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It is shown that the deformed Nonlinear Schrodinger (NLS), Hirota and AKNS equations with
(14 1) dimension admit infinitely many generalized (nonpoint) symmetries and polynomial con-
served quantities, master symmetries and recursion operator ensuring their complete integrability.
Also shown that each of them admits infinitely many nonlocal symmetries. The nature of the
deformed equation whether bi-Hamiltonian or not is briefly analyzed.
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1. Introduction

The investigation of completely integrable higher order nonlinear partial differential equa-
tions (PDEs) with (1 + 1) dimension admitting solitons has drawn considerable interest in
recent years [13, 15-18, 23, 25, 29-31, 33, 35, 36]. The question of integrability of nonlinear
PDEs can be investigated through several approaches [2, 4, 20, 32]. If a nonlinear PDE,
written in Hamiltonian description, admits infinitely many generalized symmetries, then it
is expected to be integrable in the sense of Liouville [26, 27, 37]. If the generalized sym-
metries of a given nonlinear PDE are explicitly known, then it is possible to construct the
so called recursion operator. The mathematical characterization of the recursion operator
is that it maps a symmetry to another symmetry of a given equation. The existence of a
recursion operator guarantees that the PDE has infinitely many higher order symmetries,
which is a key feature of complete integrability [6, 10, 12, 28].

Another interesting class of symmetries admitted by nonlinear PDEs possessing solitons
is master symmetries which involves both dependent and independent variables and are
related with generalized symmetries [8-10]. A master symmetry (of degree n) for a non-
linear PDE, is a derivation in the Lie algebra of vector fields having the property that n
fold applications leaves the commutator of the flow under consideration invariant. When a
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nonlinear PDE admits a master symmetry it usually admits infinitely many such symmetries
where the successive elements involve independent variables, dependent variables as well as
spatial derivatives of the dependent variables. A remarkable feature of master symmetries
for nonlinear PDEs is that they constitute a centerless Virasoro algebra. The existence of
a sequence of master symmetries is one of the characteristics of completely integrable non-
linear PDEs. If the infinitesimal symmetries of the given PDE involves local variables (that
is independent variables and dependent variables and its partial derivatives only) then it is
called local symmetries otherwise known as nonlocal symmetries [3, 5, 14, 34]. One of the
reasons to introduce the concept of a nonlocal symmetry, involving nonlocal variables, is that
the generating function of local symmetries are solution spaces of the equations under con-
sideration. These generating functions depend on independent and dependent variables as
well as on their derivatives of higher order. It is appropriate to mention here that the theory
of coverings over differential equations provides an interesting tool to describe various non-
local phenomena: nonlocal symmetries and conservation laws, Béacklund transformations,
prolongation structures, etc.

If a nonlinear PDE admitting solitons gets perturbed or deformed it is of interest to
investigate whether it preserves the integrability properties of un-deformed counter part.
In this article, we report that the deformed NLS, Hirota and AKNS equations with (1+ 1)
dimension, respectively, given by

iUy — Ugy — 2020 = g, (1.1a)
Ge = —21ub, (1.1b)
by = i(ug” —u*g), (1.1c)
iy + 10 (Ugy + 6lul?uy) + % + [u*u = g, (1.2a)
gz = —2iub, (1.2b)
by =i(ug® —u*g) a - parameter. (1.2¢)
Up = —Ugy + 2020 + G, (1.3a)
Vg = Ugp — 20%u+ h, (1.3b)
Ja = 2ub, (1.3¢c)
he = 20b, (1.3)
by = uh + vg, (1.3e)

where % denotes complex conjugate preserve the integrability properties of their undeformed
counter part. Note that on eliminating g(z,t), §(x,t),h(z,t) and b(z,t) in the above coupled
equations one can obtain higher order nonlinear PDEs.

We would like to mention that the deformed equations (1.1)—(1.3) arise from the com-
patibility condition of a system of linear equations. More precisely the deformed equations
(1.1)—(1.3) admit Lax pair satisfying the Lax equation [1, 21]

Li— My +[L,M] =0 or Lj— My+ LM — ML=0.
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The explicit form of the Lax matrices L and M are given below:

(i) Lax pair of deformed NLS equation, (1.1)

N2 b . g
:<i/\ zu) o 29\ —zuu*+ﬁ 22)\u—|—ux+ﬁ
iu* —iX) T 7/ O 1)
2t ™ —ul + 3\ 2iA° +iuu )
(ii) Lax pair of deformed Hirota equation, (1.2)
A du
L=1. N
wr =i\
3 g | duu” . . . \92 . .
4iaN° — IN° + — 2ia uu 4iaXu + 2a Uy — AU — 1QULy
+a(uul — u*uy) + — —2iauu* — — 4+ =
v 2\ 22X
diaN>u* — 2a u’ — i u* —4ia)® + X2 — 2 4 et
+ U iau’, — 2iauu*® + 9 —a(uul — u*uy) — o
2 v 2 * 2\
(iii) Lax pair of deformed AKNS equation, (1.3)
2)\2+uv—ﬁ 2 \u — iu _ 9
I < A ) M 2\ 9\
—iv —i\)’ ih ib
O\ —wy — . 222 -
AU — Uy o\ A uv + N

where A is a spectral parameter. The derivation of the Lax matrices L and M associated
with the deformed equations are given in [31].

