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In this letter, the two-singular-manifold method is applied to the (2+1)-dimensional nonisospec-
tral Kadomtsev–Petviashvili equation with two Painlevé expansion branches to determine auto-
Bäcklund transformation, Lax pairs and Darboux transformation. Based on the two obtained Lax
pairs, the binary Darboux transformation is constructed and then the Nth iterated transformation
formula in the form of Grammian is also presented. By using these Darboux transformations, we
obtain some new grammian solutions.

Keywords: Painlevé analysis; Darboux transformation; nonisospectral Kadomtsev–Petviashvili
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1. Introduction

In recent years, there has been much interest in investigating different kinds of integrable
properties of nonlinear evolution equations (NLEE). Since being proposed in 1983 [1], the
Painlevé analysis has been widely used, such as testing whether a given partial differen-
tial equation (PDE) possesses the Painlevé property [2, 3]. Based on the Painlevé analysis,
the singular-manifold method (SMM) has been further developed to derive some integrable
properties for an NLEE, such as the Lax pair, Bäcklund transformation and Darboux trans-
formation [4–8], in which the investigations that links singular-manifold method and Dar-
boux transformations were initialized. Estévez et al. has been successfully applied to many
NLEEs including the Boussinesq and Mikhailov–Shabat systems [4], (2+1)-dimensions KdV
equation [5] and wave equation [6]. In the underlying works namely the GSMM for multiple
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Painleve branches was realized, with further development in Darboux transformations via
Painlevé analysis [7] and especially related to iterative construction of solutions for (2+1)-
dimensions nonisopectral problems [8].

It is well known that the Lax representation has played an important role in our under-
standing of complete integrability in classical mechanics and soliton theory [9, 10]. Recently,
systematic methods were developed to decompose each equation in a hierarchy of soliton
equations into two commuting x- and tn-integrable bitedimensional Hamiltonian systems
(FDHS). An important problem is to find the Lax representation for all these x- and tn-
FDHSs. By using the Gel’fand–Dikii approach, the Lax representation for x-constrained
Bows of Gel’fand–Dikii hierarchies was constructed in [11]. Darboux transformation (DT)
method [12–20] based on Lax pairs has been proved to be one of the most fruitful algo-
rithmic procedures to get explicit solutions of nonlinear evolution equations. The key for
constructing Darboux transformation is to expose a kind of covariant properties that the
corresponding spectral problems possess. In 1882, Darboux investigate a proposition relative
aux equation lineaires [12]. In 1979, Matveev has been successfully applied to many NLEEs
including the KP equation [13, 14], Zakharov–Shabat Equations [15], differential-difference
and difference-difference evolution equations [16]. In 1990, Matveev and Salle [17] first
investigated the DT in integral form and presented binary Darboux transformation (BDT).
Nimmo [18, 19] and Gu [20] has carried out a lot of excellent work about BDT: in [18], the
general construction of BDT for KP hierarchy preserving certain properties of the operator,
such as self-adjoint, is given; the BDT of two-dimensional Zakharov–Shabati/AKNS spec-
tral problem [19] is obtained by composing the elementary transformation, for one solution
matrix, with its inverse for another solution matrix. As application of Darboux transforma-
tion, equations with eigenparameters may provide more realistic models, in the propagation
of (small-amplitude) surface waves in straits or large channels of (slowly) varying depth and
width and nonvanishing vorticity [21–23].

In this letter, we shall apply the GSSM to a well known Nonisospectral Kadomtsev–
Petviashili (Nonisospectral KP) equation with the form [24, 25]

4ut + y(uxxx + 6uux + 3∂−1
x uyy) + 2xuy + 4∂−1

x uy = 0 (1)

which also has double Painlevé branches as the isospectral KP equation does. Recently,
the multisoliton solutions of Eq. (1) have been obtained through the Hirota method and
Wronskian technique [25]. In [24], a Darboux transformation has been presented based on
the Lax pair for Eq. (1). But it is not the real Darboux transformation for Eq. (1), because
this equation and the form of its Lax pair cannot keep invariant under this transformation.
Therefore, in this letter we aim to extend the GSMM to the nonisospectral variable coef-
ficient KP equation and obtain an auto-Bäcklund transformation, a couple of Lax pairs,
the real Darboux transformation and some new grammian solutions, which are new results
compare with Refs. [24, 25].

