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This paper studies structures of the 3-Lie algebra M realized by the general linear Lie algebra
gl(n, C). We show that M has only one nonzero proper ideal. We then give explicit expressions of
both derivations and inner derivations of M . Finally, we investigate substructures of the (inner)
derivation algebra of M .
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1. Introduction

Derivations appear in many areas of mathematics. The derivation of an algebra is itself a
significant object of study, a useful tool in constructing new algebraic structures and an
important bridge relating algebras to geometries. For example, let (A, ◦) be a commutative
associative algebra and D a derivation of A. Then A defines a left-symmetric algebra (A, ∗)
by x ∗ y = x ◦ D(y) and A defines a Lie algebra (A, [, ]) in which the bracket operation
[x, y] = x ◦D(y)− y ◦D(x) for all x, y ∈ A (see [1]). Also, from n commutative derivations
D1, . . . ,Dn of (A, ◦), we can obtain an n-Lie algebra by the n-ary operation [x1, . . . , xn] =
det(cij), where x1, . . . , xn ∈ A, cij = Di(xj), 1 ≤ i, j ≤ n (see [2]).

‡Project partially supported by NSF(10871192) of China and NSF(A2010000194) of Hebei Province, China.
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An n-Lie algebra is a vector space endowed with an n-ary skew-symmetric multiplication
satisfying the n-Jacobi identity (see [1] for more details):

[[x1, . . . , xn], y2, . . . , yn] =
n∑

i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn]. (1.1)

A lot of evidence shows that n-Lie algebras are useful in many fields in mathematics and
mathematical physics. Indeed, motivated by some problems of quark dynamics, Nambu
[3] introduces a ternary generalization of Hamiltonian dynamics by means of the ternary
Poisson bracket

[f1, f2, f3] = det
(

∂fi

∂xj

)
.

This identity satisfies (1.1). Takhtajan describes a theory of n-Poisson manifolds systemat-
ically [4]. From the work of Bagger and Lambert ([5–7]) and Gustavsson [8] one sees that
the generalized Jacobi identity for 3-Lie algebras is essential in studying supersymmetry in
superconformal fields. Their work stimulates the interest of researchers in mathematics and
mathematical physics on n-Lie algebras [9–11].

There is a need, either from pure mathematics or physics point of view, to construct
new n-Lie algebras and investigate their structures and derivations. However, it is difficult
in general to deal with the n-ary (n ≥ 3) multiplication in n-Lie algebras. So it is natural
to construct n-Lie algebras from well-known existing algebras, which leads to the so-called
“realization” theory. The authors of [12] give some realizations of 3-Lie algebras, showing
that every m-dimensional 3-Lie algebra with m ≤ 5 can be realized by existing algebras.
They also investigate structures of the 3-Lie algebra gl(n, C)tr , given in [13], realized by the
general linear Lie algebra gl(n, C), where C is the field of complex numbers. They conclude
that every non-abelian realization gl(n, C)f for f in the dual space of gl(n, C) is isomorphic
to gl(n, C)tr .

In the present paper we are interested in the 3-Lie algebra gl(n, C)tr , which will be
denoted by M for simplicity. We show some preliminary results about M in Sec. 2. We then
give explicit expressions of inner derivations of M and describe the structure of the inner
derivation algebra of M in Sec. 3. Finally, we investigate the structure of the derivation
algebra of M in Sec. 4.

2. The Realization of a 3-Lie Algebra

The ternary operation of M is given by

[x, y, z] = Tr(x)[y, z] + Tr(y)[z, x] + Tr(z)[x, y], for all x, y, z ∈ M. (2.1)

The subalgebra [M,M,M ] in M is called the derived algebra of M and will be denoted by
M1. Then

M1 = {x ∈ M |Tr(x) = 0}.

Choose a basis {ei,j , et,t − et+1,t+1,
1
ne|1 ≤ i �= j ≤ n, 1 ≤ t ≤ n − 1} of M , where ei,j are

matrix units with 1 at the (i, j)-entry and 0 otherwise, and e is the unit matrix with 1 at
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the (i, i)-entry for i = 1, . . . , n and 0 elsewhere. It follows from (2.1) that

ei,j =
1
n

[e, ei,k, ek,j], ei,i − ej,j =
1
n

[e, ei,j, ej,i], for 1 ≤ i �= j �= k �= i ≤ n.