The demonstration of a bi-Hamiltonian structure for nonlinear PDE, particularly
evolution equations is a direct and elegant method to study its complete integrability. A
significant development in the Hamiltonian theory is due to Magri [24], who realized that
integrable nonlinear PDEs with Hamiltonian description have an additional structure. They
are bi-Hamiltonian, that is, they can be written in two different compatible Hamiltonian
operators. Similarly, finding Hamiltonian structure for deformed PDE is very needful to
study its integrability. Recently Kupershmidt [15] has shown that the deformed KdV or
KdV6 admits bi-Hamiltonian structure. Also, Kersten et al. [19] have pointed out that the
Kupershmidt deformation of a bi-Hamiltonian system is itself bi-Hamiltonian. Following
the ideas of Kupershmidt [15] and Kersten et al. [19], we find that the deformed equations
(1.1)-(1.3) are bi-Hamiltonian.

The plan of the article is as follows: In Sec. 2 we consider deformed NLS equation (1.1)
and show explicitly that it possesses infinitely many generalized symmetries, polynomial
conserved quantities and a recursion operator. In Sec. 3 we show that the deformed NLS
equation admits infinitely many master symmetries which is a characteristics of complete
integrability. In Sec. 4 we give a sequence of nonlocal symmetries for the deformed NLS
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equation. In Sec. 5 we explain whether the deformed NLS equation admits a bi-Hamiltonian
representation or not. In Sec. 6 we give a brief summary of our results and concluding
remarks. In the Appendix, we provide a brief computational details of the above integrability
aspects of the deformed Hirota (1.2) and AKNS equations (1.3).

2. Generalized Symmetries, Recursion Operator and Polynomial
Conserved Quantities of Deformed NLS Equation

It is easy to check that the deformed NLS equation and its complex conjugate

Uy — Ugy — 20U = g (2.1a)
iuf ok, + 2uttu = —g* (2.1b)
gz = —2iub (2.1c)
gr = 2iu™b (2.1d)
by = i(ug® —u”g) (2.1e)

are invariant under the scaling symmetry

* * —2 —1 1 1, « .3 3 % .3
(t,x,u,u,g,g,b)ﬂ(s t>8 ZL‘,SU,SU,Sg,SQ,Sb),

where s is an arbitrary parameter which suggests that u corresponds to one derivative with
respect to x, g and b corresponds to three derivatives with respect to x.

2.1. Generalized symmetries

Let us assume that the deformed NLS equation (2.1) is invariant under a one parameter
nonpoint transformations

t=t, T=x d=u+eGL+0(?), u*=u*+eG?+ O(), (2.9)
G=g+ e, +0(&), ¢ =g +eH; +0(&), b=b+eB,+0(), '
where
Kn = (G7lza G?za H7£> H'r2za Bn)T
are functions of (u,u*, g, ¢", Uz, WS, Upy, WSy« .y Guy Gy b, by, . . .), provided u,u*, g,¢" and b
satisfy Eq. (2.1). Consequently we obtain the following invariant equations
DGL DG} .
! Dtn B szn — 2u*G? — 4uu*Gl — H! =0, (2.3)
.DG? D?G! . .
i+ Tz T2 Gl + duu*GE 4+ HE =0, (2.4)
DH}
D; + 2iuB,, + 2ibGl =0, (2.5)
DH?
Dx" — 2iu*B,, — 2ibG2 =0, (2.6)
DB
© —i(g"Gy + uHy — gGy —uH,) =0, (2.7)

Dx
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where
D 9 o .9 o .0 9 9
D—x:%+um%+uxau*+gma—g+gxa—g*+uma—%+umta—w
0 0
+gxm agm + gmta_gt +
D 9 o .0 o .0 0 0
E:a‘Fut%—Fut%—tha—g‘tha—g*+umta—u$+utta—m

+ 0 + 0 +
Jat 99 gtt dar .

Note that the invariant equations (2.3)—(2.7) can be solved in more than one way [11, 27].
However in this article we follow the algorithmic method devised by Hereman [11] to derive
generalized symmetries, conserved quantities and recursion operators for nonlinear partial
differential and differential-difference equations [11]. Hereman’s algorithm is based on the
concept of weights and ranks. The weight W of a variable is defined as the exponent in
the scaling parameter s which multiplies the variable. Weights of the dependent variables
are nonnegative and rational. An expression is said to be uniform in rank if all its terms
have the same rank. Setting W (0/0z) = 1, we see that W (u) = 1,W(g) = 3,W(b) = 3
and W (9/0t) = 2 and hence Egs. (2.1) are of rank (3, 3, 4, 4, 4). This property is called
uniformity in rank. The rank of a monomial is defined as the total weight of the monomial,
again in terms of derivatives with respect to x.
From Egs. (2.3)-(2.7), it is easy to check that

G(l) Uy G% Uy + 2u%u*
G? G* G? ~GI*
Ko=|H|=]| 9 |, Ki=|H|=|gux+4uug—2u%g* |, (2.8)
s i i}
By by By byy + duu®b + 2igu’,

are trivial symmetries with rank (2,2,4,4,4) and (3,3,5,5,5) respectively. Obviously the
next generalized symmetry Ko must have rank (4,4,6,6,6). With this in mind we first
form monomials in u, u*, g, g* and b of rank (4, 4,6,6,6). Thus the most general form of Ko
will be

G% liuzg + luu*ug + l3uu* + Lou*u + l5g, + leg
G3 miud, + mauu*uk + mau*?u + mauu* + msgk + mege
Ky=|Hy | = | p1gse + pouueg + psuu*gs + pruveg” + psgg* +pegs, | > (2.9)
H3 0193, + Quuyzg™ + qzuu’ gy + quutuy + 599" + 4693
By r1b3z + rouu*by + rautuLb + rauuib + ryungg + reutugg’
where [;,mj,pj,q;, and 7,7 = 1,2,...,6 are arbitrary constants to be determined. Here

after we denote Uyzz, goue, €tC. Dy Uss, g3z, etc. We now substitute G3, G3, Hi, H3 and By
in the invariant equations (2.3)—(2.7), with n = 2 and solving them by using (2.1) we obtain
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the following nontrivial generalized symmetry

