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A new type of the nonisospectral KP equation with self-consistent sources is constructed by using
the source generation procedure. A new feature of the obtained nonisospectral system is that we
allow y-dependence of the arbitrary constants in the determinantal solution for the nonisospectral
KP equation. In order to further show integrability of the novel nonisospectral KP equation with
self-consistent sources, we give a bilinear Backlund transformation.
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1. Introduction

Since the discovery of soliton, the soliton equations have been used to describe various
nonlinear phenomena in many fields of natural science, such as the plasma physics, fluid
dynamics, biology and so on [1, 2]. For example, the Kadomtsev—Petviashvili (KP) equa-
tion, a two-dimensional generalization of the well-known KdV equation, can model several
significant situations such as ones arising from the plasma [3]. Recently, the nonisospectral
KP equation have attracted much research attention [4-7]. The nonisospectral KP equation
provide a description of surface waves in a more realistic situation than the KP equation
itself. The nonisospectral KP equation can also describe the waves in a certain type of
nonuniform media.
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In this paper, we consider soliton equations with self-consistent sources, because soli-
ton equations with self-consistent sources are an important class of integrable equations.
Physically, the sources can result in solitary waves moving with a nonconstant velocity and
therefore lead to a variety of dynamics of physical models. For applications, these kinds
of systems are usually used to describe interaction between different solitary waves. One
typical example is the KP equation with self-consistent sources [§8]. Many methods have
been developed to solve soliton equations with self-consistent sources, such as the inverse
scattering transform [9], Darboux transformation [10-12], Hirota bilinear method [13-16],
source generation procedure [17-19] and so on.

Very recently, Hu and Wang have proposed the source generation procedure to sys-
tematically construct and solve soliton equations with self-consistent sources [17, 18]. The
source generation procedure consists of three steps:

(1) express N-soliton solutions of a soliton equation without sources in the form of deter-
minant or Pfaffian with some arbitrary constants;

(2) construct corresponding determinant or Pfaffian with arbitrary functions of one
variable;

(3) seek coupled bilinear equations whose solutions are just these generalized determinants
or Pfaffians.

It is noted that the success of step (3) heavily depends on the suitable choice of arbitrary
functions involved in step (2). Some soliton equations with self-consistent sources found by
the source generation procedure require time dependence of the arbitrary constants appear-
ing in the determinantal or Pfaffian solutions for the equations without sources. For example,
we have constructed the following nonisospectral KP equation with self-consistent sources
(KPESCS) by allowing time dependence of the arbitrary constants in the determinantal
solution for the nonisospectral KP equation [20].

K
4y + Y(Ugge + 6uny + 305 Tuyy) + 2zuy + 40, tuy, + Z (1)
7j=1
Pjy=Pjaw+ulj, j=12,.... K, (2)
\Ifj’y:—\lfj’rm—u\pj, 7=12,...,K, (3)

The purpose of this paper is to apply the source generation procedure to the
nonisospectral KP equation by allowing y-dependence of the arbitrary constants appear-
ing in the determinantal or Pfaffian solutions for the nonisospectral KP equation. Conse-
quently, a new type of the nonisospectral KPESCS is produced, which is quite different
from the nonisospectral KPESCS (1)—(3). In order to further show integrability of the
novel nonisospectral KPESCS, we propose a bilinear Backlund transformation for the new
nonisospectral KPESCS.

This paper is organized as follows. In Sec. 2, a new type of nonisospectral KP equation
with self-consistent sources is constructed via the source generation procedure by allowing
y-dependence of the arbitrary constants appearing in the determinantal solutions for the
nonisospectral KP equation. In Sec. 3, we present a bilinear Backlund transformation for
the novel nonisospectral KPESCS. Finally, some conclusions and discussions are given.
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2. New Type of Nonisospectral KP Equation with Self-Consistent Sources

In this section, we will apply the source generation procedure to the nonisospectral KP equa-
tion by allowing y-dependence of the arbitrary constants appearing in the determinantal
solutions for the nonisospectral KP equation.

The nonisospectral KP equaiton can be written as [21]

dup + Y(Ugze + 6uny + 30, tuyy) + 2zuy, + 40, 'y, = 0. (4)
Its Lax pair is
Gy = bzz + 2ug, (5a)
60 =y |Buea + Bude + (07 g + )| + 22(pre +2u0) + 560 + S (07 W9 (5D)
Through the dependent variable transformation
u=2(In7)zy,
Equation (4) can be transformed into the bilinear form
4D, Dyt - T4 y(Dir . T + 3D§7‘ T) 4+ 22Dy Dyt - T + 41y T = 0, (6)
where the well-known Hirota bilinear operator D is defined by [22]
DDy Dia-b = (s — 00)' (9y — 8y)™ (0 — 0y)"alw, y, )&,y )t =y =yt

The nonisospectral KP equation (6) has the following Grammian determinant

solution [5]:
z ~
7 = det <ﬁ1~j —I—/ fifjdx> , i = constant, (7)
—oo 1<i,j<N
where f; and fj satisfy the following differential equations
fi,y = fi,a:xa ]Ej,y = _fj,xxa (83‘)
1 1
fi,t = _yfi,:ca:a: - §xfz,a:m - §fi,m> (Sb)
_ _ 1 - 1.
fj,t = _yfj,xxx + ixfj,xx + ifj,x' (8C)