The present contribution is organized as follows. In Sec. 2, we apply the GSMM to Eq. (1)
and explicitly obtain an auto-Bäcklund transformation and a couple of Lax pairs, one of
which is consistent with the result in [24]. In Sec. 3, based on the obtained Lax pairs, we con-
struct the binary Darboux transformation, which is the real Darboux transformation (the
form of Lax pairs can keep invariant under our Darboux transformation) compare with the
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Darboux transformation in [24]. Then we present the Nth iterated Darboux transformation
formula in the form of Grammian by iterating the binary Darboux transformation N times
and obtain some new grammian solutions by using these Darboux transformations com-
pared with the solutions in [24, 25] in Sec. 4. Finally, some conclusion and discussion are
provided.

2. Auto-Bäcklund Transformation and Lax Pairs

In this section, we will employ the GSMM to derive the auto-Bäcklund transformation and
Lax pairs for the nonisospectral variable-coefficient KP equation. Henceforth, let us consider
Eq. (1) in the form of a two component system:

4ut + y(uxxx + 6uux + 3ωy) + 2xωx + 4ω = 0, (2a)

ωx − uy = 0. (2b)

According to the Painlevé test for a PDE [1] the solutions of system (2) can be written as
Painlevé expansions in the following form:

u =
∞∑
i=0

ui(x, y, t)[χ(x, y, t)]i−α, (3a)

ω =
∞∑
i=0

ωi(x, y, t)[χ(x, y, t)]i−β , (3b)

where analysis of the leading terms leads, for that equation, to:

α = 2, (4a)

β = 2, (4b)

u0 = ρχx, (4c)

ω0 = ρχy, (4d)

where a ρ = ±2. Therefore, the equation has two Painlevé branches. We can now proceed
to the application of the GSMM. This implies that the two branches should appear simul-
taneously in the truncated expansion for (2). A singular manifold should be introduced for
each branch in the following form:

u′ = u+ 2
(
φx
φ

− σx
σ

)
, (5a)

ω′ = ω + 2
(
φy
φ

− σy
σ

)
, (5b)

where φ and σ are two different singular manifolds which correspond to ρ = 2 and ρ = −2,
respectively. Expansion (5) constitutes an auto-Bäcklund transformation between two pairs
of solutions (u, ω) and (u′, ω′). If we assume that the crossed terms (φx/φ)(σx/σ) can be
decoupled through an expression such as

φx
φ

σx
σ

= A(x, y, t)
φx
φ

+B(x, y, t)
σx
σ
. (6)
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With symbolic computation, substituting expressions (5) into system (2) and equating the
coefficients of φ−i and σ−i (i = 1, 2, 3) to zero, yields

A =
1
2
(u+ υ1 − τ1), (7a)

B =
1
2
(−u+ υ2 + τ2), (7b)

y(4υ1x − 12υ1 + 4�1 + 7υ2
1 + 3τ2

1 ) + 2xτ1 = 0, (8a)

y(4υ2x − 12υ2 + 4�2 + 7υ2
2 + 3τ2

2 ) + 2xτ2 = 0, (8b)

6y(u2 − ux − ω) −�1 − 4yυ1x + yυ2
1 − 4xτ1 = 0, (9a)

6y(u2 + ux − ω) −�2 − 4yυ2x + yυ2
2 − 4xτ2 = 0, (9b)

where υi, �i, and τi (i = 1, 2) are defined as

υ1 =
φxx
φx

, �1 =
φt
φx
, τ1 =

φy
φx
,

υ2 =
σxx
σx

, �2 =
σt
σx
, τ2 =

σy
σx
.

(10)

Taking the derivative of (6) with respect to x, y and t, the results are

Ax = A(υ2 −A−B), (11a)

At = (A�2)x +AB(�2 −�1), (11b)

Ay = (Aτ2)x +AB(τ2 − τ1), (11c)

Bx = B(υ1 −A−B), (11d)

Bt = (B�1)x −AB(�2 −�1), (11e)

By = (Bτ1)x −AB(τ2 − τ1). (11f)

From Eqs. (8), (9) and (11), it is not difficult to check that, for nonisospectral KP, the
following relations are satisfied:

(AB)x = AB(τ1 − τ2), (12a)