It is routine to check that

M = M1 ⊕ Ce (as a direct sum of vector spaces).

To study the structure of M , we arrange the above basis elements in the following order.

e1,1 − e2,2, e1,2, . . . , e1,n, e2,1, e2,2 − e3,3, e2,3, . . . , e2,n, . . . ,

et,1, et,2, . . . , et,t−1, et,t − et+1,t+1, et,t+1, . . . , et,n, . . . ,

en−1,1, en−1,2, . . . , en−1,n−2, en−1,n−1 − en,n, en−1,n, en,1, en,2, . . . , en,n−1,
1
n

e

for 1 ≤ t ≤ n − 1. For simplicity, we denote them by ei, respectively, where i = 1, . . . , n2.

In other words, we write e1 = e1,1 − e2,2, e2 = e1,2, . . . , and en2 = 1
n e. Then

Tr(en2) = 1, Tr(ei) = 0 for 1 ≤ i ≤ n2 − 1, and

[en2 , ei, ej ] = [ei, ej ] and [ei, ej , ek] = 0 for 1 ≤ i, j, k ≤ n2 − 1. (2.2)

Therefore, the derived algebra M1 =
∑n2−1

i=1 Cei. Clearly, the dimension of M1 is n2 − 1.

Theorem 2.1. The derived algebra M1 is the only nonzero proper ideal of M and the
center of M is zero.

Proof. If I is a nonzero proper ideal of M , then [en2 , I,M ] = [I, gl(n, C)] ⊆ I, that is I

is a proper ideal of gl(n, C). It follows that I equals the derived algebra of gl(n, C), and
hence I equals M1 as vector spaces. Next, if z is in the center of M , then [z, x, en2 ] = 0 for
all x ∈ M . We have [z, x] = 0 for all x ∈ gl(n, C), and hence z = αen2 for some α ∈ C. It
follows from (2.2) that z = 0.

An ideal I of a 3-Lie algebra L is 2-solvable, if there is an integer r ≥ 0 such that
I(r,2) = 0, where I(0,2) = I and inductively I(s,2) = [I(s−1,2), I(s−1,2), I] for s > 0. If L

has no nonzero 2-solvable ideals, then L is called 2-semisimple. The 3-Lie algebra M is
2-semisimple. See [12] for more details.

3. Inner Derivation Algebra of M

We now study the inner derivation algebra of M . Let x, y ∈ M . The left multiplication
operator ad(x, y) of M is defined by ad(x, y)(z) = [x, y, z] for all z ∈ M. Let ad(M) be the
Lie algebra generated by all left multiplication operators ad(x, y) for x, y ∈ M . A simple
calculation yields that

ad(en2 , ei)(ek) = [ei, ek], 1 ≤ i, k ≤ n2 − 1.

ad(ei, ej)(ek) =




0, 1 ≤ i, j, k ≤ n2 − 1,

[ei, ej ], k = n2.
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We then have, for 1 ≤ i, j, k, l < n2 − 1,

[ad(ei, ej), ad(ek, el)] = 0 and

[ad(en2 , ei), ad(ek, el)] = ad([ei, ek], el) + ad(ek, [ei, el]).
(3.1)

Let S(M) be the set of left multiplication operators of the form ad(en2 , x) for x ∈ M.

Then S(M) is a subalgebra of ad(M). We obtain the following result.

Theorem 3.1. The Lie algebra S(M) is isomorphic to the simple Lie algebra ad(gl(n, C)).

Proof. Define σ : S(M) → ad(gl(n, C)) by

σ(ad(en2 , x)) = ad(x) for all x ∈ M,

where ad(x) is the left multiplication operator of gl(n, C). Then σ(ad(en2 , x)) = 0 if and
only if x is in the center of the general linear Lie algebra gl(n, C). It follows that σ is
bijective. Since

[ad(en2 , x), ad(en2 , y)] = ad(en2 , [en2 , x, y]) = ad(en2 , [x, y]) ∈ S(M),

we have σ([ad(en2 , x), ad(en2 , y)]) = ad([x, y]) = [σ(ad(en2 , x)), σ(ad(en2 , y))]. Therefore, σ

is an isomorphism.