G% Uze + 6uuuy,
G3 Gy
Ky = | H} | = | g3z + 6u*uzg + 6uu*g, — 6uu,g* |, (2.10)
H3 Hy*
By b3y + 6uu*b, + 6uub + 6uu’b

with rank (4,4,6,6,6). In a similar manner we obtain the next generalized symmetry K3
for (2.1) with rank (5,5,7,7,7). They are

Uge + 20Uk, + Suu Uy, + duugu’ + 6utul + 6udu*?

g Con
G3 G1e — 2u%gl, — 6g*u2 — 12u3u*g* + dugu’, + Su*guse — SUg Uz

Ks = H% = + 8ut* Guy + Agugul + dunt gy — duuggt + 120 ugg, + 18uu*lg,
o2 —Hg*
By baz + 8u*buy, + 12bugul + 20un*byy + 64u>u*2b + Subu,, + 2igus,

+ 10iu? g*ut — 10iu*? gu, + 12ivu* gu

z —

(2.11)

Proceeding as above, we find that the deformed NLS equation (2.1) admits a sequence of
generalized symmetries K, with rank (n+2,n+2,n+4,n+4,n+4). Since each entry of the
generalized symmetry K,,n > 4 involves a lengthy expression we refrain from presenting
them here. We have also checked that the commutator

K, Kj] = K[K;] - K|[K;] =0 Vi,j (2.12)

showing that the obtained generalized symmetries are in commute [7]. Here the Freéhet
derivative of K is defined as

K'(u)[v] = %K(u + €v)|e=0-

2.2. Recursion operator

An operator valued function R is said to be a recursion operator of a scalar nonlinear PDE
with two independent variables if it satisfies

K = RK,

where K and K are successive generalized symmetries. For the deformed NLS equation
(2.1) the recursion operator R will be (5 x 5) matrix and so the above equation can be
written as

K1 =RK,,,
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that is,
(G (G} Ry Ria Riz Ru Ris\ [G]
G2 G2, Roi Rys Raz Roa Ros | |G
H%H-l =R H}n = | R31 R3s Rs3 Rss Rss H}n , (2.13)
H2 ., HZ Ry Ray Ru3 Raus Ras | |HZ
| Bmt1] | B Rs1 Rsa Rs3 Rsa Rss/ | Bl

where K, and K, 1 are successive generalized symmetries and R;;,4,7 = 1,2,3,4,5 are
functions of dependent variable and their differential and integral operators. We below
explain how the recursion operator R for the deformed NLS equation can be constructed.
For m = 2, Eq. (2.13) becomes

K& Ri1 Ri2 Riz Ris Ris\ [Gs
G3 Rai Ros Rys Ray Ros | |G3
Hi| =|Rs1 Rs2 Rs3s Rsa Rss | |Hal, (2.14)
H3 Ry Riz Ri3 Ry Rys | |H3
| B3 | Rs1 Rs2 Rs3 Rsys Rss/) | B2

where K9 and K3 are successive generalized symmetries given in (2.10) and (2.11) with
ranks (4,4,6,6,6) and (5,5,7,7,7), respectively. From Eq. (2.14) it is clear that

rank G% =rank R;; +rank G% =rank R + rank G% =rank Ri3 + rank H21

= rank Ry + rank H22, =rank Ri5 + rank Bs, (2.15)
rank G% = rank Rg; + rank G% = rank Ry + rank G% = rank Rs3 + rank H21

= rank Rg4 + rank H22, = rank Ros + rank Bs, (2.16)
rank H§ = rank R3; + rank G% = rank R3o + rank G% = rank R33 + rank H21

= rank R34 + rank H22, = rank Rs5 + rank Bs, (2.17)

rank H§ = rank R4 + rank G% = rank Ry + rank G% = rank Ry3 + rank H21

= rank Ry4 + rank H22 = rank Ry5 + rank Bs, (2.18)
rank B3 = rank Rs; 4 rank G% = rank Rjo + rank G% = rank Rj3 + rank H21

— rank Rsy + rank Hi = rank Rss + rank Bo. (2.19)

Making use of ranks of generalized symmetries we obtain nonzero ranks for the following
Rm”S:

rank Ry; = rank Ry = rank Ro; = rank Ros = rank R33 = 1, (2.20a)
rank R34 = rank R3s = rank R43 = rank Ry = rank Ry5 = 1, (2.20b)
rank Rs3 = rank Rs4 = rank Rs5 = 1, (2.20c)
rank R3; = rank R3y = rank R4y = rank Rys = rank Rz = rank Rso =3,  (2.20d)
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and so we consider the entries of R written in terms of linear combinations of differential
and integral operators of the dependent variables with ranks given in (2.20). For example,
since the ranks of R1; and R3; are 1 and 3 respectively, we write R1; and R3; as

R11 = ag0y + a1u + agu® + azud; 'u* + aqudy u + asu* 0, u + agu* o tuk,
R3 = a70§ + agg + agg” + alguﬁgjlg + anu@;lg* + algu*@jlg + algu*ﬁgjlg*
+a1499, 'u + a1599, ' + ai6g 0y u + ar7g* 9y tut,

where 0, and 9, ! are differential and integral operators respectively and a;-s are constants
to be determined. Substituting the above (along with similar forms for other R;;) involving
more than 140 constants in (2.14) we find that it satisfies identically for the following
recursion operator

Oy + 2u0; tu* 2ud; u 0 0 0
—2u*O; tu* —0y — 2u*0; 1 0 0 0
R=| 290;'u* —2ud;g* 2ud; tg + 290w Oy + 2udy; tu* —2ud; tu 0
—2u*d;tg* — 2¢O \ut 2urO g — 2g%0; . 2urO tut —0, — 2ut0 tu 0
0 2ig wu* —iu Oy
(2.21)

We have also verified that the defining equation (2.13) holds for m = 3,4, ....

