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It is shown that the deformed Nonlinear Schrödinger (NLS), Hirota and AKNS equations with
(1 + 1) dimension admit infinitely many generalized (nonpoint) symmetries and polynomial con-
served quantities, master symmetries and recursion operator ensuring their complete integrability.
Also shown that each of them admits infinitely many nonlocal symmetries. The nature of the
deformed equation whether bi-Hamiltonian or not is briefly analyzed.
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1. Introduction

The investigation of completely integrable higher order nonlinear partial differential equa-
tions (PDEs) with (1 + 1) dimension admitting solitons has drawn considerable interest in
recent years [13, 15–18, 23, 25, 29–31, 33, 35, 36]. The question of integrability of nonlinear
PDEs can be investigated through several approaches [2, 4, 20, 32]. If a nonlinear PDE,
written in Hamiltonian description, admits infinitely many generalized symmetries, then it
is expected to be integrable in the sense of Liouville [26, 27, 37]. If the generalized sym-
metries of a given nonlinear PDE are explicitly known, then it is possible to construct the
so called recursion operator. The mathematical characterization of the recursion operator
is that it maps a symmetry to another symmetry of a given equation. The existence of a
recursion operator guarantees that the PDE has infinitely many higher order symmetries,
which is a key feature of complete integrability [6, 10, 12, 28].

Another interesting class of symmetries admitted by nonlinear PDEs possessing solitons
is master symmetries which involves both dependent and independent variables and are
related with generalized symmetries [8–10]. A master symmetry (of degree n) for a non-
linear PDE, is a derivation in the Lie algebra of vector fields having the property that n
fold applications leaves the commutator of the flow under consideration invariant. When a
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nonlinear PDE admits a master symmetry it usually admits infinitely many such symmetries
where the successive elements involve independent variables, dependent variables as well as
spatial derivatives of the dependent variables. A remarkable feature of master symmetries
for nonlinear PDEs is that they constitute a centerless Virasoro algebra. The existence of
a sequence of master symmetries is one of the characteristics of completely integrable non-
linear PDEs. If the infinitesimal symmetries of the given PDE involves local variables (that
is independent variables and dependent variables and its partial derivatives only) then it is
called local symmetries otherwise known as nonlocal symmetries [3, 5, 14, 34]. One of the
reasons to introduce the concept of a nonlocal symmetry, involving nonlocal variables, is that
the generating function of local symmetries are solution spaces of the equations under con-
sideration. These generating functions depend on independent and dependent variables as
well as on their derivatives of higher order. It is appropriate to mention here that the theory
of coverings over differential equations provides an interesting tool to describe various non-
local phenomena: nonlocal symmetries and conservation laws, Bäcklund transformations,
prolongation structures, etc.

If a nonlinear PDE admitting solitons gets perturbed or deformed it is of interest to
investigate whether it preserves the integrability properties of un-deformed counter part.
In this article, we report that the deformed NLS, Hirota and AKNS equations with (1 + 1)
dimension, respectively, given by

iut − uxx − 2u2u∗ = g, (1.1a)

gx = −2iub, (1.1b)

bx = i(ug∗ − u∗g), (1.1c)

iut + ia(uxxx + 6|u|2ux) +
uxx

2
+ |u|2u = g, (1.2a)

gx = −2iub, (1.2b)

bx = i(ug∗ − u∗g) a - parameter. (1.2c)

ut = −uxx + 2u2v + g̃, (1.3a)

vt = vxx − 2v2u+ h, (1.3b)

g̃x = 2ub, (1.3c)

hx = 2vb, (1.3d)

bx = uh+ vg̃, (1.3e)

where ∗ denotes complex conjugate preserve the integrability properties of their undeformed
counter part. Note that on eliminating g(x, t), g̃(x, t),h(x, t) and b(x, t) in the above coupled
equations one can obtain higher order nonlinear PDEs.

We would like to mention that the deformed equations (1.1)–(1.3) arise from the com-
patibility condition of a system of linear equations. More precisely the deformed equations
(1.1)–(1.3) admit Lax pair satisfying the Lax equation [1, 21]

Lt −Mx + [L,M ] = 0 or Lt −Mx + LM − ML = 0.
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The explicit form of the Lax matrices L and M are given below:

(i) Lax pair of deformed NLS equation, (1.1)

L =

(
iλ iu

iu∗ −iλ

)
, M =




2iλ2 − iuu∗ +
ib

2λ
2iλu+ ux +

ig

2λ

2iλu∗ − u∗x +
ig∗

2λ
−2iλ2 + iuu∗ − ib

2λ


 .

(ii) Lax pair of deformed Hirota equation, (1.2)

L =

(
iλ iu

iu∗ −iλ

)
,

M =




4iaλ3 − iλ2 +
iuu∗

2
− 2iaλuu∗ 4iaλ2u+ 2aλux − iλu− iauxx

+ a(uu∗x − u∗ux) +
ib

2λ
− 2iau2u∗ − ux

2
+
ig

2λ

4iaλ2u∗ − 2aλu∗x − iλu∗ −4iaλ3 + iλ2 − iuu∗

2
+ 2iaλuu∗

+
u∗x
2

− iau∗xx − 2iauu∗2 +
ig∗

2λ
− a(uu∗x − u∗ux) − ib

2λ



.

(iii) Lax pair of deformed AKNS equation, (1.3)

L =

(
iλ iu

−iv −iλ

)
, M =




2λ2 + uv − ib

2λ
2λu− iux − ig̃

2λ

−2λv − vx − ih

2λ
−2λ2 − uv +

ib

2λ




where λ is a spectral parameter. The derivation of the Lax matrices L andM associated
with the deformed equations are given in [31].

The demonstration of a bi-Hamiltonian structure for nonlinear PDE, particularly
evolution equations is a direct and elegant method to study its complete integrability. A
significant development in the Hamiltonian theory is due to Magri [24], who realized that
integrable nonlinear PDEs with Hamiltonian description have an additional structure. They
are bi-Hamiltonian, that is, they can be written in two different compatible Hamiltonian
operators. Similarly, finding Hamiltonian structure for deformed PDE is very needful to
study its integrability. Recently Kupershmidt [15] has shown that the deformed KdV or
KdV6 admits bi-Hamiltonian structure. Also, Kersten et al. [19] have pointed out that the
Kupershmidt deformation of a bi-Hamiltonian system is itself bi-Hamiltonian. Following
the ideas of Kupershmidt [15] and Kersten et al. [19], we find that the deformed equations
(1.1)–(1.3) are bi-Hamiltonian.

