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In this paper, we study the µ-variant of the periodic b-equation and show that this equation can
be realized as a metric Euler equation on the Lie group Diff∞(S) if and only if b = 2 (for which it
becomes the µ-Camassa–Holm equation). In this case, the inertia operator generating the metric on
Diff∞(S) is given by L = µ−∂2

x. In contrast, the µ-Degasperis–Procesi equation (obtained for b = 3)
is not a metric Euler equation on Diff∞(S) for any regular inertia operator A ∈ Lsym

is (C∞(S)). The
paper generalizes some recent results of [13, 16, 24].
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For the mathematical modelling of fluids, the so-called family of b-equations

mt = −(mxu+ bmux), m = u− uxx, (1)

attracted a considerable amount of attention in recent years. Here, b stands for a real
parameter, [17]. Each of these equations models the unidirectional irrotational free surface
flow of a shallow layer of an inviscid fluid moving under the influence of gravity over a flat
bed. In this model u(t, x) represents the wave’s height at time t ≥ 0 and position x above
the flat bottom. If the wave profile is assumed to be periodic, x ∈ S � R/Z; otherwise
x ∈ R. For further details concerning the hydrodynamical relevance we refer to [10, 21, 22].
As shown in [11, 18, 20, 28], the b-equation is asymptotically integrable which is a necessary
condition for complete integrability, but only for b = 2 and b = 3 for which it becomes the
Camassa–Holm (CH) equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0

and the Degasperis–Procesi (DP) equation

ut − utxx + 4uux − 3uxuxx − uuxxx = 0
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respectively. The Cauchy problems for CH and DP have been studied in detail: for the CH,
there are global strong as well as global weak solutions. In addition, CH allows for finite time
blow-up solutions which can be interpreted as breaking waves and there are no shock waves
(see, e.g., [4–6]). Some recent global well-posedness results for strong and weak solutions,
precise blow-up scenarios and wave breaking for the DP are discussed in [14, 15, 30–32].

Besides the various common properties of the CH and the DP there are also significant
differences to report on, e.g., when studying geometric aspects of the family (1). The periodic
equation (1) reexpresses a geodesic flow on the group Diff∞(S) of smooth and orientation
preserving diffeomorphisms of the circle, cf. [13]. If b = 2, the geodesic flow corresponds to
the right-invariant metric induced by the inertia operator 1− ∂2

x whereas for b �= 2, Eq. (1)
can only be realized as a non-metric Euler equation, i.e., as geodesic flow with respect
to a linear connection which is not Riemannian in the sense that it is compatible with a
right-invariant metric, cf. [8, 9, 16, 24].

The idea of studying Euler’s equations of motion for perfect (i.e., incompressible, homo-
geneous and inviscid) fluids as a geodesic flow on a certain diffeomorphism group goes back
to [1, 12] and in a recent work [13], Escher and Kolev show that the theory is also valid for
the general b-equation.

In this paper, we are interested in the following variant of the periodic family (1). Let
µ(u) =

∫
S
u(t, x) dx and m = µ(u) − uxx in (1) to obtain the family of µ-b-equations,

cf. [27]. The study of the µ-variant of (1) is motivated by the following key observation:
Letting m = −∂2

xu, Eq. (1) for b = 2 becomes the Hunter–Saxton (HS) equation, cf. [19],
which possesses various interesting geometric properties, cf. [25, 26], whereas the choice
m = (1 − ∂2

x)u leads to the CH as explained above. In the search for integrable equations
that are obtained by a perturbation of −∂2

x, the µ-b-equation has been introduced and it
could be shown that it behaves quite similarly to the b-equation; cf. [27] where the authors
discuss local and global well-posedness as well as finite time blow-up and peakons. Peakons
are peculiar wave forms: they are travelling wave solutions which are smooth except at their
crests; the lateral tangents exist, are symmetric but different. Such wave forms are known
to characterize the steady water waves of greatest height, [3, 7, 29], and were first shown
to arise for the CH in [2].