Corollary 3.2. The Lie algebra S(M) is isomorphic to sl(n, C) and dimS(M) = n2 − 1.

Let A(M) be the subalgebra of ad(M) generated by {ad(ei, ej)|1 ≤ i, j ≤ n2 − 1}. Then
we have

[ad(en2 , x), ad(ei, ej)] = ad([en2 , x, ei], ej) + ad(ei, [en2 , x, ej ]) ∈ A(M), (3.2)

and [ad(ek, el), ad(ei, ej)] = 0 for 1 ≤ i, j, k, l ≤ n2 − 1. This leads to the following result.

Theorem 3.3. The inner derivation algebra of M is a direct sum of S(M) and A(M) (as
subalgebras, not ideals). Furthermore, A(M) is an abelian ideal and

[S(M), A(M)] = A(M).

Proof. The result follows from Theorem 3.1 and the identity (3.1).

We investigate the structures of S(M) and A(M). To this end, we need explicit matric
expressions of all inner derivations. From (2.1), the multiplication table of M with respect
to the basis e1, . . . , en2 is as follows:

[en2 , ej+n(i−1), ei+n(j−1)] = ei+n(i−1) + ei+1+ni + · · · + ej−1+n(j−2), 1 ≤ i < j ≤ n;
[en2 , ej+n(i−1), ei+n(j−1)] = −(ej+n(j−1) + ej+1+nj + · · · + ei−1+n(i−2)), 1 ≤ j < i ≤ n;
[en2 , ej+n(i−1), ek+n(j−1)] = ek+n(i−1), 1 ≤ i �= j �= k �= i ≤ n;
[en2 , ej+n(i−1), ei+n(s−1)] = −ej+n(s−1), 1 ≤ i �= j �= s �= i ≤ n;
[en2 , et+n(t−1), ek+n(t−1)] = ek+n(t−1), 1 ≤ t ≤ n − 1, 1 ≤ k ≤ n, k �= t, k �= t + 1;

[en2 , et+n(t−1), et+1+n(s−1)] = et+1+n(s−1), 1 ≤ t ≤ n − 1, 1 ≤ s ≤ n, s �= t, s �= t + 1;

[en2 , et+n(t−1), et+1+n(t−1)] = 2et+1+n(t−1), 1 ≤ t ≤ n − 1;
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[en2 , et+n(t−1), et+nt] = −2et+nt, 1 ≤ t ≤ n − 1;

[en2 , et+n(t−1), ek+nt] = −ek+nt, 1 ≤ t ≤ n − 1, 1 ≤ k ≤ n, k �= t, k �= t + 1;

[en2 , et+n(t−1), et+n(s−1)] = −et+n(s−1), 1 ≤ t ≤ n − 1, 1 ≤ s ≤ n, s �= t, s �= t + 1;

[en2 , ej+n(i−1), ek+n(s−1)] = 0, 1 ≤ i �= j ≤ n, 1 ≤ s �= k ≤ n, j �= s, k �= i;

[en2 , et+n(t−1), ei+n(i−1)] = 0, 1 ≤ t < i ≤ n − 1.

[ei, ej , ek] = 0, 1 ≤ i �= j �= k �= i ≤ n2 − 1.

We compute the matrix forms, relative to the basis e1, . . . , en2 , of the generators

ad(en2 , et+n(t−1)), ad(en2 , ej+n(i−1)), ad(ej+n(i−1), et+n(t−1)),

ad(ej+n(i−1), ek+n(s−1)), ad(ep+n(p−1), eq+n(q−1)),

where 1 ≤ i, j, s, k,≤ n, i �= j, s �= k, 1 ≤ t ≤ n − 1, 1 ≤ p �= q ≤ n − 1. Suppose that the
matrix form of ad(x, y), for every x, y ∈ M , relative to the same basis is

B(x, y) =




B11 B12 · · · B1n

B21 B22 · · · B2n

· · · · · · · · · · · ·
Bn1 Bn2 · · · Bnn


 ,

where Bij is an n × n-matrix over C. Denote by Eij the matrix unit, of size n2, whose
(i, j)-entry is 1 and other entries are zero. We introduce

δ̄i,j =




0 if i = j;

1 if i �= j

to denote the dual Kronecker delta; it will be used below. We divide the entire argument
into five cases and obtain the following identities using the above multiplication table.