The plan of the article is as follows: In Sec. 2 we consider deformed NLS equation (1.1)
and show explicitly that it possesses infinitely many generalized symmetries, polynomial
conserved quantities and a recursion operator. In Sec. 3 we show that the deformed NLS
equation admits infinitely many master symmetries which is a characteristics of complete
integrability. In Sec. 4 we give a sequence of nonlocal symmetries for the deformed NLS
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equation. In Sec. 5 we explain whether the deformed NLS equation admits a bi-Hamiltonian
representation or not. In Sec. 6 we give a brief summary of our results and concluding
remarks. In the Appendix, we provide a brief computational details of the above integrability
aspects of the deformed Hirota (1.2) and AKNS equations (1.3).

2. Generalized Symmetries, Recursion Operator and Polynomial
Conserved Quantities of Deformed NLS Equation

It is easy to check that the deformed NLS equation and its complex conjugate

iut − uxx − 2u2u∗ = g (2.1a)

iu∗t + u∗xx + 2u∗2u = −g∗ (2.1b)

gx = −2iub (2.1c)

g∗x = 2iu∗b (2.1d)

bx = i(ug∗ − u∗g) (2.1e)

are invariant under the scaling symmetry

(t, x, u, u∗, g, g∗, b) → (s−2t, s−1x, s1u, s1u∗, s3g, s3g∗, s3b),

where s is an arbitrary parameter which suggests that u corresponds to one derivative with
respect to x, g and b corresponds to three derivatives with respect to x.

2.1. Generalized symmetries

Let us assume that the deformed NLS equation (2.1) is invariant under a one parameter
nonpoint transformations

t̃ = t, x̃ = x, ũ = u+ εG1
n +O(ε2), ũ∗ = u∗ + εG2

n +O(ε2),

g̃ = g + εH1
n +O(ε2), g̃∗ = g∗ + εH2

n +O(ε2), b̃ = b+ εBn +O(ε2),
(2.2)

where

Kn = (G1
n, G

2
n,H

1
n,H

2
n, Bn)T

are functions of (u, u∗, g, g∗, ux, u
∗
x, uxx, u

∗
xx, . . . , gx, g

∗
x, b, bx, . . .), provided u, u∗, g, g∗ and b

satisfy Eq. (2.1). Consequently we obtain the following invariant equations

i
DG1

n

Dt
− D2G1

n

Dx2
− 2u2G2

n − 4uu∗G1
n −H1

n = 0, (2.3)

i
DG2

n

Dt
+
D2G1

n

Dx2
+ 2u∗2G1

n + 4uu∗G2
n +H2

n = 0, (2.4)

DH1
n

Dx
+ 2iuBn + 2ibG1

n = 0, (2.5)

DH2
n

Dx
− 2iu∗Bn − 2ibG2

n = 0, (2.6)

DBn

Dx
− i(g∗G1

n + uH2
n − gG2

n − u∗H1
n) = 0, (2.7)
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where

D

Dx
=

∂

∂x
+ ux

∂

∂u
+ u∗x

∂

∂u∗
+ gx

∂

∂g
+ g∗x

∂

∂g∗
+ uxx

∂

∂ux
+ uxt

∂

∂ut

+ gxx
∂

∂gx
+ gxt

∂

∂gt
+ · · ·

D

Dt
=

∂

∂t
+ ut

∂

∂u
+ u∗t

∂

∂u∗
+ gt

∂

∂g
+ g∗t

∂

∂g∗
+ uxt

∂

∂ux
+ utt

∂

∂ut

+ gxt
∂

∂gx
+ gtt

∂

∂gt
+ · · · .

Note that the invariant equations (2.3)–(2.7) can be solved in more than one way [11, 27].
However in this article we follow the algorithmic method devised by Hereman [11] to derive
generalized symmetries, conserved quantities and recursion operators for nonlinear partial
differential and differential-difference equations [11]. Hereman’s algorithm is based on the
concept of weights and ranks. The weight W of a variable is defined as the exponent in
the scaling parameter s which multiplies the variable. Weights of the dependent variables
are nonnegative and rational. An expression is said to be uniform in rank if all its terms
have the same rank. Setting W (∂/∂x) = 1, we see that W (u) = 1,W (g) = 3,W (b) = 3
and W (∂/∂t) = 2 and hence Eqs. (2.1) are of rank (3, 3, 4, 4, 4). This property is called
uniformity in rank. The rank of a monomial is defined as the total weight of the monomial,
again in terms of derivatives with respect to x.

From Eqs. (2.3)–(2.7), it is easy to check that

K0 =




G1
0

G2
0

H1
0

H2
0

B0




=




ux

G1∗
0

gx

H1∗
0

bx



, K1 =




G1
1

G2
1

H1
1

H2
1

B1




=




uxx + 2u2u∗

−G1∗
1

gxx + 4uu∗g − 2u2g∗

−H1∗
1

bxx + 4uu∗b+ 2igu∗x



, (2.8)

are trivial symmetries with rank (2, 2, 4, 4, 4) and (3, 3, 5, 5, 5) respectively. Obviously the
next generalized symmetry K2 must have rank (4, 4, 6, 6, 6). With this in mind we first
form monomials in u, u∗, g, g∗ and b of rank (4, 4, 6, 6, 6). Thus the most general form of K2

will be

K2 =




G1
2

G2
2

H1
2

H2
2

B2




=




l1u3x + l2uu
∗ux + l3u

2u∗ + l4u
∗2u+ l5gx + l6g

∗
x

m1u
∗
3x +m2uu

∗u∗x +m3u
∗2u+m4u

2u∗ +m5g
∗
x +m6gx

p1g3x + p2u
∗uxg + p3uu

∗gx + p4uuxg
∗ + p5gg

∗ + p6g
∗
3x

q1g
∗
3x + q2uu

∗
xg

∗ + q3uu
∗gx + q4u

∗u∗x + q5gg
∗ + q6g3x

r1b3x + r2uu
∗bx + r3u

∗uxb+ r4uu
∗
xb+ r5uuxg + r6u

∗uxg
∗



, (2.9)

where lj,mj , pj , qj, and rj, j = 1, 2, . . . , 6 are arbitrary constants to be determined. Here
after we denote uxxx, gxxx, etc. by u3x, g3x, etc. We now substitute G1

2, G
2
2,H

1
2 ,H

2
2 and B2

in the invariant equations (2.3)–(2.7), with n = 2 and solving them by using (2.1) we obtain
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the following nontrivial generalized symmetry

K2 =




G1
2

G2
2

H1
2

H2
2

B2




=




u3x + 6uu∗ux

G1∗
2

g3x + 6u∗uxg + 6uu∗gx − 6uuxg
∗

H1∗
2

b3x + 6uu∗bx + 6u∗uxb+ 6uu∗xb



, (2.10)

with rank (4, 4, 6, 6, 6). In a similar manner we obtain the next generalized symmetry K3

for (2.1) with rank (5, 5, 7, 7, 7). They are

K3 =




G1
3

G2
3

H1
3

H2
3

B3




=




u4x + 2u2u∗xx + 8uu∗uxx + 4uuxu
∗
x + 6u∗u2

x + 6u3u∗2

−G1∗
3

g4x − 2u2g∗xx − 6g∗u2
x − 12u3u∗g∗ + 4ugu∗xx + 8u∗guxx − 8ug∗uxx

+ 8uu∗gxx + 4guxu
∗
x + 4uu∗xgx − 4uuxg

∗
x + 12u∗uxgx + 18u2u∗2g,

−H1∗
3

b4x + 8u∗buxx + 12buxu
∗
x + 20uu∗bxx + 64u2u∗2b+ 8ubu∗xx + 2igu∗3x

+ 10iu2g∗u∗x − 10iu∗2gux + 12iuu∗gu∗x



.