2.3. Conserved quantities

A local conservation law of a nonlinear PDE with two independent variables (z,t) is
defined by

dp 0J
En + e 0 (2.22)
which is satisfied on all solutions. The function p(x,t) is usually called local conserved den-
sity and J(z,t) is the associated flux also known as current density. Extending the method
devised by Hereman et al. [11], we find that the deformed NLS admits a sequence of poly-
nomial conserved quantities (p(™,.J™). First three of them with ranks (2,3), (3,4), (4,5)
respectively are as follows:

pW =, TV = —b—i(und — utuy) (2.23)

PP = vy, TP =i 4w, — ul — ug®) (2.24)
3) _,2, %2 * 3) _ » *2 - 2 % % x % . *

P =uu UgU JY = 12uuuy — 2uTuT U, + upty, — Uplag) — 2uuth  (2.25)

T

satisfying (2.22) in addition with (2.1). From the above analysis we observe that the effect
of deformation changes the structure of the local current densities J (") p=1,2,..., which
contain the deforming functions g, b, but not the densities p(™, which generate the conserved
quantities.
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3. Master Symmetries of the Deformed NLS Equation

A function 7 = 7(z,t,u, Uz, ...,0; 'u,...) is said to be a master symmetry of a PDE with
two independent variables (z,t) if

[, [7,.]]=0 and [r,.] #0, (3.1)
where the commutator relation [.,.] is defined as
[F,G] = G'[F] - F'[G].
Here the Frechet derivative of F' is defined as

Ful] = S F(ut ev)lss.

We show below how to derive a sequence of master symmetries for (2.1). Obviously (2.1) is
invariant under the dilation symmetry

* * —2 -1 1 1, x 3 3 % 3
(t7x7u7u 7g7g 7b)—>(8 t78 x78u78u7sg7897sb)7

where s is an arbitrary parameter. As mentioned earlier, we have W(9/0x) = 1, W (u) =
LW(w*) =1,W(g) =3, W(g*) =3, W(b) =3,W(0/0t) = 2, and hence (2.1) have ranks
(3,3,5,5,5). It is known that soliton equations with (1+1) dimension admits infinitely many
master symmetries {7;}22 satisfying the following relations [7]:

(75, m) = (L= ) Tj41, (3.2a)

[Kj,Tl] = d]' Kl—i—ja (32}))

[Ki>Kj] = Oa (320)

where Kj,j = 0,1,2,... are generalized symmetries. It appears that the relations (3.2)

also hold good for deformed NLS equation (2.1) if master symmetries exist. Since the
generalized symmetries of deformed NLS equation are commutable, Eq. (3.2¢) readily holds
from Eq. (2.12). For j = 0,1 =0, Eq. (3.2b) becomes

(Ko, 0] = do Ko. (3.3)

Now the rank of the generalized symmetry Ko = (ug,u), gz, g5, bs) is (2,2,4,4,4) and so

the rank of the master symmetry 9 = (701, 702, 7'03, Té , 705)T satisfying

[G(l)ﬂ-(ﬂ = do G(1)> [G%>Tg] = do G%b [H(%’TOS] = do H(%’
[HZ, 73] = do HE, [Bo,70] = do Bo,
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will be (1,1,3,3,3). With this in mind we consider the following forms for 79 =

(b ) s
7'01 a1xUg + asu
Tg agxu) + asu”
To= |70 | = | aszgs+asg |, (3.4)
5 arrgy + asg”
7'5) agxby + aipb
with rank (1,1, 3,3, 3), respectively, where a;, i = 1,2,...,10 are unknown constants to be

determined. Substituting the above in (3.3), we find that it satisfies identically if a; = 1,
1=1,2,...,10 and dy = —1. Hence

1

o LUy + U
7'02 ruy 4+ u*
To = 7'03 =1 z9.+g |. (3.5)
5 xgs + g
™ xby + b

Proceeding as above, we find that the deformed NLS equation (2.1) admits a sequence of
master symmetries satisfying (3.2a,b). The first two (nontrivial) members of the sequence
of master symmetries with ranks (2,2,4,4,4) and (3,3,5,5,5) are:

7-11 x(umx + 2U2u*) + 2¢u + 2u,
2 —(x(ul, + 2u*u) + 2¢u* + 2uk)
=7 = 2(gze + duu*g — 2u>g*) + 2¢g + 29, + 2iub , (3.6)
T —(2(g3, + duug — 2u*?g) + 2¢g™ + 2g% — 2iu*b)
™ Z(bgz + duu*b 4 2igul) + by + 2iu*g
75 2GY + 3ugy + 2urd + durh + 2uu*
3 2G3 + 3uk, + 2ulp — du*y + 6u*u
To= |73 | = | H}+3gsx + 290 + 49 + duu*g — 6u*g* + 2ibu, |, (3.7)
S TH2 + 3g%, + 2950 — 49" + Suu*g* — 6u*2g — 2ibu’;
3 xBo 4 2b, ¢ + 2ig*u, — 2igu},

where ¢, = uu* and ¥, = u*uzand Ko = (G, G3, H}, H2, B5)T is the generalized symme-
try of deformed NLS equation. We have checked that the obtained master symmetries also
satisfy the relations

