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In this paper, we study the periodic Hunter–Saxton equation with weak dissipation. We first estab-
lish the local existence of strong solutions, blow-up scenario and blow-up criteria of the equation.
Then, we investigate the blow-up rate for the blowing-up solutions to the equation. Finally, we
prove that the equation has global solutions.
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1. Introduction

Recently, Hunter and Saxton proposed the following nonlinear wave equation [8]

ψtt = c(ψ)[c(ψ)ψx]x,

where

c2(ψ) = α cos2 ψ + β sin2 ψ.

The term proportional to α describes the potential energy due to bending, and the term
proportional to β describes the potential energy due to splay. They showed that weakly
nonlinear unidirectional waves satisfying the above equation are described asymptotically
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by the equation

(ut + uux)x =
1
2
u2

x,

where u(t, x) describes the director field of a nematic liquid crystal, x is a space variable in
a reference frame moving with the linearized wave velocity, and t is a slow time variable [8].

The initial value problem for the Hunter–Saxton equation on the line (nonperiodic case)
was studied by Hunter and Saxton in [8]. Using the method of characteristics, they showed
that smooth solutions exist locally and break down in finite time [8]. The occurrence of
blow-up can be interpreted physically as the phenomenon by which waves that propagate
away from the perturbation “knock” the director field out of its unperturbed state [8].

The Hunter–Saxton equation also arises in a different physical context as the high-
frequency limit [6,9] of the Camassa–Holm equation — a model equation for shallow water
waves [2, 10] and a re-expression of the geodesic flow on the diffeomorphism group of the
circle [3] with a bi-Hamiltonian structure [7] which is completely integrable [5]. The Hunter–
Saxton equation has also a bi-Hamiltonian structure [8,12] and is completely integrable [1,9].

Yin studied the Cauchy problem of the periodic Hunter–Saxton in [13]. He proved the
local existence of strong solutions of the periodic Hunter–Saxton equation and showed that
all strong solutions except space-independent solutions blow up in finite time.

In this paper, we study the periodic Hunter–Saxton equation with weak dissipation

utxx + 2uxuxx + uuxxx + λuxx = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

(1.1)

where λuxx is the weakly dissipative term, λ > 0 is a constant.
We provide now the framework in which we shall reformulate problem (1.1). In order to

obtain an equation describing the evolution of u rather than that of uxx, we observe that

2uxuxx + uuxxx =
(
uuxx +

1
2
u2

x

)
x

.

Integrating both sides of Eq. (1.1) with respect to x, we obtain

utx + uuxx +

1
2
u2

x + λux = a(t), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

(1.2)

where a(t) = −1
2

∫
S
u2

x dx = −1
2e

−2λt
∫

S
u2

0,x dx (see Lemma 2.1 in the sequel). Then inte-
grating both sides of Eq. (1.2) with respect to x, we have


ut + uux + λu = ∂−1

x

(
1
2
u2

x + a(t)
)

+ h(t), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

(1.3)
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where ∂−1
x f(x) =

∫ x
0 f(x) dx and h(t) : [0,+∞) → R is an arbitrary continuous and bounded

function.
Our paper is organized as follows. In Sec. 2, we establish the local existence, blow-up

scenario and blow-up criteria of the initial value problem associated with Eq. (1.1). In Sec. 3,
we investigate the blow-up rate of blowing-up solutions to Eq. (1.1). In Sec. 4, we obtain
global existence of strong solutions to Eq. (1.1).

2. Local Existence and Blow-Up Scenario

In this section, we prove the local existence of Eq. (1.1) by Kato’s theory, give a precise
blow-up secnario of strong solutions and blow-up criteria for Eq. (1.1).

Consider the abstract quasi-linear evolution equation:

dv

dt
+A(v)v = f(t, v), t ≥ 0, v(0) = v0, (2.1)

where A(u) = u∂x, f(t, u) = ∂−1
x (1

2u
2
x + a(t)) + h(t) − λ.

By verifying that A(u) and f(t, u) satisfy the three conditions of Kato’s theorem [11],
we can obtain the following well-posedness result for Eq. (1.3).