(2.11)

Proceeding as above, we find that the deformed NLS equation (2.1) admits a sequence of
generalized symmetries Kn with rank (n+2, n+2, n+4, n+4, n+4). Since each entry of the
generalized symmetry Kn, n ≥ 4 involves a lengthy expression we refrain from presenting
them here. We have also checked that the commutator

[Ki,Kj] = K′
j [Ki] − K ′

i[Kj] = 0 ∀ i, j (2.12)

showing that the obtained generalized symmetries are in commute [7]. Here the Frećhet
derivative of K is defined as

K ′(u)[v] =
∂

∂ε
K(u+ εv)|ε=0.

2.2. Recursion operator

An operator valued function R is said to be a recursion operator of a scalar nonlinear PDE
with two independent variables if it satisfies

K̃ = RK,

where K̃ and K are successive generalized symmetries. For the deformed NLS equation
(2.1) the recursion operator R will be (5 × 5) matrix and so the above equation can be
written as

Km+1 = RKm,
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that is, 


G1
m+1

G2
m+1

H1
m+1

H2
m+1

Bm+1




= R




G1
m

G2
m

H1
m

H2
m

Bm




=




R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55







G1
m

G2
m

H1
m

H2
m

Bm



, (2.13)

where Km and Km+1 are successive generalized symmetries and Rij, i, j = 1, 2, 3, 4, 5 are
functions of dependent variable and their differential and integral operators. We below
explain how the recursion operator R for the deformed NLS equation can be constructed.
For m = 2, Eq. (2.13) becomes




G1
3

G2
3

H1
3

H2
3

B3




=




R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55







G1
2

G2
2

H1
2

H2
2

B2



, (2.14)

where K2 and K3 are successive generalized symmetries given in (2.10) and (2.11) with
ranks (4, 4, 6, 6, 6) and (5, 5, 7, 7, 7), respectively. From Eq. (2.14) it is clear that

rank G1
3 = rank R11 + rank G1

2 = rank R12 + rank G2
2 = rank R13 + rank H1

2

= rank R14 + rank H2
2 ,= rank R15 + rank B2, (2.15)

rank G2
3 = rank R21 + rank G1

2 = rank R22 + rank G2
2 = rank R23 + rank H1

2

= rank R24 + rank H2
2 , = rank R25 + rank B2, (2.16)

rank H1
3 = rank R31 + rank G1

2 = rank R32 + rank G2
2 = rank R33 + rank H1

2

= rank R34 + rank H2
2 , = rank R35 + rank B2, (2.17)

rank H2
3 = rank R41 + rank G1

2 = rank R42 + rank G2
2 = rank R43 + rank H1

2

= rank R44 + rank H2
2 = rank R45 + rank B2, (2.18)

rank B3 = rank R51 + rank G1
2 = rank R52 + rank G2

2 = rank R53 + rank H1
2

= rank R54 + rank H2
2 = rank R55 + rank B2. (2.19)

Making use of ranks of generalized symmetries we obtain nonzero ranks for the following
Rij ’s:

rank R11 = rank R12 = rank R21 = rank R22 = rank R33 = 1, (2.20a)

rank R34 = rank R35 = rank R43 = rank R44 = rank R45 = 1, (2.20b)

rank R53 = rank R54 = rank R55 = 1, (2.20c)

rank R31 = rank R32 = rank R41 = rank R42 = rank R51 = rank R52 = 3, (2.20d)
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and so we consider the entries of R written in terms of linear combinations of differential
and integral operators of the dependent variables with ranks given in (2.20). For example,
since the ranks of R11 and R31 are 1 and 3 respectively, we write R11 and R31 as

R11 = a0∂x + a1u+ a2u
∗ + a3u∂

−1
x u∗ + a4u∂

−1
x u+ a5u

∗∂−1
x u+ a6u

∗∂−1
x u∗,

R31 = a7∂
3
x + a8g + a9g

∗ + a10u∂
−1
x g + a11u∂

−1
x g∗ + a12u

∗∂−1
x g + a13u

∗∂−1
x g∗

+ a14g∂
−1
x u+ a15g∂

−1
x u∗ + a16g

∗∂−1
x u+ a17g

∗∂−1
x u∗,

where ∂x and ∂−1
x are differential and integral operators respectively and a′js are constants

to be determined. Substituting the above (along with similar forms for other Rij) involving
more than 140 constants in (2.14) we find that it satisfies identically for the following
recursion operator

R =




∂x + 2u∂−1
x u∗ 2u∂−1

x u 0 0 0

−2u∗∂−1
x u∗ −∂x − 2u∗∂−1

x u 0 0 0

2g∂−1
x u∗ − 2u∂−1

x g∗ 2u∂−1
x g + 2g∂−1

x u ∂x + 2u∂−1
x u∗ −2u∂−1

x u 0

−2u∗∂−1
x g∗ − 2g∗∂−1

x u∗ 2u∗∂−1
x g − 2g∗∂−1

x u 2u∗∂−1
x u∗ −∂x − 2u∗∂−1

x u 0

0 2ig iu∗ −iu ∂x



.

(2.21)

We have also verified that the defining equation (2.13) holds for m = 3, 4, . . . .

2.3. Conserved quantities

A local conservation law of a nonlinear PDE with two independent variables (x, t) is
defined by

∂ρ

∂t
+
∂J

∂x
= 0 (2.22)

which is satisfied on all solutions. The function ρ(x, t) is usually called local conserved den-
sity and J(x, t) is the associated flux also known as current density. Extending the method
devised by Hereman et al. [11], we find that the deformed NLS admits a sequence of poly-
nomial conserved quantities (ρ(n), J (n)). First three of them with ranks (2, 3), (3, 4), (4, 5)
respectively are as follows:

ρ(1) = uu∗, J (1) = −b− i(uu∗x − u∗ux) (2.23)

ρ(2) = u∗ux, J (2) = i(u2u∗2 + u∗uxx − uxu
∗
x − ug∗) (2.24)

ρ(3) = u2u∗2 − uxu
∗
x, J (3) = i(2uu∗2ux − 2u2u∗u∗x + uxu

∗
xx − u∗xuxx) − 2uu∗b (2.25)

etc.

satisfying (2.22) in addition with (2.1). From the above analysis we observe that the effect
of deformation changes the structure of the local current densities J (n), n = 1, 2, . . . , which
contain the deforming functions g, b, but not the densities ρ(n), which generate the conserved
quantities.
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3. Master Symmetries of the Deformed NLS Equation

A function τ = τ(x, t, u, ux, . . . , ∂
−1
x u, . . .) is said to be a master symmetry of a PDE with

two independent variables (x, t) if

[., [τ, .]] = 0 and [τ, .] �= 0, (3.1)

where the commutator relation [., .] is defined as

[F,G] = G′[F ] − F ′[G].