Case 1: For 1 ≤ t ≤ n − 1, let

ad(en2 , et+n(t−1))(e1, . . . , en2) = (e1, . . . , en2)B(en2 , et+n(t−1)).

Then

B(en2 , et+n(t−1)) = diag(B11, . . . , Btt , Bt+1,t+1, . . . , Bnn), (3.3)

where
Btt = diag(1, . . . , 1, 0, 2, 1, . . . , 1) whose (t + 1)-th position is 2,
Bt+1,t+1 = diag(−1, . . . ,−1,−2, 0,−1, . . . ,−1) whose t-th position is −2,
Bii = diag(0, . . . , 0,−1, 1, 0, . . . , 0) whose t-th position is −1, for 1 ≤ i ≤ n with

i �= t, t + 1.
Thus the matrix form of ad(en2 , et+n(t−1)) relative to the basis e1, . . . , en2 is

Γt =
n∑

j=1

(Et+1+(j−1)n,t+1+(j−1)n − Et+(j−1)n,t+(j−1)n

+Ej+n(t−1),j+n(t−1) − Ej+nt,j+nt). (3.4)
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Case 2: A similar discussion to the above shows that the matrix form of ad(en2 , ej+n(i−1))
for 1 ≤ i < j ≤ n under the basis e1, . . . , en2 is

Φj,i = Ej+n(i−1),i−1+n(i−2) − Ej+n(i−1),j−1+n(j−2) −
n−1∑

0≤k �=j−1

Ej+nk,i+nk

+
n∑

k=1

δ̄n2, k+n(j−1)Ek+n(i−1),k+n(j−1) +
j−1∑

k=i+1

Ek+n(k−1),i+n(j−1), (3.5)

where we agree that Ej+n(i−1),i−1+n(i−2) = 0 if i = 1.
Similarly, for 1 ≤ j < i ≤ n, the matrix form of ad(en2 , ej+n(i−1)) relative to the basis

e1, . . . , en2 is

Ψj,i = Ej+n(i−1),i−1+n(i−2) − Ej+n(i−1),j−1+n(j−2) −
n−1∑

0≤k �=j−1

δ̄n2, i+nkEj+nk,i+nk

+
n∑

1≤k �=i

Ek+n(i−1),k+n(j−1) −
i−1∑
k=j

Ek+n(k−1),i+n(j−1), (3.6)

where we agree that Ej+n(i−1),j−1+n(j−2) = 0 if j = 1.

Case 3: For 1 ≤ i �= j ≤ n and 1 ≤ s �= k ≤ n, by (2.2) and (3.2) the matrix form of
ad(ej+n(i−1), ek+n(s−1)) with respect to the basis e1, . . . , en2 is

B(ej+n(i−1), ek+n(s−1)) =




0, j �= s, i �= k;

Ek+n(i−1),n2 , j = s, i �= k;

−Ej+n(s−1),n2, j �= s, i = k;
j−1∑
r=i

Er+n(r−1),n2 , j = s > i = k;

−
i−1∑
p=j

Ep+n(p−1),n2, j = s < i = k.

(3.7)

Case 4: When 1 ≤ s �= k ≤ n and 1 ≤ t ≤ n−1, the matrix form of ad(ek+n(s−1), et+n(t−1))
relative to the basis e1, . . . , en2 is

B(ek+n(s−1), et+n(t−1)) =




0, t �= s, s − 1, k, k − 1;

−Ek+n(t−1),n2 , t = s, t �= k − 1;

−2Et+1+n(t−1),n2 , t = s, t = k − 1;

−Et+1+n(s−1),n2 , t �= s, t = k − 1;

2Et+nt,n2 , t = k, t = s − 1;

Ek+nt,n2, t �= k, t = s − 1;

Et+n(s−1),n2 , t = k, t �= s − 1.

(3.8)
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Case 5: If 1 ≤ p �= q ≤ n − 1, ad(ep+n(p−1), eq+n(q−1)) = 0.
Summarizing above discussions, we are now in a position to state the following results

about the structure of S(M) and A(M) in terms of elementary matrices of size n2.