Theorem 2.1. Given h(t) ∈ C([0,+∞); R) and bounded function, u0 ∈ Hr(S), r > 3
2 . Then

there exists a maximal T = T (λ, a(t), h(t), u0) > 0, and a unique solution u to Eq. (1.3),
such that

u = u(·, u0) ∈ C([0, T );Hr(S)) ∩ C1([0, T );Hr−1(S)).

Moreover, the solution depends continuously on the initial data, i.e. the mapping u0 →
u(·, u0) : Hr(S) → C([0, T );Hr(S))

⋂
C1([0, T );Hr−1(S)) is continuous and the maximal

time of existence T > 0 is independent of r.

For Eq. (1.1), we have the following local existence result:

Theorem 2.2. Given u0 ∈ Hr(S), r > 3
2 . Then there exist locally a family of solutions to

Eq. (1.1). Moreover, the maximal existence time T of each solution in the family can be
chosen independent of r.

We now prove the following lemma for blow-up scenario and blow-up criteria.

Lemma 2.1. If u0 ∈ Hr, r ≥ 3, as long as the solution u(t, x) to Eq. (1.1) given by
Theorem 2.2 exists, we have ∫

S

u2
x(t, x)dx = e−2λt

∫
S

u2
0,x(x)dx.

Moreover,

(i) 2λ = C1,

∫
S

u2dx ≤
∫

S

u2
0dx+ C1t,

(ii) 2λ < C1,

∫
S

u2dx ≤ e(−2λ+C1)t

∫
S

u2
0dx− C1

2λ− C1
,

(iii) 2λ > C1,

∫
S

u2dx ≤ e(−2λ+C1)t

(∫
S

u2
0dx+

C1

2λ− C1

)
,

where C1 =
∫ 1
0 u

2
0,xdx+ supt∈[0,+∞) |h(t)|.
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Proof. Multiplying Eq. (1.1) by u and integrating with respect to x, in view of the peri-
odicity of u, we get

−1
2
d

dt

∫
S

u2
xdx = −

∫
S

utxux dx =
∫

S

utxxu dx

= −λ
∫

S

uuxx dx−
∫

S

2uxuxxu dx−
∫

S

u2uxxxdx

= λ

∫
S

u2
x dx−

∫
S

2uxuxxu dx+
∫

S

2uxuxxu dx

= λ

∫
S

u2
x dx.

Thus, we have ∫
S

u2
x(t, x) dx = e−2λt

∫
S

u2
x(0, x) dx.

By a direct calculation, we get∣∣∣∣∂−1
x

(
1
2
u2

x + a(t)
)

+ h(t)
∣∣∣∣ ≤

∫ 1

0

∣∣∣∣12u2
x + a(t)

∣∣∣∣ dx+ |h(t)|

≤ 1
2

∫ 1

0
u2

xdx+ |a(t)| + |h(t)|

≤ 1
2

∫ 1

0
u2

xdx+
1
2
e−2λt

∫
S

u2
0,x dx+ |h(t)|

≤
∫ 1

0
u2

0,xdx+ sup
t∈[0,+∞)

|h(t)| ≡ C1, (2.2)

where C1 > 0.
Multiplying Eq. (1.3) by u and integrating with respect to x, in view of the periodicity

of u and (2.2), we get

1
2
d

dt

∫
S

u2dx =
∫

S

utu dx

= −λ
∫

S

u2 dx−
∫

S

uxu
2 dx+

∫
S

u

[
∂−1

x

(
1
2
u2

x + a(t)
)

+ h(t)
]
dx

= −λ
∫

S

u2 dx+
∫

S

u

[
∂−1

x

(
1
2
u2

x + a(t)
)

+ h(t)
]
dx

≤ −λ
∫

S

u2 dx+ C1

∫
S

|u| dx.