Here the Frećhet derivative of F is defined as

F ′(u)[v] =
∂

∂ε
F (u+ εv)|ε=0.

We show below how to derive a sequence of master symmetries for (2.1). Obviously (2.1) is
invariant under the dilation symmetry

(t, x, u, u∗, g, g∗, b) → (s−2t, s−1x, s1u, s1u∗, s3g, s3g∗, s3b),

where s is an arbitrary parameter. As mentioned earlier, we have W (∂/∂x) = 1,W (u) =
1,W (u∗) = 1,W (g) = 3,W (g∗) = 3,W (b) = 3,W (∂/∂t) = 2, and hence (2.1) have ranks
(3, 3, 5, 5, 5). It is known that soliton equations with (1+1) dimension admits infinitely many
master symmetries {τj}∞j=0 satisfying the following relations [7]:

[τj , τl] = (l − j)τj+l, (3.2a)

[Kj , τl] = dj Kl+j, (3.2b)

[Ki,Kj ] = 0, (3.2c)

where Kj, j = 0, 1, 2, . . . are generalized symmetries. It appears that the relations (3.2)
also hold good for deformed NLS equation (2.1) if master symmetries exist. Since the
generalized symmetries of deformed NLS equation are commutable, Eq. (3.2c) readily holds
from Eq. (2.12). For j = 0, l = 0, Eq. (3.2b) becomes

[K0, τ0] = d0 K0. (3.3)

Now the rank of the generalized symmetry K0 = (ux, u
∗
x, gx, g

∗
x, bx) is (2, 2, 4, 4, 4) and so

the rank of the master symmetry τ0 = (τ1
0 , τ

2
0 , τ

3
0 , τ

4
0 , τ

5
0 )T satisfying

[G1
0, τ

1
0 ] = d0 G

1
0, [G2

0, τ
2
0 ] = d0 G

2
0, [H1

0 , τ
3
0 ] = d0 H

1
0 ,

[H2
0 , τ

4
0 ] = d0 H

2
0 , [B0, τ0] = d0 B0,
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will be (1, 1, 3, 3, 3). With this in mind we consider the following forms for τ0 =
(τ1

0 , τ
2
0 , τ

3
0 , τ

4
0 , τ

5
0 )T as

τ 0 =




τ1
0

τ2
0

τ3
0

τ4
0

τ5
0




=




a1xux + a2u

a3xu
∗
x + a4u

∗

a5xgx + a6g

a7xg
∗
x + a8g

∗

a9xbx + a10b



, (3.4)

with rank (1, 1, 3, 3, 3), respectively, where ai, i = 1, 2, . . . , 10 are unknown constants to be
determined. Substituting the above in (3.3), we find that it satisfies identically if ai = 1,
i = 1, 2, . . . , 10 and d0 = −1. Hence

τ 0 =




τ1
0

τ2
0

τ3
0

τ4
0

τ5
0




=




xux + u

xu∗x + u∗

xgx + g

xg∗x + g∗

xbx + b



. (3.5)

Proceeding as above, we find that the deformed NLS equation (2.1) admits a sequence of
master symmetries satisfying (3.2a,b). The first two (nontrivial) members of the sequence
of master symmetries with ranks (2, 2, 4, 4, 4) and (3, 3, 5, 5, 5) are:

τ 1 =




τ1
1

τ2
1

τ3
1

τ4
1

τ5
1




=




x(uxx + 2u2u∗) + 2φu+ 2ux

−(x(u∗xx + 2u∗2u) + 2φu∗ + 2u∗x)

x(gxx + 4uu∗g − 2u2g∗) + 2φg + 2gx + 2iub

−(x(g∗xx + 4uu∗g − 2u∗2g) + 2φg∗ + 2g∗x − 2iu∗b)
x(bxx + 4uu∗b+ 2igu∗x) + bx + 2iu∗g



, (3.6)

τ 2 =




τ1
2

τ2
2

τ3
2

τ4
2

τ5
2




=




xG1
2 + 3uxx + 2uxφ+ 4uψ + 2u2u∗

xG2
2 + 3u∗xx + 2u∗xφ− 4u∗ψ + 6u∗2u

xH1
2 + 3gxx + 2gxφ+ 4gψ + 4uu∗g − 6u2g∗ + 2ibux

xH2
2 + 3g∗xx + 2g∗xφ− 4g∗ψ + 8uu∗g∗ − 6u∗2g − 2ibu∗x

xB2 + 2bxφ+ 2ig∗ux − 2igu∗x



, (3.7)

where φx = uu∗ and ψx = u∗uxand K2 = (G1
2, G

2
2,H

1
2 ,H

2
2 , B2)T is the generalized symme-

try of deformed NLS equation. We have checked that the obtained master symmetries also
satisfy the relations

[τ j, τ l] = (l − j)τ j+l, ∀ j, l (3.8)

[Kj, τ l] = −(j + 1)K l+j , (3.9)

showing that they constitute a symmetry algebra of Virasoro type.
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4. Nonlocal Symmetries of Deformed NLS Equation

Let us assume that the deformed NLS equation (2.1) is invariant under a nonpoint contin-
uous transformations,

t̃ = t, x̃ = x, ũ = u+ εS1
n +O(ε2), ũ∗ = u∗ + εS2

n +O(ε2),

g̃ = g + εT 1
n +O(ε2), g̃∗ = g∗ + εT 2

n +O(ε2), b̃ = b+ εAn +O(ε2)
(4.1)

where P n = (S1
n, S

2
n, T

1
n , T

2
n , An)T are functions of (x, t, u, u∗, g, g∗ux, u

∗
x, uxx, u

∗
xx, ∂

−1
x u,

∂−1
x g, gx, g

∗
x, b, bx, . . .), provided u, u∗, g, g∗ and b satisfy Eq. (2.1). Then the invariant equa-

tions read

i
DS1

n

Dt
− D2S1

n

Dx2
− 2u2S2

n − 4uu∗S1
n − T 1

n = 0, (4.2)

i
DS2

n

Dt
+
D2S1

n

Dx2
+ 2u∗2S1

n + 4uu∗S2
n + T 2

n = 0, (4.3)