(ABH)x = 4AB(�2 −�1) (12b)

with Hx + (τ1 − τ2)H − 4(�2 −�1) = 0.
In virtue of the fact that Eqs. (11a) and (11d) are both Ricatti-typed equations for A

and B, with the variable changes

A =
ψ−
x

ψ− , B =
ψ+
x

ψ+
, (13)
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Equations (11) under conditions (12) can be rewritten as

ψ+
xx = ψ+

x (υ1 −A), ψ+
t = ψ+

x

(
�1 − A

4
H

)
, ψ+

y = ψ+
x (τ1 +A) (14a)

ψ−
xx = ψ−

x (υ2 −B), ψ−
t = ψ−

x

(
�2 +

B

4
H

)
, ψ−

y = ψ−
x (τ2 −B). (14b)

Combining Eqs. (7) and (14) yields two Lax pairs for system (2)

ψ+
y = ψ+

xx + uψ+, (15a)

4ψ+
t = −y[4ψ+

xxx + 6uψ+
x + 3(ux + ω)ψ+] − 2x(ψ+

xx + uψ+) − 2ψ+
x − ωψ+ (15b)

ψ−
y = −ψ−

xx + uψ−, (16a)

4ψ−
t = −y[4ψ−

xxx + 6uψ−
x + 3(ux + ω)ψ−] + 2x(ψ−

xx − uψ−) − 2ψ−
x − ωψ−. (16b)

The Lax pairs (15) is precisely the Lax pair for nonisospectral KP described in [24]. It
is easy to verify that the compatibility conditions ψ+

yt = ψ+
ty and ψ−

yt = ψ−
ty both lead to

system (2).
As we have seen above, the two singular manifolds φ and σ are closely related to the

existence of two Lax pairs with eigenfunctions ψ1 and ψ2. In fact we can obtain the precise
relationship between them from Eqs. (14). It is not difficult to see that using (10) and (13)
in (14) yields:

ψ+
1xx

ψ+
1x

=
φxx
φx

− ψ−
1x

ψ−
1

,
ψ+

1t

ψ+
1x

=
φt
φx

− Hψ−
1x

4ψ−
1

,
ψ+

1y

ψ+
1x

=
φy
φx

+
ψ−

1x

ψ−
1

, (17a)

ψ−
1xx

ψ−
1x

=
σxx
σx

− ψ+
1x

ψ+
1

,
ψ−

1t

ψ−
1x

=
σt
σx

+
Hψ+

1x

4ψ+
1

,
ψ−

1y

ψ−
1x

=
σy
σx

− ψ+
1x

ψ+
1

, (17b)

where Hx +
(ψ+

1y

ψ+
1x

− ψ−
1y

ψ−
1x

)
H − 4

( ψ−
1t

ψ−
1x

− ψ+
1t

ψ+
1x

)
= 0, with ψ+

1t = −y[ψ+
1xxx + 3

2uψ
+
1x − 3

4(ux +

ω)ψ+
1

]− 1
2x(ψ

+
1xx + 1

4uψ
+
1 )− 1

2ψ
+
1x − 1

4ωψ
+
1 and ψ−

1t = −y[ψ−
1xxx + 3

2uψ
−
1x − 3

4(ux +ω)ψ−
1

]
+

1
2x(ψ

−
1xx − 1

4uψ
−
1 ) − 1

2ψ
−
1x − 1

4ωψ
−
1 . These equations can be written (after an integration in

x) in an abbreviated form as

φ = ∆(ψ+
1 , ψ

−
2 ), σ = Γ(ψ+

1 , ψ
−
2 ), (18)

where ∆(ψ+
1 , ψ

−
2 ) and σ = Γ(ψ+

1 , ψ
−
2 ) have been defined as

[∆(ψ+
1 , ψ

−
1 )]x = ψ+

1xψ
−
1 , [∆(ψ+

1 , ψ
−
1 )]t = ψ+

1tψ
−
1 +

H

4
ψ+

1xψ
−
1x,

[∆(ψ+
1 , ψ

−
1 )]y = ψ+

1yψ
−
1 − ψ+

1xψ
−
1x, (19a)

[Γ(ψ+
1 , ψ

−
1 )]x = ψ+

1 ψ
−
1x, [Γ(ψ+

1 , ψ
−
1 )]t = ψ+

1 ψ
−
1t −

H

4
ψ+

1xψ
−
1x,

[Γ(ψ+
1 , ψ

−
1 )]y = ψ+

1 ψ
−
1y + ψ+

1xψ
−
1x. (19b)