By the Cauchy–Schwarz inequality, we have

1
2
d

dt

∫
S

u2dx ≤
(
−λ+

C1

2

)∫
S

u2 dx+
C1

2
. (2.3)
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By Gronwall’s inequality, we get

(i) 2λ = C1,

∫
S

u2dx ≤
∫

S

u2
0dx+ C1t,

(ii) 2λ < C1,

∫
S

u2dx ≤ e(−2λ+C1)t

∫
S

u2
0dx− C1

2λ−C1
,

(iii) 2λ > C1,

∫
S

u2dx ≤ e(−2λ+C1)t

(∫
S

u2
0dx+

C1

2λ−C1

)
.

This completes the proof of Lemma 2.1.

By Lemma 2.1, we can prove the following precise blow-up scenario.

Theorem 2.3. Given u0 ∈ Hr(S), r > 3
2 , blow up of the strong solutions u = u(·, u0) to

Eq. (1.1) in finite time T < +∞ occurs if and only if

lim inf
t→T

{
inf
x∈S

ux(t, x)
}

= −∞.

Proof. Let T > 0 be the maximal time of existence of the solution u to (1.1) with initial
data u0 ∈ H3(S). By (1.1), we have

− d

dt

∫
S

u2
xxdx = −2

∫
S

utxxuxx dx

= 2
∫

S

uxx (λuxx + 2uxuxx + uuxxx)dx

= 2λ
∫

S

u2
xx dx+ 4

∫
S

uxu
2
xx dx+

∫
S

uuxxuxxxdx

= 2λ
∫

S

u2
xx dx+ 3

∫
S

uxu
2
xx dx. (2.4)

If u0 ∈ H4(S), differentiating (1.1) with respect to x we have

− d

dt

∫
S

u2
xxxdx = −2

∫
S

utxxxuxxx dx

= 2
∫

S

uxxx

(
λuxxx + 2u2

xx + 3uxuxxx + uuxxxxu
)
dx

= 2λ
∫

S

u2
xxx dx+ 4

∫
S

u2
xxuxxx dx+ 6

∫
S

uxu
2
xxx dx

+ 2
∫

S

uuxxxuxxxx dx

= 2λ
∫

S

u2
xxx dx+ 5

∫
S

uxu
2
xxx dx. (2.5)
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As for u0 ∈ H3(S), we will show that (2.3) still holds. In fact, we can approximate
u0 ∈ H3(S) by function un

0 ∈ H4(S). Moreover, we write un = un(·, un
0 ) for the solution of

(1.1) with initial data un
0 . By Theorem 2.1, we know that

un = un(., un
0 ) ∈ C([0, Tn);Hr(S)) ∩C1([0, Tn);Hr−1(S), n ≥ 1,

un → u ∈ H3(S), and Tn → T as n→ ∞.
Due to un

0 ∈ H4(S), by (2.5), we get

− d

dt

∫
S

(un
xxx)2dx = 2λ

∫
S

(un
xxx)2 dx+ 5

∫
S

un
x(un

xxx)2 dx. (2.6)

Since un → u ∈ H3(S) as n → ∞, we deduce that un
x → ux ∈ L∞(S) as n → ∞. In the

same way, un
xx → uxx ∈ H1(S) and un

xxx → uxxx ∈ L2(S) as n → ∞. Letting n → ∞ in
(2.6), it follows that (2.5) holds for un

0 ∈ H3(S).
Summing up (2.4) and (2.5), we have

− d

dt

(∫
S

u2
xx dx+

∫
S

u2
xxx dx

)
= 2λ

(∫
S

u2
xx dx+

∫
S

u2
xxx dx

)

+ 3
∫

S

uxu
2
xx dx+ 5

∫
S

uxu
2
xxx dx. (2.7)

If ux is bounded from below on [0, T ), there exists a positive constant N such that
ux ≥ −N . By (2.7) and Gronwall’s inequality, we have

∫
S

u2
xx dx+

∫
S

u2
xxx dx ≤ exp{(5N − 2λ)t}

(∫
S

u2
0,xx dx+

∫
S

u2
0,xxx dx

)
.