[Tj,m] = (= 3)Tjn, Vil (3.8)
(K, 7] =~ + 1)Ky, (3.9)

showing that they constitute a symmetry algebra of Virasoro type.
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4. Nonlocal Symmetries of Deformed NLS Equation

Let us assume that the deformed NLS equation (2.1) is invariant under a nonpoint contin-
uous transformations,

t=t, i=mx d=u+eS,+0(?), u*=u"+eS2+0(),

) R (4.1)
G=9+ T, +0(), g*=g"+elp +0(), b=b+eA,+0()
where P, = (S}, 82 T} T2 A,)T are functions of (x,t,u,u*, g, g" Uz, U, Ugs, ul,, Oy tu,

0519, 92,95, b, b, .. .), provided u, u*, g, g* and b satisfy Eq. (2.1). Then the invariant equa-
tions read

Z%SEL - 11))2;% — 20282 — duu*S: —T! =0, (4.2)
le)i% + 11))252% + 2u*2 S} + duu*S2 + T2 =0, (4.3)
DD—? + 2iuA, + 2ibS} =0, (4.4)

DD—IE — 2iu* A, — 2ibS2 =0, (4.5)

Zz;;n —i(g* St +uT? — gS2 —uw*T}) = 0. (4.6)

Following the procedure of Hereman et al. described in Sec. 2.1, we find that the deformed
NLS equation (2.1) admits a sequence of nonlocal symmetries P,,. The first three members
of the sequence with ranks (1, 1, 3, 3, 3), (2, 2, 4, 4, 4) and (3, 3, 5, 5, 5) are:

St —2it (Uge + 2uu*) + TUL + U
S2 2it(uk, + 2u*u) + zul + u*
P, = | T} | = | —2it(gex + duu*g — 2u%g*) + 29, + g |, (4.7)
T? 2it(gpr + dun*g* — 2u?g) + xgt + g*
Aq —2it(byy + 4uu*b + 2igul) + xby + b
Sl —2itG3 + G} + 2ug + 2uy,
S3 —2itG3 + 2G? — 2u* ¢ — 2u},
Py= |13 | = | —2itH} +xH] + 296 + 29, + 2iub |, (4.8)
T2 —2itH2 + xH? — 29" — 2g° + 2iu*b
As —2itBy + xB1 + b, + 2iu*g
Si —2itG} + Gl + 3ugy + 2uz ¢ + durh + 2uu*
S2 —2itG3 4+ 2G5 + 3ul, + 2uhd — 4u*Y + 6uu
Py=|Ts | = | —2itH} + H} + 3gux + 2920 + 490 + duu*g — 6ug* + 2iuzb |, (4.9)
T? —2itH2 + xH3 + 3g%, + 2956 — 4% + Suu*g* — 6u*?g — 2iulb

Asg —2itBs + xBg + 2¢b,, + 2iu,g" — 2iulg
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where ¢, and 1) are nonlocal variables satisfying

¢z =uu®, ¢p=>b+ Z(uu; - U*ux)a Yy = U Uy,

) (4.10)

Py = i(ugul + ug* — uu — utugy).

Here Ky = (G},G3,H3, H2, By)T and K3 = (G,G3, H}, H2, B3)T are generalized sym-
metries of the deformed NLS equation given in Egs. (2.10)-(2.11). Note that the nonlocal
variables ¢ and v can be connected with conservation laws, that is,

a(uu )+ 8_x(_b —i(uu), — u*uy)) =0,

0
o (utug) + 8_56(_1(%“; + ug* — uPu? — utug,)) = 0.

ot

5. Bi-Hamiltonian Representation of Deformed NLS Equation
We would like to mention that the KdV6 given by

(92 + 8Oy + Atgy) (s + Uge + 6u2) =0, (5.1)
can be written as
Vp 4+ Vpgr + 1200, — we = 0, wWape + Svw, + dwv, =0 (5.2)

where v = Uy, W = Uy + Ugyy + 6u>. Recently, Kupershmidt [15] has shown that the KdV6
can be written in the following Hamiltonian description

u = 0, (5752*1) — 01 (w) = by <5Z”> — 01 (w), By(w) =0, (5.3)

where
01 =0y, 0y =03 +2(ud, + Oyu)

are Hamiltonian operators of the KdV equation u; — 6uu, — gz, = 0, and

Hy=u, Hy=-

are conserved densities. Kersten et al. [19] have demonstrated that the Kupershmidt defor-
mation of a bi-Hamiltonian system is itself bi-Hamiltonian. It is straightforward to check
that the deformed NLS equation can also be written in the Hamiltonian description

5H3 5fI2

u: _ o, ou Lo, 9\ _ 0, ou Lo g (5.4)
Uy 5H3 g 5H2 g

ou* ou*
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0 <g> — 0. (5.5)
g

9 0 — 9 . 2ud; tu —0y — 2ud; tu* (5.6)
= y =1 .
! 0 ? —0p — 2u*0; 2u*0; u*

are Hamiltonian operators of NLS equation

and

Here

iy — Upy — 20%u* =0
and
ok 2 %2 *
Hy = vw*u,, Hs=uu™ —uzu (5.7)

are conserved densities of the NLS equation. Hence the deformed NLS equation (2.1) is a
bi-Hamiltonian system.