With these definitions, it is easy to see that ∆(ψ+
1 , ψ

−
1 ) and Γ(ψ+

1 , ψ
−
1 ) are related by:

∆(ψ+
1 , ψ

−
1 ) + Γ(ψ+

1 , ψ
−
1 ) = ψ+

1 ψ
−
1 (20)

whose derivative with respect to x is no more than the decoupling condition (6).
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Hence, through the singular manifolds φ and σ defined by the eigenfunctions, the new
solution for system (2) can be explicitly expressed as

u[1] = u+ 2
(
φx
φ

− σx
σ

)
, (21a)

ω[1] = ω + 2
(
φy
φ

− σy
σ

)
. (21b)

3. Binary Darboux Transformation

Utilizing the powerful Darboux transformation, the procedure for recursively generating
explicit solutions of system (2) will be presented as shown in [24] and [25]. In principle,
by use of the obtained auto-Bäcklund transformation step by step, a series of analytic
solutions for system (2) can be generated. However, it is very difficult to carry out the
iterative process, because the aforementioned transformation only consists of the potential
transformation and does not contain the eigenfunction transformation. Thus, in this section,
we will demonstrate in detail how to construct the binary Darboux transformation, which
involves both the potential and eigenfunction transformations.

In the previous section, we proved that a solution (u[1], ω[1]) of nonisospectral KP has
two Lax pairs. If the eigenfunctions are ψ[1]+ and ψ[1]−, then the Lax pairs are:

ψ[1]+y =ψ[1]+xx + u[1]ψ[1]+, (22a)

4ψ[1]+t = − y
[
4ψ[1]+xxx + 6u[1]ψ[1]+x + 3(u[1]x + ω[1])ψ[1]+

]
− 2x(ψ[1]+xx + u[1]ψ[1]+) − 2ψ[1]+x − ω[1]ψ[1]+, (22b)

ψ[1]−y = − ψ[1]−xx + u[1]ψ[1]−, (23a)

4ψ[1]−t = − y
[
4ψ[1]−xxx + 6u[1]ψ[1]−x + 3(u[1]x + ω[1])ψ[1]−

]
+ 2x(ψ[1]−xx − u[1]ψ[1]−) − 2ψ[1]−x − ω[1]ψ[1]−, (23b)

where the Lax pairs (22) and (23) together with system (2) can also be considered to be
a new coupled nonlinear system of PDEs for u[1], ω[1], ψ[1]+ and ψ[1]−. Accordingly, the
GSMM can be applied to the Lax pairs themselves [7, 8]. It should be possible to expand
ψ[1]+ and ψ[1]− in terms of truncated Painlevé series, such as

ψ[1]+ = ψ+
2 +

M

φ
+
P

σ
, (24a)

ψ[1]− = ψ−
2 +

Q

φ
+
N

σ
, (24b)

where ψ+
2 and ψ−

2 satisfy the Lax pairs (15) and (16), respectively.
Substituting (21) and (24) into (22) and (23) and equating to zero the coefficients of

φ−i and σ−i (i = 1, 2, 3), leads to

M = −ψ+
1 ∆(ψ+

2 , ψ
−
1 ), N = −ψ−

1 Γ(ψ+
1 , ψ

−
2 ), P = 0 Q = 0, (25)
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where (ψ+
1 , ψ

+
2 ) and (ψ−

1 , ψ
−
2 ) are two eigenfunctions of (15) and (16), respectively, with

which the singular manifolds are constructed through (18). ∆(ψ+
2 and Γ(ψ+

1 , ψ
−
2 ) have been

defined as expressions (19). From (21) and (24), the Binary Darboux transformation for the
Lax pairs (15) and (16) is

u[1] = u+ 2
{
ln
[
∆(ψ+

1 , ψ
−
1 )

Γ(ψ+
1 , ψ

−
1 )

]}
x

, (26a)

ω[1] = ω + 2
{
ln
[
∆(ψ+

1 , ψ
−
1 )

Γ(ψ+
1 , ψ

−
1 )

]}
y

, (26b)

ψ[1]+ = ψ+
2 − ψ+

1

∆(ψ+
2 , ψ

−
1 )

∆(ψ+
1 , ψ

−
1 )
, (26c)

ψ[1]− = ψ−
2 − ψ−

1

Γ(ψ+
1 , ψ

−
2 )

Γ(ψ+
1 , ψ

−
1 )
, (26d)

which can transform the Lax pairs (15) and (16) into (22) and (23).