Then by Lemma 2.1, we obtain

(i) 2λ = C1, ‖uxx‖2
1 ≤ exp{(5N − 2λ)t}‖u0,xx‖2

1 + C1t,

(ii) 2λ < C1, ‖uxx‖2
1 ≤ exp{(5N + C1 − 2λ)t}‖u0,xx‖2

1 −
C1

2λ− C1
,

(iii) 2λ > C1, ‖uxx‖2
1 ≤ exp{(5N + C1 − 2λ)t}

(
‖u0,xx‖2

1 +
C1

2λ− C1

)
.

This implies that the H3-norm of the solution u of (1.1) does not blow-up in finite time.

We now give the following useful lemmas.

Lemma 2.2 [14]. If u ∈ H3(S), we have

max
x∈S

u2(x) ≤ C‖u‖2
1.
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Lemma 2.3 [4]. Let T > 0 and u ∈ C1([0, T );H2(R)). Then for every t ∈ [0, T ), there
exists at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

[ux(t, x)] = ux(t, ξ(t)).

The function m(t) is absolutely continuous on (0, T ) with

dm

dt
= utx(t, ξ(t)) a.e. on (0, T ).

We now present the following blow-up theorem.

Theorem 2.4. Given u0 ∈ Hr, r > 3
2 . Assume that there exists x0 ∈ S such that

u′(x0) < −2λ.

Then the corresponding solution to Eq. (1.1) blows up in finite time.

Proof. Let T > 0 be the maximal existence time of the solution u(t, ·) of Eq. (1.1) with
initial data u0 ∈ H3(S). By Eq. (1.2) and Lemma 2.1, we have

utx = −λux − uuxx − 1
2
u2

x − 1
2
e−2λt

∫
S

u2
0,x(x)dx, a.e. t ∈ [0, T ). (2.8)

Define m(t) = ux(t, ξ(t)) = minx∈R{ux(t, x)}. Since we deal with a minimum, uxx(t, ξ(t)) =
0 for all t ∈ [0, T ). We obtain

m′(t) = −λm(t) − 1
2
m2(t) − 1

2
e−2λt

∫
S

u2
0,x(x)dx

≤ −1
2
m(t)(m(t) + 2λ), a.e. t ∈ [0, T ).

From the hypothesis m(0) < −2λ and continuity with respect to t of m(t), we have m(t) <
−2λ, ∀ t ∈ [0, T ). Solving the above inequality, we get

1 − m(0)
m(0) + 2λ

e−λt ≤ 2λ
m(t) + 2λ

≤ 0.

We conclude that there exists T ,

0 < T ≤ 1
λ

ln
m(0)

m(0) + 2λ
,

such that limt↑T m(t) = −∞. This completes the proof of Theorem 2.4.

3. Blow-Up Rate

In this section, we investigate the blow-up rate of blowing-up solutions to Eq. (1.1).

Theorem 3.1. Assume that u0 ∈ Hr, r ≥ 3 and T > 0 is the maximal existence time of
the corresponding solution to Eq. (1.1). If T is finite, we have

lim
t→T

(T − t)min
x∈S

ux(t, x) = −2.
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Proof. By Theorem 2.3, we know that

lim inf
t→T

min
X∈S

ux(t, x) = −∞.

Define m(t) = minx∈S ux(t, x), t ∈ [0, T ), K =
∫

S
u2

0,x(x)dx and let ξ(t) ∈ S be a point where
this minimum is attained. Clearly uxx(t, ξ(t)) = 0 for all t ∈ [0, T ). We have

dm(t)
dt

+
1
2
m2(t) + λm(t) = −1

2
e−λtK. (3.1)

Define M = 1
2K. We infer from (3.1) that

−M ≤ dm(t)
dt

+
1
2
m2(t) + λm(t) ≤ 0 ≤M, a.e. on (0, T ). (3.2)

Hence,

−M − 1
2
λ2 ≤ dm(t)

dt
+

1
2

(m(t) + λ)2 ≤M +
1
2
λ2, a.e. on (0, T ). (3.3)

Let ε ∈ (0, 1
2 ). Since lim inft→T (m(t) + λ) = −∞, there is some t0 ∈ (0, T ) with m(t0) +

λ < 0 and

(m(t0) + λ)2 >
1
ε

(
M +

1
2
λ2

)
. (3.4)