6. Summary and Concluding Remarks

In this article we have shown that the deformed Nonlinear Schrodinger (NLS), Hirota and
AKNS equations with (1+1) dimension admit infinitely many generalized (nonpoint) sym-
metries and polynomial conserved quantities, master symmetries and a recursion operator
ensuring their complete integrability. Also shown that each of them admits infinitely many
nonlocal symmetries. The nature of the deformed equation whether bi-Hamiltonian or not
is also analyzed.

From the analysis of the deformed NLS we observe that the conserved densities for the
deformed and un-deformed remain the same while the current densities (fluxes) explicitly
contain the deforming functions. This shows that the nonholonomic deformations can appear
only at the equation level, while the conserved integrals of motion remain the same under
deformation. Also we observe that the obtained sequence of nonlocal symmetries and master
symmetries of deformed NLS equation satisfy

P,.1.=RP,, Tpi1=Rtn, Vn (6.1)

where R is a recursion operator given in Eq. (2.21) Furthermore, the sequence of master
symmetries, nonlocal symmetries and generalized symmetries satisfy the following relation:

Pi+1 = —2itKi+1 +71; 1=0,1,.... (62)
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Appendix: A Brief Details of Generalized, Master and Nonlocal
Symmetries of Deformed Hirota and AKNS Equations

A. Deformed Hirota Equation (1.2)

Proceeding in a similar manner explained in Secs. 2-4 we find that the deformed Hirota
equation admits infinitely many generalized symmetries, master symmetries and nonlocal
symmetries and a recursion operator. The first few members of the sequence of generalized
symmetries, conserved quantities, master symmetries and nonlocal symmetries are given
below:

First member of generalized symmetries K, = (G}, G2, H}, H?, By)"

G} Uy + a(tgy + 2uu*)
G2 uk — a(ul, + 2u*?u)
H | = | 9o+ ages + duu*g — 2u”g")
H§ 9z — algs, + duu’g* — 2u*?g)

By by + a(byy + duu*b + 2igulg)

Second member of generalized symmetries K| = (G1,G?, H{, H?, By)"

Gi Uz + 2uu* + a(uze + 6uu*u,)

G? —uk, — 2u*?u + a(u}, + 6uu*u?)

HY | = | oo +4uu*g — 2uPg* + a(g3: + 6u*gu, + 6uu*g, — 6ug*uy)
H? —gt, — duu*g* + 2u*?g + a(gs, + 6ugtul + 6uu* gl — 6u*gu’)
By byr + 4uu*b + 2igu’t + a(bsy + 6uu*b, + 6u*buy, + 6ubul)

Third member of generalized symmetries Ko = (G},G3, Hi, H2, By)”

U3z + 6untuy + a(ugy + 20k, + Suutug, + duugul + 6utul + 6udu*?)
uh, + 6uutul — a(ul, + 2uuL, + Suutul, + dutugul + 6uui? 4+ 6utdu?)

932 + 6u*gu, + 6uu*g, — 6ug u, + a(ga, — 2u2g;x 6g*u2 — 12u3u* g*

g; +4duguy, + 8u guyy — 8ug Uz, + 8uu*gpr + dguzuy + 4unyg,

m |- — duug gl + 12u*upg, + 18u?u*?g) |
H2 gi, + 6ugtut + 6uu* gt — 6utgut — a(gl, — 20 2gee — 6gui2 — 12u*3ug

Bo +4u* g Ugy + Bugtuy, — 8utgul, + Suutgy, + 49 ugu + 4utu, gl

—durul g, + 12uult gl + 18u*?u’g*)
b3y + 6uu*by + 6u*buy, + 6ubul + a(byy + 8u*buy, + 12bugu + 20uu*by,

+ 64u?u*?b + Subu’, + 2iuk,g + 10iu’g*ul — 10iu*2gu, + 12iugu*u’)

etc.
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First member of conserved quantities (p(!), J())

oW = wu* + 2iau*ug,

JWU = 202 (6un* ug + ugtl, + 1 use — tgptt) + a(un’, + 20 Uy

— 2ugul + 4uPu*? + 2ug*) — %(u*ux —uuy)—b

Second member of conserved quantities (p(?), J(?)
p? = wruy + 2ia(uu’? — ugul),
J® = 2ia® (—upub, — uluse + ugpul, + 4Pu*® — 10uuuul — uiu'? — wu?

+ 2uu g, + 20Ut v) a(8uu Up + 2ugul, + utuz, — 2ugpul — 2ututul

— diuu*b) — 5 (u2u*2 + U ugy — ugu, + 2ug’)

Third member of conserved quantities (p(®),.J(®)

PP = (WPu*? — upul) + 2ia(Bunu, — ugput),

JB) = 2ia2(—12u* w Uy + 3uPuus, + buuu L, — Untigy — 6u;;2uux — U3, Ugy
+18u*3uPu, — 6uutul 4 ul,uz,) + a(—2u*ug 4+ 2ututul, — 2uktu’
+4u*u? g + buuPug, + 6udu’® — diuFugb — 16un*u, — 2u§ugg; + 2ugpu,

G *
SUgaUy,

-
—UgUy, + 5

—ugud,) + vt ul — iuuPu, — 2uuth — 5

etc.

