
D̃A

)
D̃B =

∑
k≥0

⌊
A,B

C, I
;Z

⌉
k

(C + kI)−1(A+ kI)(B + kI)

= 2F1

⌊
A,B

C
;Z

⌉
d̃

dZ
,

by (3.7).
It follows that

G(Z) = 2F1

⌊
A,B

C
;Z

⌉
D̃−1

C

is a solution of the differential equation

(G(Z) D̃A)D̃B = (G(Z) D̃C)
d̃

dZ
.

This is simply a “reversed” version of (3.4) with A and B interchanged and C+I in place of
C. It thus follows from Theorem 3.1 that G(Z) satisfies the reversed type I noncommutative
hypergeometric equation:

Z(I − Z)G′′(Z) +G′(Z)(C + I − Z(I +A+B)) −G(Z)AB = O. (3.9)

We now need to rewrite (3.9) in terms of F (Z) = 2F1

⌊
A, B

C ;Z
⌉
. We have

F (Z) = G(Z) D̃C = G(Z)C + ZG′(Z),

and

F ′(Z) = G′(Z)(C + I) + ZG ′′(Z),

which, in conjunction with (3.9), gives

(I − Z)F ′(Z) + F (Z)(C −A−B) − F (Z) D̃−1
C

(
C(C −A−B) +AB

)
= O. (3.10)

Next, we multiply both sides of (3.10) from the right with(
C(C −A−B) + AB

)−1D̃C

(
C(C −A−B) + AB

)
(which is

(
C(C − A − B) + AB

)−1
C(C(C − A − B) + AB) + d̃

dZZ). After a series of
computations, including the simplifiction

I − (C −A−B)(C(C −A−B) + AB)−1C = C−1AB(C(C −A−B) + AB)−1C,

we eventually arrive at (3.6). Further, by multiplying a constant from the left, it follows
that F0 2F1

⌊
A, B

C ;Z
⌉

satisfies the differential equation (3.6).
Using the same argument as in the proof of Theorem 3.1, one readily establishes the

uniqueness of the solution (3.5) of (3.6) with F (O) = F0.
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4. Type I and Type II Noncommutative Basic Hypergeometric Equations

For a parameter Q ∈ R which commutes with all other parameters (that appear in the
respective expressions) we define the Q-difference operator dQ

dQZ by

dQ

dQZ
F (Z) = (I −Q)−1Z−1(F (Z) − F (QZ)).

Its action on monomials is
dQ

dQZ
Zk = (I −Q)−1(I −Qk)Zk−1,

while in combination with the multiplication operator Z one has

dQ

dQZ
(ZF (Z)) = F (Z) +QZ

dQ

dQZ
F (Z). (4.1)

Clearly, as Q → I, the Q-difference operator dQ

dQZ approaches the differentiation

operator d
dZ .

We have the following Q-analogue of Theorem 3.1:

Theorem 4.1. Let R be a unital Banach algebra with norm ‖·‖, let A,B,C, F0, Q ∈ R such
that Q commutes with A,B,C, F0 and such that I − CQj is invertible for all nonnegative
integers j. Further let Z be central (i.e. Z ∈ {X ∈ R : XY = YX , ∀Y ∈ R}) with ‖Z‖ < 1.
Then

F (Z) = 2φ1

⌈
A,B

C
;Q,Z

⌋
F0 (4.2)

is the unique solution analytic at Z = O of the noncommutative basic hypergeometric
equation

Z(C −ABQZ)
d2

Q

dQZ2
F (Z) + (I −Q)−1[(I − C) + (I −A)(I −B)Z

− (I −ABQ)Z]
dQ

dQZ
F (Z) − (I −Q)−2(I −A)(I −B)F (Z) = O, (4.3)

where F (O) = F0.

For commuting parameters Theorem 4.1 reduces to [11, Ex. 1.13]. We prove Theorem 4.1
in a similar way to our proof of Theorem 3.1.

Proof. First of all, the (right multiple of the) type I noncommutative basic hypergeometric
series

2φ1

⌈
A,B

C
;Q,Z

⌋
F0

=

∑
k≥0

 k∏
j=1

(I − CQk−j)−1(I −AQk−j)(I −BQk−j)(I −Q1+k−j)−1

Zk

F0

is clearly analytic at Z = O and 2φ1

⌈
A, B

C ;Q,O
⌋
F0 = F0.
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Next we show that 2φ1

⌈
A, B

C ;Q,Z
⌋
F0 is a solution of the difference equation (4.3). We

define the linear operator

DQ,T := (I −Q)−1(I − T ) + TZ
dQ

dQZ
,

where T ∈ R, acting (from the left) on functions of Z over R.
If F (Z) is analytic at Z = O we can write F (Z) =

∑
k≥0 FkZ

k, where Fk ∈ R for any
nonnegative integer k. Since

DQ,TZ
k = (I −Q)−1(I − TQk)Zk,

it is immediate that

DQ,TF (Z) = (I −Q)−1
∑
k≥0

(I − TQk)FkZ
k.