DT 1
n

Dx
+ 2iuAn + 2ibS1

n = 0, (4.4)

DT 2
n

Dx
− 2iu∗An − 2ibS2

n = 0, (4.5)

DAn

Dx
− i(g∗S1

n + uT 2
n − gS2

n − u∗T 1
n) = 0. (4.6)

Following the procedure of Hereman et al. described in Sec. 2.1, we find that the deformed
NLS equation (2.1) admits a sequence of nonlocal symmetries P n. The first three members
of the sequence with ranks (1, 1, 3, 3, 3), (2, 2, 4, 4, 4) and (3, 3, 5, 5, 5) are:

P 1 =




S1
1

S2
1

T 1
1

T 2
1

A1




=




−2it(uxx + 2u2u∗) + xux + u

2it(u∗xx + 2u∗2u) + xu∗x + u∗

−2it(gxx + 4uu∗g − 2u2g∗) + xgx + g

2it(gxx + 4uu∗g∗ − 2u∗2g) + xg∗x + g∗

−2it(bxx + 4uu∗b+ 2igu∗x) + xbx + b



, (4.7)

P 2 =




S1
2

S2
2

T 1
2

T 2
2

A2




=




−2itG1
2 + xG1

1 + 2uφ+ 2ux

−2itG2
2 + xG2

1 − 2u∗φ− 2u∗x
−2itH1

2 + xH1
1 + 2gφ + 2gx + 2iub

−2itH2
2 + xH2

1 − 2g∗φ− 2g∗x + 2iu∗b
−2itB2 + xB1 + bx + 2iu∗g



, (4.8)

P 3 =




S1
3

S2
3

T 1
3

T 2
3

A3




=




−2itG1
3 + xG1

2 + 3uxx + 2uxφ+ 4uψ + 2u2u∗

−2itG2
3 + xG2

2 + 3u∗xx + 2u∗xφ− 4u∗ψ + 6u∗2u
−2itH1

3 + xH1
2 + 3gxx + 2gxφ+ 4gψ + 4uu∗g − 6u2g∗ + 2iuxb

−2itH2
3 + xH2

2 + 3g∗xx + 2g∗xφ− 4g∗ψ + 8uu∗g∗ − 6u∗2g − 2iu∗xb
−2itB3 + xB2 + 2φbx + 2iuxg

∗ − 2iu∗xg



, (4.9)
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where φ, and ψ are nonlocal variables satisfying

φx = uu∗, φt = b+ i(uu∗x − u∗ux), ψx = u∗ux,

ψt = i(uxu
∗
x + ug∗ − u2u∗2 − u∗uxx).

(4.10)

Here K2 = (G1
2, G

2
2,H

1
2 ,H

2
2 , B2)T and K3 = (G1

3, G
2
3,H

1
3 ,H

2
3 , B3)T are generalized sym-

metries of the deformed NLS equation given in Eqs. (2.10)–(2.11). Note that the nonlocal
variables φ and ψ can be connected with conservation laws, that is,

∂

∂t
(uu∗) +

∂

∂x
(−b− i(uu∗x − u∗ux)) = 0,

∂

∂t
(u∗ux) +

∂

∂x
(−i(uxu

∗
x + ug∗ − u2u∗2 − u∗uxx)) = 0.

5. Bi-Hamiltonian Representation of Deformed NLS Equation

We would like to mention that the KdV 6 given by

(∂3
x + 8ux∂x + 4uxx)(ut + uxxx + 6u2

x) = 0, (5.1)

can be written as

vt + vxxx + 12vvx − wx = 0, wxxx + 8vwx + 4wvx = 0 (5.2)

where v = ux, w = ut + uxxx + 6u2
x. Recently, Kupershmidt [15] has shown that the KdV 6

can be written in the following Hamiltonian description

ut = θ1

(
δHn+1

δu

)
− θ1(w) = θ2

(
δHn

δu

)
− θ1(w), θ2(w) = 0, (5.3)

where

θ1 = ∂x, θ2 = ∂3
x + 2(u∂x + ∂xu)

are Hamiltonian operators of the KdV equation ut − 6uux − uxxx = 0, and

H1 = u, H2 =
u2

2
, · · ·

are conserved densities. Kersten et al. [19] have demonstrated that the Kupershmidt defor-
mation of a bi-Hamiltonian system is itself bi-Hamiltonian. It is straightforward to check
that the deformed NLS equation can also be written in the Hamiltonian description

(
ut

u∗t

)
= θ1



δH3

δu

δH3

δu∗


+ θ1

(
g∗

g

)
= θ2



δH2

δu

δH2

δu∗


+ θ1

(
g∗

g

)
(5.4)
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and

θ2

(
g∗

g

)
= 0. (5.5)

Here

θ1 =

(
0 −i
i 0

)
, θ2 = i

(
2u∂−1

x u −∂x − 2u∂−1
x u∗

−∂x − 2u∗∂−1
x u 2u∗∂−1

x u∗

)
(5.6)

are Hamiltonian operators of NLS equation

iut − uxx − 2u2u∗ = 0

and

H2 = u∗ux, H3 = u2u∗2 − uxu
∗
x (5.7)

are conserved densities of the NLS equation. Hence the deformed NLS equation (2.1) is a
bi-Hamiltonian system.

6. Summary and Concluding Remarks

In this article we have shown that the deformed Nonlinear Schrödinger (NLS), Hirota and
AKNS equations with (1+1) dimension admit infinitely many generalized (nonpoint) sym-
metries and polynomial conserved quantities, master symmetries and a recursion operator
ensuring their complete integrability. Also shown that each of them admits infinitely many
nonlocal symmetries. The nature of the deformed equation whether bi-Hamiltonian or not
is also analyzed.