First member of master symmetries 7o = (7,78, 75,75, 70) 7
7'01 (x+a)uy +u
702 (x 4+ a)ul +u*
o= @+ag+g
o (z+a)gs + g
i (z 4 a)by + b
Second member of master symmetries 71 = (71,72, 73, 7, 77)T
5 (7 + a)(uge + 2u%u*) + 2ug + 2u,
2 —((z + a)(ul, + 2u*?u) + 2u*¢ + 2uk)
=1 (@+a)(gee +uurg — 2ug") + 29¢ + 29, + 2iub
Tt —((x + a)(gt, + duu*g — 2u*?g) + 29 ¢ + 2g% — 2iu*b)

e (x + a)(byz + dun*b + 2iuk g) + b, + 2iu*g
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4 5)T

Third member of master symmetries 7o = (74,73, 75, 7o, T5

(z + a)(use + 6uuug) + 3uze + 2upd + 4ut) + 2uu*
o) (z + a)(u3, + 6uuul) + 3uk, + 2uie — du*y) + 6u*u
5 (z + a)(g3z + 6u”guy + 6uu®gy — 6ugug) + 3920 + 2926
| = +4g1p + duu*g — 6ug* + 2ibuy,
75 (x + a) (g3, + bug*ul + Guu*g; — 6u*gu}) + 3g;, + 2950
75 —4g*1p + Suu*g* — 6u*?g — 2ibu;

(x + a)(bsy + 6uu*by, + 6u*buy + 6ubul) + 20,0 + 2ig*u, — 2igu;,

etc.
where ¢, = uu* and ¥, = u*u,.

First member of nonlocal symmetries Py = (51,52, T}, T2, A))T

it(Ugy + 2uu*) — 3at(us, + 6uuuy) + (z + a)ug + u

5! it(—uk, + 2u*?u) — 3at(ul, + 6uutul) + (z + a)ul + u*
$2 it(ger + duu*g — 2u?g*) — 3at(gsz + 6u*gu, + 6uu*g,
| - —6ug*uy) + (z+a)g: +g
T2 it(—gex — duu*g* + 2u*?g) — 3ta(gs, + 6ug*ul + 6uu* gk
4, —6u*guy) + (z +a)g; + 9"

it(bypy + 4uu*b + 2igul) — 3at(bsy + 6uu*b, + 6u*buy,

+6ubul) 4+ (x 4+ a)by + b

Second member of nonlocal symmetries Py = (53,52, T3, T3, As)7,
where

S = it(use + 6untuy) — 3at(uge + 6uiu* + duugu’ 4+ Suuug, + 2uk u? + 6udu*?)
+ (2 + a) (tgy + 20u*) + 20u + 2u,,

52 = it(ub, + 6uutul) — 3at(—ul, — 6uttu — dutugul — Suuul, — 2ugeu? — 6utu?)
+ (x4 a)(—uf, — 2u™u) — 2¢u* — 2u},

Ty = it(gse + 6u*uzg + 6un®g, — 6uuLg®) — 3at(gae — 2ugr, — 6usg* — 12u3u*g*
+dunl,g + 8uT Uy, g — Uty g + 8uut gry + duzulg + dun g, — dutg gy
+ 12u,u* g, + 18uu*2g) + (z + a)(guw + 4uug — 2u%g™) + 269 + 29, + 2iub,

T2 = it(gh, + 6uulg® + 6uu*g’ — 6uu’g) — 3at(—gj, + 2u*gee + 6u2g + 1203 ug
— A Uz g* — Suul,g" + 8utul, g — 8uut g, — dugulg® — duTug gl 4+ dutul g,

—12utugt — 18u*?u?g*) + (z + a)(—g, — duu*g* + 2u*2g) — 209" — 2g% + 2iu*b,
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Ag = it(b3y + 6uu™by + 6u uyb + 6uusb) — 3at(byy + Sty u™b + 12uulb 4+ 20U by,
+ 64uu*b + Suul,b + 2iud,g + 100 ulg* — 10iu,u*?g + 12iuu*ulg)
+ (z + a)(bye + duu™b + 2iuyg) + by + 2iu*yg,

ete.
where ¢ is a nonlocal variable defined by

2

Gp =uu”, ¢r=0b— 3(uu; —u*ug) — 3autu*? — a(uul, + utuge — ugul). (A1)

2

The recursion operator of the deformed Hirota equation (1.2) is same as for the deformed
NLS equation as in (2.21). Also we observe that the obtained sequence of nonlocal symme-
tries and master symmetries of deformed Hirota equation satisfy (6.1). Furthermore, it is
observed that master symmetries 7; and nonlocal symmetries P; and generalized symme-
tries K; satisfy the following relation:

Pi+1 = itKi+1 — 3(ItKi+2 + T, V1.

Bi-Hamiltonian representation:

The deformed Hirota equation can also be written in the Hamiltonian description

sty A
ME wt o (T 2o O e (7Y
uj dH3 —g OHo -9
ou* ou*
and
0, 7 ) =o.
-9
Here

g 1/0 1 9 i —2ud; tu Op + 20, u*
P2\ o0) P2 Op + 200w —2u* 0 tu*

are Hamiltonian operators of Hirota equation

Ugy

5 + Jul*u =0

iy + ia(uzg + 6]ul?uy) +
and

Hy = u*uy + 2ia(v?u*? —upul), Hz = (u?u™? — upul) + 2ia(3uu*uy — ugpul),

are conserved densities of Hirota equation. Hence the deformed Hirota equation (1.2) is a
bi-Hamiltonian system.
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B. Deformed AKNS Equation (1.3)

First Ko = (Up, Vo, Go, Hy, Bg)?T and Second member K| = (U, V4,Gy, Hy, B;)T of
generalized symmetries are

Uy Uy U, — Uy + 2u%V

Vo (v Vi Vpp — 202U
Gol=13:1|.1Gi| =] —Guz + duvg + 2u>h
H, ha H, haz — 4uvh — 202§
By by By guz — huy

Third member of generalized symmetries Ky = (Us, Vo, G, Ha, By)T

Us Uzy — BUVU,
Vo V3 — 6uvv,
Ga | = | 93z — 6vgu, — 6uhu, — 6uvg,
Hy h3e — 6VGU, — 6uhv, — 6uvhy
By Rty — 2u?vh — 2uv2§ + Gy

Fourth member of generalized symmetries K3 = (Us, V3, G3, Hs, B3)T

— U4y + 61111,:26 + duny vy + Suvtgy + 2ulvy, — 6udv?