Theorem 3.4. Let M be the 3-Lie algebra defined by (2.1). Then

S(M) =
∑

1≤i<j≤n

CΦj,i +
∑

1≤j<i≤n

CΨj,i +
n−1∑
t=1

CΓt.

Proof. By the multiplication table of M and the matrix forms above, the left multiplication
operators ad(en2 , ej+n(i−1)) and ad(en2 , et+n(t−1)) for 1 ≤ t ≤ n−1, 1 ≤ i �= j ≤ n are linear
independent. Furthermore, they form a basis of S(M). In other words,

S(M) =
∑

1≤i�=j≤n

C ad(en2 , ej+n(i−1)) +
n−1∑
t=1

C ad(en2 , et+n(t−1)).

The result of the theorem follows from the identities (3.4), (3.5), and (3.6).

Theorem 3.5. Let M be the 3-Lie algebra defined by (2.1). Then

A(M) =
n2−1∑
i=1

CEi,n2.

Proof. A direct (yet tedious) calculation yields that ad(e3+n, e1+2n), ad(e3, e2+2n),
ad(e1+n(i−1), ek) for 2 ≤ i �= k ≤ n, ad(e2, ek+n) and ad(e2+n(k−1), e1+n) for 3 ≤ k ≤ n,
and ad(ei+1+(i−1)n, ei+in) for 1 ≤ i ≤ n − 1 form a basis of A(M). We then have

A(M) = C ad(e3, e2+2n) + C ad(e3+n, e1+2n) +
∑

1≤i≤n−1

C ad(ei+1+(i−1)n, ei+in)

+
∑

2≤i�=k≤n

C ad(e1+n(i−1), ek) +
∑

3≤k≤n

(C ad(e2, ek+n) + C ad(e2+n(k−1), e1+n)).

In view of the identities (3.7) and (3.8), the theorem holds.

The following corollaries follow from Theorems 3.3, 3.4, and 3.5.

Corollary 3.6. The inner derivation algebra of M is the non-essential extension of S(M)
by A(M), and A(M) is an irreducible S(M)-module in the regular representation.

Corollary 3.7. Use the notation above we obtain that A(M) is an abelian ideal of ad(M)
and dim S(M) = dimA(M) and dim ad(M) = 2(n2 − 1).

Proof. By Theorem 3.5 A(M) is abelian. Theorem 3.4 indicates that dimS(M) = n2 −
1 and it can be seen from Theorem 3.5 that dimA(M) = n2 − 1. We then have that
dim ad(M) = 2(n2 − 1) by Theorem 3.3.
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4. Derivation Algebra of M

In this section we determine explicit expressions of derivations of M and describe its deriva-
tion algebra Der M . Let D be a derivation of M and

D(ei) =
n2∑
j=1

aj,iej , ai,j ∈ C, 1 ≤ i, j ≤ n2. (4.1)

Then the matrix form of D under the basis e1, . . . , en2 is D =
∑n2

i,j=1 ai,jEi,j . Note that
[ei, ej , ek] = 0 for 1 ≤ i, j, k ≤ n2 − 1. Also, there exist numbers bijs ∈ C such that
[en2 , ei, ej ] =

∑n2−1
s=1 bij

s es for 1 ≤ s ≤ n2 − 1. Then for 1 ≤ i, j, k ≤ n2 − 1 we have

[D(ei), ej , ek] + [ei,D(ej), ek] + [ei, ej ,D(ek)] = 0,

D([en2 , ei, ej ]) = [D(en2), ei, ej ] + [en2 ,D(ei), ej ] + [en2 , ei,D(ej)] =
n2−1∑
s=1

bij
s D(es).

Therefore, for 1 ≤ i, j, k ≤ n2 − 1,

an2,i[en2 , ej , ek] + an2,j[ei, en2 , ek] + an2,k[ei, ej , en2 ] = 0,

an2,n2[en2 , ei, ej ] +
n2∑

p=1

ap,i[en2 , ep, ej ] +
n2∑

p=1

ap,j[en2 , ei, ep] =
n2−1∑
s=1


bij

s

n2∑
p=1

ap,sep


 .