The goal of this paper is to extend the work done in [16] to the family of µ-b-equations.
Our main result is that the periodic µ-b-equation can be realized as a metric Euler equation
on Diff∞(S) if and only if b = 2, for which it becomes the µCH equation. The corresponding
regular inertia operator is µ− ∂2

x. Before we give a proof, we begin with some introductory
remarks about Euler equations on Diff∞(S). In a first step, we comment on the operator
µ− ∂2

x.

Lemma 1. The bilinear map

〈·, ·〉µ : C∞(S) × C∞(S) → R, 〈u, v〉µ = µ(u)µ(v) +
∫

S

ux(x)vx(x) dx

defines an inner product on C∞(S).

Proof. Clearly, 〈·, ·〉µ is a symmetric bilinear form and 〈u, u〉µ ≥ 0. If u ∈ C∞(S) satisfies
〈u, u〉µ = 0, then ux = 0 on S and hence u is constant. The fact that µ(u) = 0 implies
u = 0.
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We obtain a right-invariant metric on the Lie group G = Diff∞(S) by defining the inner
product 〈·, ·〉µ on the Lie algebra g � Vect∞(S) � C∞(S) of smooth vector fields on S and
transporting 〈·, ·〉µ to any tangent space of G by using right translations, i.e., if Rϕ : G→ G

denotes the map sending ψ to ψ ◦ ϕ, then

〈u, v〉µ;ϕ =
〈
DϕRϕ−1u,DϕRϕ−1v

〉
µ
,

for all u, v ∈ TϕG. Observe that 〈·, ·〉µ can be expressed in terms of the symmetric linear
operator L : g → g′ defined by L = µ− ∂2

x, i.e.,

〈u, v〉µ = 〈Lu, v〉 = 〈Lv, u〉 , u, v ∈ C∞(S),

where 〈·, ·〉 denotes the duality pairing on g′ × g.

Definition 2. Each symmetric isomorphism A : g → g′ is called an inertia operator on G.
The corresponding right-invariant metric on G induced by A is denoted by ρA.

Let A be an inertia operator on G. We denote the Lie bracket on g by [·, ·] and write
(adu)∗ for the adjoint with respect to ρA of the natural action of g on itself given by
adu : g → g, v 	→ [u, v]. Let

B(u, v) =
1
2

[(adu)∗v + (adv)∗u] .

We define a right-invariant linear connection on G via

∇uv =
1
2

[u, v] +B(u, v), u, v ∈ C∞(S). (2)

As explained in [13, 16], we have the following theorem.

Theorem 3. A smooth curve g(t) on the Lie group G = Diff∞(S) is a geodesic for the
right-invariant linear connection defined by (2) if and only if its Eulerian velocity u(t) =
Dg(t)Rg−1(t)g

′(t) satisfies the Euler equation

ut = −B(u, u). (3)

Observe that the topological dual space of Vect∞(S) � C∞(S) is given by the distribu-
tions Vect′(S) on S. In order to get a convenient representation of the Christoffel operator
B we restrict ourselves to Vect∗(S), the set of all regular distributions which can be rep-
resented by smooth densities, i.e., T ∈ Vect∗(S) if and only if there is a σ ∈ C∞(S) such
that

T (ϕ) =
∫

S

σ(x)ϕ(x) dx, ∀ϕ ∈ C∞(S).

By means of the Riesz representation theorem we may identify Vect∗(S) � C∞(S). This
motivates the following definition.

Definition 4. Let Lsym
is (C∞(S)) denote the set of all continuous isomorphisms on C∞(S)

which are symmetric with respect to the L2 inner product. Each A ∈ Lsym
is (C∞(S)) is called

a regular inertia operator on Diff∞(S).

The following lemma establishes that the operator L belongs to the above defined class
of regular inertia operators.
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Lemma 5. The operator L is a regular inertia operator on Diff∞(S).