By continuous extension, we conclude that

(m(t) + λ)2 >
1
ε

(
M +

1
2
λ2

)
, t ∈ [t0, T ). (3.5)

A combination of (3.3) and (3.5) yields

− 1
2
− ε <

dm(t)
dt

(m(t) + λ)2
< −1

2
+ ε, a.e. on (t0, T ). (3.6)

For t ∈ (t0, T ), integrating (3.6) on (t, T ), we obtain

− 1
2
− ε <

1
(m(t) + λ)(T − t)

< −1
2

+ ε, a.e. t ∈ (t0, T ). (3.7)

Letting ε→ 0, we have

lim
t→T

[m(t)(T − t) + λ(T − t)] = −2.

That is

lim
t→T

(T − t)m(t) = −2.

This completes the proof of Theorem 3.1.
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4. Global Existence

In this section, we present a global existence result for Eq. (1.1).
Let y = uxx. Then Eq. (1.1) is equivelent to



yt + λy = −2uxy − uyx, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R.

(4.1)

Consider the following ordinary differential equation{
qt = u(t, q), 0 ≤ t < T,

q(0, x) = x, x ∈ R.
(4.2)

Applying the classical results in the theory of ordinary differential equations, one can obtain
the following useful results which will be used in the sequal.

Lemma 4.1 [15, 16]. If u0 ∈ Hr(S), r ≥ 3, and let T > 0 be the maximal existence time
of the solutions u to Eq. (1.1). Then Eq. (4.2) has a unique solution q ∈ C1([0, T ) × R,R).
Moreover, the map q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp
(∫ t

0
ux(s, q(s, x))ds

)
> 0, (t, x) ∈ [0, T ) × R.

Lemma 4.2. Let u0 ∈ Hr(S), r ≥ 3, and let T > 0 be the maximal existence time of
corresponding solution u to Eq. (1.2). Setting y = uxx, we have

y(t, q(t, x))q2x(t, x) = y0(x)e−λt, (t, x) ∈ [0, T ) × R. (4.3)

Proof. Differentiating the Eq. (4.1) with respect to x, we obtain

d

dt
qx = ux(t, q)qx, 0 ≤ t < T,

qx(0, x) = 1, x ∈ R.

Let g(t, x) = y(t, q(t, x))q2x(t, x). From Lemma 4.1 and (4.2), we have

d

dt
g(t, x) = −λg(t, x). (4.4)

Integrating the above equation with respect to t, we get the desired result. This completes
the proof of Lemma 4.2.

Theorem 4.1. Let the initial data u0 ∈ Hr(S), r ≥ 3. If u0,xx does not change sign, then
Eq. (1.1) has global strong solutions.

Proof. By the periodicity of u, we have∫
S

(−uxx)dx = 0.
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On the other hand, since the initial data u0,xx does not change sign, we get from Lemma 4.2
that

−uxx ≡ 0.

Thus

−ux ≡ const.

This completes the proof of Theorem 4.1.

We put in a figure illustrating qualitatively the content of the paper:

λ > −1
2u

′
0(x0) The solution to Eq. (1.1) blows up in finite time.

u0,xx does not change sign The global solutions to Eq. (1.1) are constants.

Remark 4.1. From the proof of Theorem 4.1, we see that if u0,xx does not change sign,
then the derivatives of the corresponding global solutions to Eq. (1.1) are constants. Since
u is periodic, the solutions u must be constants. Therefore, the result of Theorem 4.1 is
consistent with Theorem 3.1 in [13].

Remark 4.2. Since all solutions to the periodic Hunter–Saxton equation except space-
independent solutions blow up in finite time [13], Theorem 2.4 shows that there is a big
difference in the blow-up phenomenon between the periodic Hunter–Saxton equation and
the periodic Hunter–Saxton equation with dissipation.

On the other hand, if u0,xx does not change sign, the periodic Camassa–Holm equation
and the periodic Degasperis–Procesi equation with weak dissipation may have global space-
dependent solution [15–18]. Theorem 4.1 shows that there is a big difference in global exis-
tence results between these two equations with dissipation and the Hunter–Saxton equation.
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