From the analysis of the deformed NLS we observe that the conserved densities for the
deformed and un-deformed remain the same while the current densities (fluxes) explicitly
contain the deforming functions. This shows that the nonholonomic deformations can appear
only at the equation level, while the conserved integrals of motion remain the same under
deformation. Also we observe that the obtained sequence of nonlocal symmetries and master
symmetries of deformed NLS equation satisfy

P n+1 = RP n, τn+1 = Rτn, ∀n (6.1)

where R is a recursion operator given in Eq. (2.21) Furthermore, the sequence of master
symmetries, nonlocal symmetries and generalized symmetries satisfy the following relation:

P i+1 = −2itKi+1 + τ i, i = 0, 1, . . . . (6.2)
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Appendix: A Brief Details of Generalized, Master and Nonlocal
Symmetries of Deformed Hirota and AKNS Equations

A. Deformed Hirota Equation (1.2)

Proceeding in a similar manner explained in Secs. 2–4 we find that the deformed Hirota
equation admits infinitely many generalized symmetries, master symmetries and nonlocal
symmetries and a recursion operator. The first few members of the sequence of generalized
symmetries, conserved quantities, master symmetries and nonlocal symmetries are given
below:

First member of generalized symmetries K0 = (G1
0, G

2
0,H

1
0 ,H

2
0 , B0)T




G1
0

G2
0

H2
0

H2
0

B0




=




ux + a(uxx + 2u2u∗)
u∗x − a(u∗xx + 2u∗2u)

gx + a(gxx + 4uu∗g − 2u2g∗)
g∗x − a(g∗xx + 4uu∗g∗ − 2u∗2g)
bx + a(bxx + 4uu∗b+ 2igu∗xg)




Second member of generalized symmetries K1 = (G1
1, G

2
1,H

1
1 ,H

2
1 , B1)T




G1
1

G2
1

H2
1

H2
1

B1




=




uxx + 2u2u∗ + a(u3x + 6uu∗ux)

−u∗xx − 2u∗2u+ a(u∗3x + 6uu∗u∗x)

gxx + 4uu∗g − 2u2g∗ + a(g3x + 6u∗gux + 6uu∗gx − 6ug∗ux)

−g∗xx − 4uu∗g∗ + 2u∗2g + a(g∗3x + 6ug∗u∗x + 6uu∗g∗x − 6u∗gu∗x)

bxx + 4uu∗b+ 2igu∗x + a(b3x + 6uu∗bx + 6u∗bux + 6ubu∗x)




Third member of generalized symmetries K2 = (G1
2, G

2
2,H

1
2 ,H

2
2 , B2)T




G1
2

G2
2

H2
2

H2
2

B2




=




u3x + 6uu∗ux + a(u4x + 2u2u∗xx + 8uu∗uxx + 4uuxu
∗
x + 6u∗u2

x + 6u3u∗2)

u∗3x + 6uu∗u∗x − a(u∗4x + 2u∗2uxx + 8uu∗u∗xx + 4u∗uxu
∗
x + 6uu∗2x + 6u∗3u2)

g3x + 6u∗gux + 6uu∗gx − 6ug∗ux + a(g4x − 2u2g∗xx − 6g∗u2
x − 12u3u∗g∗

+ 4ugu∗xx + 8u∗guxx − 8ug∗uxx + 8uu∗gxx + 4guxu
∗
x + 4uu∗xgx

− 4uuxg
∗
x + 12u∗uxgx + 18u2u∗2g)

g∗3x + 6ug∗u∗x + 6uu∗g∗x − 6u∗gu∗x − a(g∗4x − 2u∗2gxx − 6gu∗2x − 12u∗3ug

+ 4u∗g∗uxx + 8ug∗u∗xx − 8u∗gu∗xx + 8uu∗g∗xx + 4g∗uxu
∗
x + 4u∗uxg

∗
x

− 4u∗u∗xgx + 12uu∗xg∗x + 18u∗2u2g∗)

b3x + 6uu∗bx + 6u∗bux + 6ubu∗x + a(b4x + 8u∗buxx + 12buxu
∗
x + 20uu∗bxx

+ 64u2u∗2b+ 8ubu∗xx + 2iu∗3xg + 10iu2g∗u∗x − 10iu∗2gux + 12iugu∗u∗x)




,

etc.
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First member of conserved quantities (ρ(1), J (1))

ρ(1) = uu∗ + 2iau∗ux,

J (1) = 2ia2(6uu∗2ux + uxu
∗
xx + u∗u3x − uxxu

∗
x) + a(uu∗xx + 2u∗uxx

− 2uxu
∗
x + 4u2u∗2 + 2ug∗) − i

2
(u∗ux − uu∗x) − b

Second member of conserved quantities (ρ(2), J (2))

ρ(2) = u∗ux + 2ia(u2u∗2 − uxu
∗
x),

J (2) = 2ia2(−uxu
∗
3x − u∗xu3x + uxxu

∗
xx + 4u3u∗3 − 10uu∗uxu

∗
x − u2

xu
∗2 − u∗2x u

2

+ 2uu∗2uxx + 2u2u∗u∗xx) + a(8uu∗2ux + 2uxu
∗
xx + u∗u3x − 2uxxu

∗
x − 2u2u∗u∗x

− 4iuu∗b) − i

2
(u2u∗2 + u∗uxx − uxu

∗
x + 2ug∗)

Third member of conserved quantities (ρ(3), J (3))

ρ(3) = (u2u∗2 − uxu
∗
x) + 2ia(3uu∗2ux − uxxu

∗
x),

J (3) = 2ia2(−12u∗xuu
∗uxx + 3u∗2uu3x + 6uu∗uxu

∗
xx − u∗xu4x − 6u∗2x uux − u∗3xuxx

+ 18u∗3u2ux − 6u2
xu

∗u∗x + u∗xxu3x) + a(−2u∗2ug + 2u2u∗u∗xx − 2u∗2x u
2

+ 4u∗u2g∗ + 5uu∗2uxx + 6u3u∗3 − 4iu∗uxb− 16uu∗ux − 2u∗xu3x + 2uxxu
∗
xx

−uxu
∗
3x) + iu2u∗u∗x − iuu∗2ux − 2uu∗b− i

2
uxu

∗
xx +

i

2
uxxu

∗
x,

etc.
First member of master symmetries τ 0 = (τ1

0 , τ
2
0 , τ

3
0 , τ

4
0 , τ

5
0 )T




τ1
0

τ2
0

τ3
0

τ4
0

τ5
0




=




(x+ a)ux + u

(x+ a)u∗x + u∗

(x+ a)gx + g

(x+ a)g∗x + g∗

(x+ a)bx + b




Second member of master symmetries τ 1 = (τ1
1 , τ

2
1 , τ

3
1 , τ

4
1 , τ

5
1 )T




τ1
1

τ2
1

τ3
1

τ4
1

τ5
1




=




(x+ a)(uxx + 2u2u∗) + 2uφ+ 2ux

−((x+ a)(u∗xx + 2u∗2u) + 2u∗φ+ 2u∗x)

(x+ a)(gxx + 4uu∗g − 2u2g∗) + 2gφ+ 2gx + 2iub

−((x+ a)(g∗xx + 4uu∗g − 2u∗2g) + 2g∗φ+ 2g∗x − 2iu∗b)
(x+ a)(bxx + 4uu∗b+ 2iu∗xg) + bx + 2iu∗g
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Third member of master symmetries τ 2 = (τ1
2 , τ

2
2 , τ

3
2 , τ

4
2 , τ

5
2 )T




τ1
2

τ2
2

τ3
2

τ4
2

τ5
2




=




(x+ a)(u3x + 6uu∗ux) + 3uxx + 2uxφ+ 4uψ + 2u2u∗

(x+ a)(u∗3x + 6uu∗u∗x) + 3u∗xx + 2u∗xφ− 4u∗ψ + 6u∗2u

(x+ a)(g3x + 6u∗gux + 6uu∗gx − 6ug∗ux) + 3gxx + 2gxφ

+ 4gψ + 4uu∗g − 6u2g∗ + 2ibux

(x+ a)(g∗3x + 6ug∗u∗x + 6uu∗g∗x − 6u∗gu∗x) + 3g∗xx + 2g∗xφ
− 4g∗ψ + 8uu∗g∗ − 6u∗2g − 2ibu∗x

(x+ a)(b3x + 6uu∗bx + 6u∗bux + 6ubu∗x) + 2bxφ+ 2ig∗ux − 2igu∗x



,

etc.
where φx = uu∗ and ψx = u∗ux.