Proof. One checks that applying L to
(

1
2
x2 − 1

2
x+

13
12

)∫ 1

0
u(a) da+

(
x− 1

2

)∫ 1

0

∫ a

0
u(b) dbda

−
∫ x

0

∫ a

0
u(b) dbda+

∫ 1

0

∫ a

0

∫ b

0
u(c) dcdbda

gives back the function u. It is easy to see that if u ∈ C∞(S), then its pre-image also belongs
to C∞(S). Assume that Lu = 0 for u ∈ C∞(S). We thus can find constants c, d ∈ R such
that u = 1

2µ(u)x2 + cx + d. Since u is periodic, c = 0 and µ(u) = 0 and thus also d = 0.
Clearly, L : C∞(S) → C∞(S) is bicontinuous.

A proof of the following theorem can be found in [16].

Theorem 6. Given A ∈ Lsym
is (C∞(S)), the Christoffel operator B = 1

2 [(ad∗
u)v+(ad∗

v)u] has
the form

B(u, v) =
1
2
A−1[2(Au)vx + 2(Av)ux + u(Av)x + v(Au)x],

for all u, v ∈ C∞(S).

It may be instructive to discuss the following paradigmatic examples.

Example 7. Let λ ∈ [0, 1] and let A be the inertia operator for the equation mt = −(mxu+
2uxm).

(1) The choice A = −∂2
x yields B(u, u) = −A−1(2uxuxx + uuxxx) and ut = −B(u, u) is the

Hunter–Saxton equation

utxx + 2uxuxx + uuxxx = 0.

(2) We choose A = 1 − λ∂2
x. If λ = 0, the equation mt = −(mxu + 2uxm) becomes the

periodic inviscid Burgers equation ut +B(u, u) = ut + 3uux = 0. For λ �= 0, we obtain

ut +B(u, u) = ut + 3uux − λ(2uxuxx + uuxxx + utxx) = 0,

a 1-parameter family of Camassa–Holm equations.
(3) Choosing A = µ− ∂2

x, we arrive at the µCH equation

µ(ut) − utxx + 2µ(u)ux = 2uxuxx + uuxxx,

which is also called µHS in the literature, cf. [23].

Each regular inertia operator induces a metric Euler equation on Diff∞(S). We now
consider the question for which b ∈ R there is a regular inertia operator such that the
µ-b-equation is the corresponding Euler equation on Diff∞(S). Example 7 shows that, for
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b = 2, the operator L ∈ Lsym
is (C∞(S)) induces the µCH. Our goal is to show that this works

only for b = 2, and our main theorem reads as follows.

Theorem 8. Let b ∈ R be given and suppose that there is a regular inertia operator A ∈
Lsym

is (C∞(S)) such that the µ-b-equation

mt = −(mxu+ bmux), m = µ(u) − uxx,

is the Euler equation on Diff∞(S) with respect to ρA. Then b = 2 and A = L.

Proof. We assume that, for given b ∈ R and A ∈ Lsym
is (C∞(S)), the µ-b-equation is the

Euler equation on the circle diffeomorphisms with respect to ρA. Then

ut = −A−1((Au)xu+ 2(Au)ux)

and the µ-b-equation can be written as

(Lu)t = −((Lu)xu+ b(Lu)ux).