4. Nth Iterated Transformation Formula in the Form of Grammian

According to the Binary Darboux transformation (26), we will construct the Nth iterated
Grammian solution for system (2). Taking u = ω = 0 as the seed solution for system (2)
and substituting it into Lax pairs (15) and (16), we can easily get the solutions for ψ+

i and
ψ−
i (i = 1, 2, . . . , N)

ψ+
i = fi(t)eki(t)x+k2

i (t)y, ψ−
i = gi(t)eli(t)x−l

2
i (t)y, (27)

where

fi(t) =
ai

t+ bi
, ki(t) =

2
t+ bi

, gi(t) = ci(t+ di), li(t) = − 2
t+ di

,

with ai, bi, ci and di (i = 1, 2, 3, 4) as arbitrary constants. Utilizing the system (19), we can
obtain

∆(ψ+
i , ψ

−
j ) = δij +

ki(t)
ki(t) + lj(t)

ψ+
i ψ

−
j , Γ(ψ+

i , ψ
−
j ) = −δij +

lj(t)
ki(t) + lj(t)

ψ+
i ψ

−
j , (28)

with δij (i, j = 1, 2, . . . , N) as arbitrary constants.

4.1. First iterated solution

With expressions (26), we can obtain the 1st iterated solution

u[1] = u+ 2
{
ln
[
Θ1

Ξ1

]}
x

, (29a)

ω[1] = ω + 2
{
ln
[
Θ1

Ξ1

]}
y

, (29b)
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where Θ1 = φ = ∆(ψ+
1 , ψ

−
1 ), Ξ1 = Γ(ψ+

1 , ψ
−
1 ). From Eqs. (27) and (28), we can further

obtain

u[1] = 2
{
ln
[

(b21 − b1d1 + b1t− d1t)δ11 − a1c1(d2
1 + 2d1t+ t2)eξ1

(b1d1 − b21 − b1t+ d1t)δ11 + a1c1(b1d1 + b1t+ d1t+ t2)eξ1

]}
x

, (30a)

ω[1] = 2
{
ln
[

(b21 − b1d1 + b1t− d1t)δ11 − a1c1(d2
1 + 2d1t+ t2)eξ1

(b1d1 − b21 − b1t+ d1t)δ11 + a1c1(b1d1 + b1t+ d1t+ t2)eξ1

]}
y

, (30b)

where

ξ1 =
2 xt2d1 + 2 xtd1

2 − 2 xb1t2 + 2 xb1d1
2 + 8 ytd1 + 4 yd1

2 − 2 xb12t− 2 xb12d1 − 8 ytb1 − 4 yb12

(t+ b1)2(t+ d1)2
.

It is mentioned that the one-soliton solution in [24] (i.e. solution (2.31) there) is a special
case of expression (30a). The graph of u (30a) and ω (30b) are plotted in Fig. 1.

The solution (30a,b) is singular for some values of time. In particular for t = −b1 and
t = −d1, the equality b1d1 − b21 − b1t + d1t = 0 is hold. Then the denominators of the
solution (30a, b) are 0. This means that the solution (30a,b) is a localized solution and
t = −b1, t = −d1 are the singularities of the solution (30a,b).

4.2. Second iterated solution

The double singular manifolds φ[1] and σ[1] for new solution u[1] and ω[1] can be con-
structed by the eigenfunctions ψ[1]+ and ψ[1]−, namely, φ[1] = ∆(ψ[1]+, ψ[1]−) and
σ[1] = Γ(ψ[1]+, ψ[1]−) with

φ[1]x = ψ[1]+x ψ[1]−, φ[1]t = ψ[1]+t ψ[1]− +
H[1]

4
ψ[1]+x ψ[1]−x ,

φ[1]y = ψ[1]+y ψ[1]− − ψ[1]+x ψ[1]−x , (31a)

σ[1]x = ψ[1]+ψ[1]−x , σ[1]t = ψ[1]+ψ[1]−t − H[1]
4

ψ[1]+x ψ[1]−x ,

σ[1]y = ψ[1]+ψ−
y + ψ[1]+x ψ[1]−x , (31b)
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Fig. 1. Plots of solution (30a) and (30b) with branch for parameters a1 = 0.5, b1 = 1, c1 = 1, d1 = 3,
k1 = −3, l1 = 2, δ11 = 9 and t = 1.
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where