First member of nonlocal symmetries P 1 = (S1
1 , S

2
1 , T

1
1 , T

2
1 , A1)T




S1
1

S2
1

T 1
1

T 2
1

A1




=




it(uxx + 2u2u∗) − 3at(u3x + 6uu∗ux) + (x+ a)ux + u

it(−u∗xx + 2u∗2u) − 3at(u∗3x + 6uu∗u∗x) + (x+ a)u∗x + u∗

it(gxx + 4uu∗g − 2u2g∗) − 3at(g3x + 6u∗gux + 6uu∗gx

− 6ug∗ux) + (x+ a)gx + g

it(−gxx − 4uu∗g∗ + 2u∗2g) − 3ta(g∗3x + 6ug∗u∗x + 6uu∗g∗x
− 6u∗gu∗x) + (x+ a)g∗x + g∗

it(bxx + 4uu∗b+ 2igu∗x) − 3at(b3x + 6uu∗bx + 6u∗bux

+ 6ubu∗x) + (x+ a)bx + b




Second member of nonlocal symmetries P 2 = (S1
2 , S

2
2 , T

1
2 , T

2
2 , A2)T ,

where

S1
2 = it(u3x + 6uu∗ux) − 3at(u4x + 6u2

xu
∗ + 4uuxu

∗
x + 8uu∗uxx + 2u∗xxu

2 + 6u3u∗2)

+ (x+ a)(uxx + 2u2u∗) + 2φu+ 2ux,

S2
2 = it(u∗3x + 6uu∗u∗x) − 3at(−u∗4x − 6u∗2x u− 4u∗uxu

∗
x − 8uu∗u∗xx − 2uxxu

∗2 − 6u∗3u2)

+ (x+ a)(−u∗xx − 2u∗2u) − 2φu∗ − 2u∗x,

T 1
2 = it(g3x + 6u∗uxg + 6uu∗gx − 6uuxg

∗) − 3at(g4x − 2u2g∗xx − 6u2
xg

∗ − 12u3u∗g∗

+ 4uu∗xxg + 8u∗uxxg − 8uuxxg
∗ + 8uu∗gxx + 4uxu

∗
xg + 4uu∗xgx − 4uuxg

∗
x

+ 12uxu
∗gx + 18u2u∗2g) + (x+ a)(gxx + 4uu∗g − 2u2g∗) + 2φg + 2gx + 2iub,

T 2
2 = it(g∗3x + 6uu∗xg

∗ + 6uu∗g∗x − 6u∗u∗xg) − 3at(−g∗4x + 2u∗2gxx + 6u∗2x g + 12u∗3ug

− 4u∗uxxg
∗ − 8uu∗xxg

∗ + 8u∗u∗xxg − 8uu∗g∗xx − 4uxu
∗
xg

∗ − 4u∗uxg
∗
x + 4u∗u∗xgx

− 12u∗xug
∗
x − 18u∗2u2g∗) + (x+ a)(−g∗xx − 4uu∗g∗ + 2u∗2g) − 2φg∗ − 2g∗x + 2iu∗b,
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A2 = it(b3x + 6uu∗bx + 6u∗uxb+ 6uu∗xb) − 3at(b4x + 8uxxu
∗b+ 12uxu

∗
xb+ 20uu∗bxx

+ 64u2u∗2b+ 8uu∗xxb+ 2iu∗3xg + 10iu2u∗xg
∗ − 10iuxu

∗2g + 12iuu∗u∗xg)

+ (x+ a)(bxx + 4uu∗b+ 2iu∗xg) + bx + 2iu∗g,

etc.

where φ is a nonlocal variable defined by

φx = uu∗, φt = b− i

2
(uu∗x − u∗ux) − 3au2u∗2 − a(uu∗xx + u∗uxx − uxu

∗
x). (A.1)

The recursion operator of the deformed Hirota equation (1.2) is same as for the deformed
NLS equation as in (2.21). Also we observe that the obtained sequence of nonlocal symme-
tries and master symmetries of deformed Hirota equation satisfy (6.1). Furthermore, it is
observed that master symmetries τ i and nonlocal symmetries P i and generalized symme-
tries Ki satisfy the following relation:

P i+1 = itKi+1 − 3atKi+2 + τ i, ∀ i.

Bi-Hamiltonian representation:

The deformed Hirota equation can also be written in the Hamiltonian description

(
ut

u∗t

)
= θ1



δH3

δu

δH3

δu∗


+ θ1

(
−g∗
−g

)
= θ2



δH2

δu

δH2

δu∗


+ θ1

(
−g∗
−g

)

and

θ2

(
−g∗
−g

)
= 0.

Here

θ1 =
1
2

(
0 i

−i 0

)
, θ2 =

i

2

( −2u∂−1
x u ∂x + 2u∂−1

x u∗

∂x + 2u∗∂−1
x u −2u∗∂−1

x u∗

)

are Hamiltonian operators of Hirota equation

iut + ia(u3x + 6|u|2ux) +
uxx

2
+ |u|2u = 0

and

H2 = u∗ux + 2ia(u2u∗2 − uxu
∗
x), H3 = (u2u∗2 − uxu

∗
x) + 2ia(3uu∗2ux − uxxu

∗
x),

are conserved densities of Hirota equation. Hence the deformed Hirota equation (1.2) is a
bi-Hamiltonian system.
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B. Deformed AKNS Equation (1.3)

First K0 = (U0, V0, G0,H0, B0)T and Second member K1 = (U1, V1, G1,H1, B1)T of
generalized symmetries are