Using that (Lu)t = Lut and resolving both equations with respect to ut we get that

A−1 (2(Au)ux + u(Au)x) = L−1 (b(Lu)ux + u(Lu)x) , (4)

for u ∈ C∞(S). Denote by 1 the constant function with value 1. If we set u = 1 in (4),
then A−1(1(A1)x) = 0 and hence (A1)x = 0, i.e., A1 = c1. Scaling (4) shows that we may
assume c = 1. Replacing u by u + λ in (4) and scaling with λ−1, we get on the left-hand
side

1
λ
A−1

(
2(A(u+ λ))(u+ λ)x + (u+ λ)(A(u + λ))x

)

=
1
λ
A−1

(
2((Au) + λ)ux + (u+ λ)(Au)x

)

= A−1

(
2(Au)ux + u(Au)x

λ
+ 2ux + (Au)x

)

→ A−1(2ux + (Au)x), λ→ ∞,

and a similar computation for the right-hand side gives

1
λ
L−1

(
b(L(u+ λ))(u+ λ)x + (u+ λ)(L(u+ λ))x

)

→ L−1(bux + (Lu)x), λ→ ∞.

We obtain

A−1 (2ux + (Au)x) = L−1(bux + (Lu)x). (5)

We now consider the Fourier basis functions un = einx for n ∈ 2πZ\{0} and have Lun =
n2un and

L−1(b(un)x + (Lun)x) = iαnun, αn =
b

n
+ n.
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Next, we apply A to (5) with u = un and see that

2inun + (Aun)x = iαn(Aun).

Therefore vn := Aun solves the ordinary differential equation

v′ − iαnv = −2inun. (6)

If b = 0, then αn = n and hence the general solution of (6) is

v(x) = (c− 2inx)un, c ∈ R,

which is not periodic for any c ∈ R. Hence b �= 0 and there are numbers γn so that

vn = Aun = γne
iαnx + βnun, βn =

2
b
n2.

We first discuss the case γn = 0 for all n and show that γp �= 0 for some p ∈ 2πZ\{0} is
not possible. If all γn vanish, then Aun = βnun and A is a Fourier multiplication operator;
in particular A commutes with L. Therefore (4) with u = un is equivalent to

L(2(Aun)(un)x + un(Aun)x) = A(b(Lun)(un)x + un(Lun)x)

and by direct computation

12in3βnu2n = i(b+ 1)n3β2nu2n.

Inserting βn = 2n2/b we see that b = 2 and βn = n2. Therefore A = L. Assume that there
is p ∈ 2πZ\{0} with γp �= 0. Since vp = Aup is periodic, αp ∈ 2πZ and hence b = kp for
some k ∈ 2πZ\{0}. Let αp = m. If m = p, then b = 0 which is impossible. We thus have
〈um, up〉 = 0 and

〈Aup, um〉 =
〈
γpe

imx, um

〉
= γp.

The symmetry of A yields

γp = 〈Aup, um〉 = 〈up, Aum〉 = γm

〈
up, e

iαmx
〉
.

Since γp �= 0, γm is non-zero and periodicity implies αm ∈ 2πZ. More precisely, αm = p

since otherwise
〈
up, e

iαmx
〉

= 0 = γp. Using b = kp and the definition of αp, we see that
m = αp = k + p. Furthermore,

p(k + p) = αm(k + p) = αk+p(k + p) = kp+ (k + p)2

and hence 0 = k2 + 2pk. Since k �= 0, it follows that k = −2p and hence b = −2p2. We get
αp = −p and observe that γn = 0 for all n /∈ {p,−p}, since otherwise repeating the above
calculations would yield b = −2n2 contradicting b = −2p2. Inserting u = up in (4) shows
that

ipγp1− 3ip
β2p

u2p = ip3(b+ 1)
u2p

4p2
;

here we have used that Aup = γp/up + βpup, βp = −1 and A−1u2p = u2p/β2p, since 2p
does not coincide with ±p and hence γ2p = 0. It follows that pγp = 0 in contradiction to
p, γp �= 0.



March 25, 2011 14:49 WSPC/1402-9251 259-JNMP S1402925111001155

The Periodic µ-b-Equation and Euler Equations on the Circle 7

Corollary 9. The µDP equation on the circle

mt = −(mxu+ 3mux), m = µ(u) − uxx,

cannot be realized as a metric Euler equation for any A ∈ Lsym
is (C∞(S)).
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