Us Vi — d0ULV, — 6uv§ — UV — 202Uy + 6uVP

Vs —Gaz + AUuGVre + 4GUzvy + S8UGUL, — 18u0% G + Suhtg, — 12uvh
Gs | = + 8UV e + dutizhy + 120U Gy + 6hu2 + 2u%hyy + 4uv, G, ,
Hs hag — 4vhugy — 4hugyvy — Suhvy, + 18u%v?h — Vv, + 1203ug

Bs — 8uvhg, — 4vv:G, — 12uvhy — 6§v§ — 20200 — dvUzhy

—husz, — 6buvgu, + 6uvhu, + hvs,
ete.

First three members of Conserved quantities

p(l) = uv, JN = —p - UVy + VUg

2,2

p(Q) = VU, J? = vuge — u?0? — ugv, — uh

(3) _ .22

P = uvT 4 Uy, JB) = 2uv2ux — 2u2m}x — UpVpp + Vpllpyr — 2uvb,

ete.
Recursion operator of deformed AKNS equation

—0, + 2ud; M 2ud; u 0 0 0

—200; M O — 200, tu 0 0 0

R =\ 2§0;'v+2ud;'h  2ud;'G+230;'u  —0, +2ud; v 2ud; u 0
—200; h — 2h0; v —200;1G — 2h0; tu —200; M Oy — 2007w 0

—2h 0 —v —u Oy
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First member of master symmetries 7o = (7}, 72,75, 73, 75)7

o LUy + U
8 LUy + v
=20 +yg
Té zhy + h
Tg) xby + b

Second member of master symmetries 71 = (i, 72, 75, 7, 77)7

T (g + 200) + 2ud — 2u,

72 (Vg — 20%u) — 206 + 2v,

| = | 2(—Fue + duvg + 2uh) + 2Gd — 2§, + 2ub
T 2(hge — duvh — 20%§) — 2h¢ + 2h, — 20b
™ x(gug — hug) + vg — uh

Third member of master symmetries 7o = (74,75, 75, 75, 75)"

2(uze — 6uvuy) + 3uze — duh — 2uPv — 2u, ¢

7'21 2(v3p — 6uVVL) + BUge + 4y — 6V U — 20,0

2 (g3 — 6vgu, — 6uhu, — 6uVGy) + 3Grn

| = —4uvg — 6ulh — 439 — 2buy — 2§,¢ :
5 x(hsg — 6VV,g — 6uhv, — 6uvhy) + 3hyy

5 — 8uvh — 602§ + 4hyp — 2bv, — 2R,

2(htge — 2u?vh — 2uv?§ + Guge) + 2hug + 2Gv, — 2b,0

ete.
where ¢, = uv and ¥, = vu,.

First member of nonlocal symmetries P = (51,71, Q1, R1, A1)”

S 2t (— gy + 2uV) + TUy + U

T 2t (Vge — 20%u) + 25 +

Q1 | = | 2t(—Jue + duvg + 2uh) + 2§, + §
Ry 2t(hgy — 4uvh — 20%G) + xhy +h

A1 2t (byy — duvb — 2huy) + by + b

535
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Second member of nonlocal symmetries Py = (5o, T3, Q2, Ra, Ao)7

2t (u3e — 6uvuy) + 2(—Ugy + 2uv) + 2ud — 2u,

S 2t (V3 — 6UVVL) + T(Ver — 2uv?) — 200 + 2u,

15 2t(g3e — 6vuLg — 6uuzh — 6uvgy) + ©(—Jox + duvg

Q2| = +2u?h) + 2G¢ — 2, + 2ub ,
Rs 2t(hgy — 6vgU, — 6uhv, — 6uvhy) + x(hyy — 4uvh

As —2023) — 2h¢ + 2hy, — 20b

2t (hugy — 2u?vh — 200§ + GUgz) + 2(Guy — hug) + v§ — uh

etc.
where ¢ is a nonlocal variable defined by

Gr =uv, ¢ = b+ uvy — vu,.

Also we observe that the obtained sequence of nonlocal symmetries and master sym-
metries of deformed AKNS equation satisfy (6.1). Furthermore, it is observed that master
symmetries 7;, and nonlocal symmetries P;, and generalized symmetries K;, satisfy the
following relation:

P =2tK;41 + 71, Vi
Bi-Hamiltonian representation:

The deformed AKNS equation can also be written in the Hamiltonian description

5H3 5fI2
Ut W —h E —h
() | ony “(é) | o “(é)
ou* ou*
and
—h
0 _ | =0.
Here

0 1 —2ud; tu —0y + 2ud; v
‘91 = ) 92 =
-1 0 —0y + 200, tu —200; M

are Hamiltonian operator of AKNS equation
Up + Ugpy — 2y =0
Uy — Vgg + 20%u = 0
and
Hy =uzv, H3= u?v? + Ug Vg

are conserved densities of deformed AKNS equation. Hence the deformed AKNS equation
(1.3) is a bi-Hamiltonian system.
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