Hence

DQ,A

(
DQ,B 2φ1

⌈
A,B

C
;Q,Z

⌋)
= (I −Q)−2

∑
k≥0

(I −AQk)(I −BQk)
⌈
A,B

C,Q
;Q,Z

⌋
k

,

and

DQ,CQ−1 2φ1

⌈
A,B

C
;Z

⌋
= (I −Q)−1

∑
k≥0

(I − CQk−1)
⌈
A,B

C,Q
;Q,Z

⌋
k

= (I −Q)−1(I − CQ−1) + (I −Q)−1
∑
k≥1

(I −AQk−1)(I −BQk−1)(I −Qk)−1

×
k−1∏

j=1

(I − CQk−1−j)−1(I −AQk−1−j)(I −BQk−1−j)(I −Qk−j)−1

Zk

= (I −Q)−1(I − CQ−1) + (I −Q)−1
∑
k≥0

(I −AQk)(I −BQk)(I −Qk+1)−1

×
 k∏

j=1

(I − CQk−j)−1(I −AQk−j)(I −BQk−j)(I −Qk+1−j)−1

Zk+1.

Thus we have

dQ

dQZ

(
DQ,CQ−1 2φ1

⌈
A,B

C
;Q,Z

⌋)
= DQ,A

(
DQ,B 2φ1

⌈
A,B

C
;Q,Z

⌋)
. (4.4)

Since the Q-differential equation

dQ

dQZ
(DQ,CQ−1 F (Z)) = DQ,A(DQ,B F (Z)), (4.5)
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or, more explicitly,

dQ

dQZ

(
(I −Q)−1(I − CQ−1) + CQ−1Z

dQ

dQZ

)
F (Z)

=
(

(I −Q)−1(I −A) +AZ
dQ

dQZ

)(
(I −Q)−1(I −B) +BZ

dQ

dQZ

)
F (Z),

is equivalent to (4.3) (which can be verified using (4.1) and simple identities such as
(I−Q)−1(I−CQ−1)+CQ−1 = (I−Q)−1(I−C)), it follows from (4.4) (and multiplication
of a constant from the right) that 2φ1

⌈
A, B

C ;Q,Z
⌋
F0 satisfies the differential equation (4.3).

The uniqueness of the solution (4.2) of (4.3) with F (O) = F0 readily follows from the
theorem of existence and uniqueness of solutions of differential equations in Banach spaces,
just as in the proof of Theorem 3.1.

In a Banach ∗-algebra R, for a parameter Q ∈ R which commutes with all other param-
eters (that appear in the respective expressions) we define d̃Q

dQZ as the Q-difference operator
acting from the right on functions over R, i.e.

F (Z)
d̃Q

dQZ
=

(
d∗

Q

d∗
QZ

(F (Z)∗)
)∗

where

d∗
Q

d∗
QZ

F (Z) = (I −Q∗)−1(Z∗)−1(F (Z) − F (QZ)).

By a similar analysis as in the proof of Theorem 3.2 one can also work out a type
II noncommutative basic hypergeometric equation which is again of second order. As one
would expect, the result has a significantly more complicated form than in the type I case
(compare Theorem 3.2 with Theorem 3.1). In particular, a required condition is that C and
(I−C−1A−C−1(I−C−1A)B) have to be invertible, which has no counterpart in the basic
type I case. Since the proof (which essentially follows the lines of the proofs of Theorems 3.2
and 4.1) is just tedious but not very illuminating, we state the result without it.

Theorem 4.2. Let R be a unital Banach ∗-algebra with norm ‖·‖, let A,B,C, F0, Q ∈ R

such that Q commutes with A,B,C, F0 and such that C, (I − C−1A − C−1(I − C−1A)B)
and I − CQj are invertible for all nonnegative integers j. Further let Z be central (i.e.
Z ∈ {X ∈ R : XY = Y X, ∀Y ∈ R}) with ‖Z‖ < 1. Then

F (Z) = F02φ1

⌊
A,B

C
;Q,Z

⌉
(4.6)

is the unique solution analytic at Z = O of the noncommutative basic hypergeometric
equation

F (Z)
d̃2

Q

dQZ2
Z(I −C−1ABQZ)(I − C−1A− C−1(I − C−1A)B)−1C

× (I − C−1A− C−1(I − C−1A)B) + F (Z)
d̃Q

dQZ
(I −Q)−1
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× (I − C−1A− C−1(I − C−1A)B)−1(I −C)(I − C−1A− C−1(I − C−1A)B)

+F (Z)
d̃Q

dQZ
Z(I −Q)−1[C −A−B + (C−1AB + C−1ABQ − I)

× (I − C−1A− C−1(I − C−1A)B)−1C(I − C−1A− C−1(I − C−1A)B)]

+F (Z)(I −Q)−2[A+B − C − I − (C−1AB − I)

× (I − C−1A− C−1(I − C−1A)B)−1C(I − C−1A− C−1(I − C−1A)B)] = O, (4.7)

where F (O) = F0.

Remark 4.1. Similarly as in Theorem 3.2 (see Remark 3.1), if instead of the condition of
(I − C−1A − C−1(I − C−1A)B) being invertible, C would commute with A and B, then
we would have a much simpler Q-hypergeometric equation (as in type I), stemming from
the observation that in this case the type II Q-hypergeometric function is a starred type I
Q-hypergeometric function (with starred parameters, but with the upper parameters A and
B being interchanged). More precisely, if C commutes with A and B, one has (as one readily
verifies)

2φ1

⌊
A,B

C
;Q,Z

⌉
= 2φ1

⌈
B∗, A∗

C∗ ;Q∗, Z∗
⌋∗
,

and the corresponding Q-hypergeometric equation in place of (4.7) is

F (Z)
d̃2

Q

dQZ2
Z(C − ABQZ )

+F (Z)
d̃Q

dQZ
(I −Q)−1[(I − C) + (I −A)(I −B)Z − (I − ABQ)Z]

+F (Z)(I −Q)−2(I −A)(I −B) = O.
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