A rigorous calculation shows that the constraints on the coefficients in the identity (4.1)
are as follows. We omit its tedious details.



aj,i = aj+nk,i+kn, 1 ≤ i < j ≤ n, 1 ≤ k �= j − 1 ≤ n − 1;

aj,i = −ak+n(i−1),k+n(j−1), 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, k + n(j − 1) �= n2;

aj,i = −ak+n(k−1),i+n(j−1), i + 1 < j, i + 1 ≤ k ≤ j − 1;

aj,i = aj+nk,i+nk, 1 ≤ j < i ≤ n, 1 ≤ k �= j − 1 ≤ n − 1, i + nk �= n2;

aj,i = −ak+n(i−1),k+n(j−1), 1 ≤ j < i ≤ n, 1 ≤ k �= i ≤ n;

aj,i = ak+n(k−1),i+n(j−1), 1 ≤ j < i ≤ n, j ≤ k ≤ i − 1;

aj,i = −aj+n(i−1),i−1+n(i−2), 1 ≤ i �= j ≤ n, i �= 1;

aj,i = aj+n(i−1),j−1+n(j−2), 1 ≤ i �= j ≤ n, j �= 1;

ai,n2 = ki, 1 ≤ i ≤ n2 − 1, ki ∈ C;

an2,n2 = −at+n(t−1),t+n(t−1)

= −at+1+nt,t+1+nt, 1 ≤ t ≤ n − 2;

an2,n2 = −ai+n(j−1),i+n(j−1)

−aj+n(i−1),j+n(i−1)

+at+n(t−1),t+n(t−1), 1 ≤ i �= j ≤ n, 1 ≤ t ≤ n − 1;

ai,j = 0, otherwise.
(4.2)
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For convenience we introduce the following notation for 1 ≤ i < j ≤ n and j �= i + 1,

Υi,j = Ej+n(i−1),j+n(i−1) − Ei+n(j−1),i+n(j−1), (4.3)

Θ = En2,n2 −
n2−1∑
i=1

Ei,i. (4.4)

Theorem 4.1. Every derivation D of M is of the matrix form below with respect the basis
e1, . . . , en2 ,

D =an2,n2Θ +
∑

1≤i<j≤n

aj,iΦj,i +
∑

1≤j<i≤n

aj,iΨj,i +
n−1∑
t=1

at+1+n(t−1),t+1+n(t−1)Γt

+
∑

1≤i<j≤n,j �=i+1

aj+n(i−1),j+n(i−1)Υi,j +
n2−1∑
i=1

ai,n2Ei,n2.

Proof. It follows from the multiplication table of M that Υi,j,Θ, (1 ≤ i < j ≤ n) are
derivations of M . Furthermore, from the identities (3.3), (3.4), (3.5), (3.6), (3.7) and (3.8),
Φj,i(1 ≤ i < j ≤ n),Ψj,i(1 ≤ j < i ≤ n),Γt(1 ≤ t ≤ n − 1) and Ei,n2(1 ≤ i ≤ n2 − 1) are
derivations of M . In view of the constraint in (4.2) on the coefficients of each derivation of
M , we obtain that

Θ,

Φj,i, 1 ≤ i < j ≤ n;

Ψj,i, 1 ≤ j < i ≤ n;

Γt, 1 ≤ t ≤ n − 1;

Υi,j, 1 ≤ i < j ≤ n, j �= i + 1;

Ei,n2, 1 ≤ i ≤ n2 − 1,

form a basis of Der M . The completes the proof.

Let

T (M) =
∑

1≤i<j≤n,j �=i+1

CΥi,j ⊕ CΘ.

The following theorem describes the structure of the derivation algebra of M .

Theorem 4.2. As a direct sum of subalgebras,

Der(M) = S(M) ⊕ A(M) ⊕ T (M),

where [T (M), T (M)] = 0 and [T (M), A(M)] = A(M). Moreover, dim Der(M) = 5n2−3n
2 .

Proof. From the identities (4.3) and (4.4), we have [T (M), T (M)] = 0. By Theorem 3.5
and the identities (4.3) and (4.4) we obtain [T (M), A(M)] = A(M). The dimension of
Der(M) follows from Theorem 4.1.
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Corollary 4.3. The derivation algebra of M is the non-essential extension of the abelian
algebra T (M) by the inner derivation algebra ad(M).

Proof. This is the direct result of Theorem 4.2.
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