U0

V0

G0

H0

B0




=




ux

vx

g̃x

hx

bx



,




U1

V1

G1

H1

B1




=




−uxx + 2u2v

vxx − 2v2u

−g̃xx + 4uvg̃ + 2u2h

hxx − 4uvh− 2v2g̃

g̃vx − hux




Third member of generalized symmetries K2 = (U2, V2, G2,H2, B2)T


U2

V2

G2

H2

B2




=




u3x − 6uvux

v3x − 6uvvx

g̃3x − 6vg̃ux − 6uhux − 6uvg̃x

h3x − 6vg̃vx − 6uhvx − 6uvhx

huxx − 2u2vh− 2uv2g̃ + g̃vxx




Fourth member of generalized symmetries K3 = (U3, V3, G3,H3, B3)T




U3

V3

G3

H3

B3




=




−u4x + 6vu2
x + 4uuxvx + 8uvuxx + 2u2vxx − 6u3v2

v4x − 4vuxvx − 6uv2
x − uvvxx − 2v2uxx + 6u2v3

−g̃4x + 4ug̃vxx + 4g̃uxvx + 8vg̃uxx − 18u2v2g̃ + 8uhuxx − 12u3vh

+ 8uvg̃xx + 4uuxhx + 12vuxg̃x + 6hu2
x + 2u2hxx + 4uvxg̃x

h4x − 4vhuxx − 4huxvx − 8uhvxx + 18u2v2h− 8vg̃vxx + 12v3ug̃

− 8uvhxx − 4vvxg̃x − 12uvxhx − 6g̃v2
x − 2v2g̃xx − 4vuxhx

−hu3x − 6uvg̃vx + 6uvhux + hv3x



,

etc.

First three members of Conserved quantities

ρ(1) = uv, J (1) = −b− uvx + vux

ρ(2) = vux, J (2) = vuxx − u2v2 − uxvx − uh

ρ(3) = u2v2 + uxvx, J (3) = 2uv2ux − 2u2vvx − uxvxx + vxuxx − 2uvb,

etc.
Recursion operator of deformed AKNS equation

R =




−∂x + 2u∂−1
x v 2u∂−1

x u 0 0 0

−2v∂−1
x v ∂x − 2v∂−1

x u 0 0 0

2g̃∂−1
x v + 2u∂−1

x h 2u∂−1
x g̃ + 2g̃∂−1

x u −∂x + 2u∂−1
x v 2u∂−1

x u 0

−2v∂−1
x h− 2h∂−1

x v −2v∂−1
x g̃ − 2h∂−1

x u −2v∂−1
x v ∂x − 2v∂−1

x u 0

−2h 0 −v −u ∂x



.
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First member of master symmetries τ 0 = (τ1
0 , τ

2
0 , τ

3
0 , τ

4
0 , τ

5
0 )T




τ1
0

τ2
0

τ3
0

τ4
0

τ5
0




=




xux + u

xvx + v

xg̃x + g

xhx + h

xbx + b




Second member of master symmetries τ 1 = (τ1
1 , τ

2
1 , τ

3
1 , τ

4
1 , τ

5
1 )T




τ1
1

τ2
1

τ3
1

τ4
1

τ5
1




=




x(−uxx + 2u2v) + 2uφ− 2ux

x(vxx − 2v2u) − 2vφ + 2vx

x(−g̃xx + 4uvg̃ + 2u2h) + 2g̃φ− 2g̃x + 2ub

x(hxx − 4uvh − 2v2g̃) − 2hφ+ 2hx − 2vb

x(g̃vx − hux) + vg̃ − uh




Third member of master symmetries τ 2 = (τ1
2 , τ

2
2 , τ

3
2 , τ

4
2 , τ

5
2 )T




τ1
2

τ2
2

τ3
2

τ4
2

τ5
2




=




x(u3x − 6uvux) + 3uxx − 4uψ − 2u2v − 2uxφ

x(v3x − 6uvvx) + 3vxx + 4vψ − 6v2u− 2vxφ

x(g̃3x − 6vg̃ux − 6uhux − 6uvg̃x) + 3g̃xx

− 4uvg̃ − 6u2h− 4g̃ψ − 2bux − 2g̃xφ

x(h3x − 6vvxg̃ − 6uhvx − 6uvhx) + 3hxx

− 8uvh− 6v2g̃ + 4hψ − 2bvx − 2hxφ

x(huxx − 2u2vh− 2uv2g̃ + g̃vxx) + 2hux + 2g̃vx − 2bxφ




,

etc.
where φx = uv and ψx = vux.

First member of nonlocal symmetries P 1 = (S1, T1, Q1, R1, A1)T




S1

T1

Q1

R1

A1




=




2t(−uxx + 2u2v) + xux + u

2t(vxx − 2v2u) + xvx + v

2t(−g̃xx + 4uvg̃ + 2u2h) + xg̃x + g̃

2t(hxx − 4uvh − 2v2g̃) + xhx + h

2t(bxx − 4uvb− 2hux) + xbx + b
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Second member of nonlocal symmetries P 2 = (S2, T2, Q2, R2, A2)T




S2

T2

Q2

R2

A2




=




2t(u3x − 6uvux) + x(−uxx + 2u2v) + 2uφ− 2ux

2t(v3x − 6uvvx) + x(vxx − 2uv2) − 2vφ+ 2vx

2t(g̃3x − 6vuxg̃ − 6uuxh− 6uvg̃x) + x(−g̃xx + 4uvg̃

+ 2u2h) + 2g̃φ− 2g̃x + 2ub

2t(h3x − 6vg̃vx − 6uhvx − 6uvhx) + x(hxx − 4uvh

− 2v2g̃) − 2hφ + 2hx − 2vb

2t(huxx − 2u2vh− 2uv2g̃ + g̃vxx) + x(g̃vx − hux) + vg̃ − uh



,

etc.
where φ is a nonlocal variable defined by

φx = uv, φt = b+ uvx − vux.

Also we observe that the obtained sequence of nonlocal symmetries and master sym-
metries of deformed AKNS equation satisfy (6.1). Furthermore, it is observed that master
symmetries τi, and nonlocal symmetries Pi, and generalized symmetries Ki, satisfy the
following relation:

P i+1 = 2tKi+1 + τ i, ∀ i.
Bi-Hamiltonian representation:

The deformed AKNS equation can also be written in the Hamiltonian description

(
ut

vt

)
= θ1



δH3

δu

δH3

δu∗


+ θ1

(
−h
g̃

)
= θ2



δH2

δu

δH2

δu∗


+ θ1

(
−h
g̃

)

and

θ2

(
−h
g̃

)
= 0.

Here

θ1 =

(
0 1

−1 0

)
, θ2 =

(
−2u∂−1

x u −∂x + 2u∂−1
x v

−∂x + 2v∂−1
x u −2v∂−1

x v

)

are Hamiltonian operator of AKNS equation

ut + uxx − 2u2v = 0

vt − vxx + 2v2u = 0

and

H2 = uxv, H3 = u2v2 + uxvx,

are conserved densities of deformed AKNS equation. Hence the deformed AKNS equation
(1.3) is a bi-Hamiltonian system.
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