H[1]x +

(
ψ[1]+1y
ψ[1]+1x

− ψ[1]−1y
ψ[1]−1x

)
H[1] − 4

(
ψ[1]−1t
ψ[1]−1x

− ψ[1]+1t
ψ[1]+1x

)
= 0,

with ψ[1]+1t = −y[ψ[1]+1xxx+ 3
2uψ[1]+1x− 3

4(ux+ω)ψ[1]+1 ]− 1
2x(ψ[1]+1xx+ 1

4uψ[1]+1 )− 1
2ψ[1]+1x−

1
4ωψ[1]+1 and ψ[1]−1t = −y[ψ[1]−1xxx + 3

2uψ[1]−1x − 3
4 (ux +ω)ψ[1]−1 ] + 1

2x(ψ[1]−1xx − 1
4uψ[1]−1 )−

1
2ψ[1]−1x − 1

4ωψ[1]−1 . Similarly, Eqs. (30) can also be interpreted as a nonlinear system
for φ[1], σ[1], ψ[1]+ and ψ[1]−, and then the two singular manifolds φ[1] and σ[1] can be
expanded in terms of the Painlevé truncated expansions

φ[1] = φ2 +
M ′

φ
+
P ′

σ
, (32a)

σ[1] = σ2 +
Q′

φ
+
N ′

σ
, (32b)

where φ2 and σ[2] are the double singular manifolds for (u, ω) determined by φ[2] =
∆(ψ[2]+, ψ[2]−) and σ[2] = Γ(ψ[2]+, ψ[2]−) with ψ[2]+ and ψ[2]− satisfying the Lax
pairs (15) and (16).

Substituting (24) and (32) into (31), we have

M ′ = −∆(ψ+
2 , ψ

−
1 )∆(ψ+

1 , ψ
−
2 ), N ′ = −Γ(ψ+

2 , ψ
−
1 )Γ(ψ+

1 , ψ
−
2 ), P ′ = 0, Q′ = 0.

(33)

Consequently, iterating the Darboux transformation once again gives rise to the 2nd iterated
solution for system (2)

u[2] = u[1] + 2
(
φ[1]x
φ[1]

− σ[1]x
σ[1]

)
= u+ 2

{
ln
[
Θ2

Ξ2

]}
x

, (34a)

ω[2] = ω[1] + 2
(
φ[1]y
φ[1]

− σ[1]y
σ[1]

)
= ω + 2

{
ln
[
Θ2

Ξ2

]}
y

, (34b)

where

Θ2 = φφ[1] = ∆(ψ+
1 , ψ

−
1 )∆(ψ+

2 , ψ
−
2 ) − ∆(ψ+

2 , ψ
−
1 )∆(ψ+

1 , ψ
−
2 ) =

∣∣∣∣∣
∆(ψ+

1 , ψ
−
1 ) ∆(ψ+

1 , ψ
−
2 )

∆(ψ+
2 , ψ

−
1 ) ∆(ψ+

2 , ψ
−
2 )

∣∣∣∣∣ ,

Ξ2 = σσ[1] = Γ(ψ+
1 , ψ

−
1 )Γ(ψ+

2 , ψ
−
2 ) − Γ(ψ+

2 , ψ
−
1 )Γ(ψ+

1 , ψ
−
2 ) =

∣∣∣∣∣
Γ(ψ+

1 , ψ
−
1 ) Γ(ψ+

1 , ψ
−
2 )

Γ(ψ+
2 , ψ

−
1 ) Γ(ψ+

2 , ψ
−
2 )

∣∣∣∣∣ .
In [25], a line soliton of Eq. (1) is obtained by bilinear method. The solution is

u =
2(ki + hi)2

(ki − t)2(hi + t)2
sech2Θ (35)

with

Θ =
(ki + hi)x

(ki − t)(hi + t)
+

2(ki + hi)(hi − ki + 2t)y
(ki − t)2(hi + t)2

+
i

2
(ξ0i + θ0

i − ln 2(ki + hi)),

where ki, hi, ξ0i , θ
0
i (i = 1, 2) are real constants. The solution (35) in [27] is singular for

some values of time. If t = ki and t = −hi, we have (ki − t)2(hi + t)2 = 0. Then the
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Fig. 2. (a) and (b) are the solutions of Eq. (1) by bilinear method [25] with Eq. (35). (c) and (d) are plotted
of solution (34a) and (34b) with branch for parameters k1 = a1 = 2, k2 = a2 = 3, h1 = b1 = 2, h2 =
b2 = 3, ξ0

1 = c1 = 2, l1 = l2 = −1, ξ0
2 = c2 = −4, θ0

1 = d1 = −2, θ0
2 = d2 = −4, δ11 = 1, δ12 = 3, δ21 =

−(3/2), δ22 = 9 and t = 1.

denominators of the solution (35) are 0. This means that the solution (35) is a localized
solution and t = ki, t = −hi are the singularities of the solution (35).

The graph of (34a), (34b) and (35) are plotted in Fig. 2. In this figure, we can compare
the solution of Eq. (1) obtained by bilinear method with the solution obtained by our
method.

The solution (34a,b) is singular for some values of parameters ai, bi, ci, di, hi, ki, li,

ξ0i and δij (i, j = 1, 2). If ∆(ψ+
1 , ψ

−
1 )∆(ψ+

2 , ψ
−
2 )−∆(ψ+

2 , ψ
−
1 )∆(ψ+

1 , ψ
−
2 ) = 0 and

Γ(ψ+
1 , ψ

−
1 )Γ(ψ+

2 , ψ
−
2 )−,Γ(ψ+

2 , ψ
−
1 )Γ(ψ+

1 , ψ
−
2 ) = 0, the equations Θ2 = 0 and Ξ2 = 0 are

hold. This means that the solution (34a,b) is a localized solution and last two plots of
Fig. 2 shows an example for one choice of the parameters.

4.3. Nth iterated transformation formula

In a similar manner, iterating the Darboux transformation N times, we find that the Nth
iterated transformation formula can be expressed in the form of Grammian

u[N ] = u+ 2
{
ln
[
ΘN

ΞN

]}
x

, (36a)

ω[N ] = ω + 2
{
ln
[
ΘN

ΞN

]}
y

, (36b)
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where

ΘN = φφ[1] · · · φ[N ] =

∣∣∣∣∣∣∣∣∣∣∣

∆(ψ+
1 , ψ

−
1 ) ∆(ψ+

1 , ψ
−
2 ) · · · ∆(ψ+

1 , ψ
−
N )

∆(ψ+
2 , ψ

−
1 ) ∆(ψ+

2 , ψ
−
2 ) · · · ∆(ψ+

2 , ψ
−
N )

· · · · · · · · · · · ·
∆(ψ+

N , ψ
−
1 ) ∆(ψ+

N , ψ
−
2 ) · · · ∆(ψ+

N , ψ
−
N )

∣∣∣∣∣∣∣∣∣∣∣
,

ΞN = σσ[1] · · · σ[N ] =

∣∣∣∣∣∣∣∣∣∣

Γ(ψ+
1 , ψ

−
1 ) Γ(ψ+

1 , ψ
−
2 ) · · · Γ(ψ+

1 , ψ
−
N )

Γ(ψ+
2 , ψ

−
1 ) Γ(ψ+

2 , ψ
−
2 ) · · · Γ(ψ+

2 , ψ
−
N )

· · · · · · · · · · · ·
Γ(ψ+

N , ψ
−
1 ) Γ(ψ+

N , ψ
−
2 ) · · · Γ(ψ+

N , ψ
−
N )

∣∣∣∣∣∣∣∣∣∣
,

where (27) are the specific expression of ψ+
i and ψ−

j (i, j = 1, 2, . . . , N).

5. Conclusion

In [24], the Darboux transformation is not the real Darboux transformation for Eq. (1). In
this letter, we obtained a couple of Lax pairs of Eq. (1) with the method of GSMM. Based
on the two obtained Lax pairs and relationship between the manifolds and eigenfunctions,
we construct the auto-Bäcklund transformation, binary Darboux transformation and the
Nth iterated transformation formula in the form of Grammian for the nonisospectral KP
equation. And we obtained new solutions compared with Refs. [24, 25].
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[3] P. A. Clarkson, Painlevé analysis and the complete integrability of a generalized variable-
coefficient Kadomtsev–Petviashvili equation, IMA J. Appl. Math. 44 (1990) 27–53.
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