In order to construct new type of nonisospectral KPESCS, according to the source
generation procedure, we generalize 7 into the following new function:

f= det(aij)lgi’jSN = (1,2, ..., N, N*, . ,2*, 1*) = (O), (9)

where Pfaffian elements are defined by
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with each function f;;(y) satisfying

Bi(y), i=7 and 1<i<M<N, M,NeZ*t

Bij otherwise,

Bij(y) = {

where ;(y) is a function of the variable y. Then we get the following formulae through
derivative formulae of Pfaffian:

M

fy:(dOadT>.)_(d1>d8>')+Zki> (10)
=1

fyy = (d3ad8>') - (d1>d§>') + (d0>d§a.) - (d2>d>{a.) + 2(d0ad3>dlad>{>')
M M
+ ) kiy+ Y BiWl(do,df, 1, d, . NN L 1)
i=1 i=1
—(dy,di, 1, 0. N N* L 1), (11)

where the function k; is defined by

A~ A~

ki = Bi(y)(, ... 4., N,N* ... 0%, 1%, i=1,2..., M, (12)

new Pfaffian elements are defined by

an
o" -
(dnaj*):%fja (dinal*)zoa (dnal) :07 m,nGZ,

where ~ indicates deletion of the letter under it, and the dot denotes the derivative of the
function (3;(y) with respect to the variable y. By a direct computation, we find the function f
will not satisfy Eq. (6) again. Therefore, we need to introduce other new functions defined by

g =\/Bi(y)(d,1,... N, N*, ... .05, ...,1%), i=1,2,..., M, (13)
hi =\/Bi(y)(do,1,...,4,...,N,N*,...,1%), i=1,2,..., M, (14)

11

ﬁi (y) (dzk]a]-;-..7N7N*7"'7/2*7"'71*)

21/ Bi(y)

Bi(y)[ S B, gy NN G 1)

1<i<j<M

P =

= Y B, G NN G 1) (15)
1<j<i<M
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Qi:L@(do,l,...,%,...,N,N*,...,l*)
Bi(y)
@(y)[ > Bido L. iy g NN 1)
1<i<j<M
- ¥ ﬂ'i(y)(do,l,...,j,...,%,...,N,N*,...,j’*,...,1*)], (16)
1<j<i<M

where ” denotes the second-order derivative of the function 3;(y).
We can show that the above new functions satisfy the following new bilinear equations:

AD.Dyf - f+y(Daf - f+3D2f - )+ 22D, Dy f - f +4f,f

—GyZDk f — Dggi - hi) 4xZgzh +4<Zk> (17)

=1
Dyk; - f + gihi =0, (18)
M
(Dy—DNgi-f=Pf—gi [ D ki, (19)
j=1
M
(Dy = D2)f - hj=hi ij — fQi, (20)

ADyg; - f +y(D3gi - f +3DyDyg; - f) +22Dyg; - f
M
=3y | Da |P-f—gi- | Dk +2 |Pif—gi | ) ki || (21)
— =
ADyf - hi +y(D3f - hi +3D.D,f - hi) +2xDyf - h;

M M
= 3y | Ds ij chi —f-Qi| | =22 | fQi — Dy ij . (22)
=1

Jj=1

In the following, we prove that those new functions so-defined are solutions of
Egs. (17)-(22). First, we calculate the following derivative formulae:

f=Q,2,...,N,N* ..., 2 1") = (o), [, = (do,dj,e), (23a)
fxx: (d07 Ta.)—i_(dladzk)a.)a fxxx: (d07d§7.)+(d27d37.)+2(d17 1(7.)7 (23b)
fxxxx = (d?ndzk]a .) + 3(d27 Ta.) + 2(d07d37d17 Ta .) + 3(d17d§7.) + (d(]ad?;a.)? (23C)
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M
fye = (do, d3, ) — (da, dj, @) + > Bi(y)(do,d5. 1, i,...,N,N* ... i*, ... ,1") (24a)
=1
* * * 1 * *
ft = _y[(d0>d2a .) - (dbdla .) + (d2’d0’ .)] - §x[(d0’dl>.) - (d1>d07’)]’ (24b)

* * * * 1 * *
ftx - _y[(d07d37 .) - (d07d07d17d17 .) + (d37d07 .)] - §$[(d0,d2,.) - (d27d07.)]

~51(do, 45, #) — (di 45, o), (240

Giw =\ Bi()(d5, 1, .. N N* i 1), (25a)
Gime = \/Bi(W)[(d5,1,... N, N* 0% 1%)
+ (do, i, di, 1,. .. N, N* ... 0%, ... 1%)], (25b)
giy = P+ Bi)[(d5,1,...,N,N* ... 05, 1%)
—(do, d, di,1, ... N, N* ... 7%, ..., 19)]. (25¢)
Gizy = Pix +\/Bi()[(d5, 1, ..., N, N* % 1)
—(dy, d, 5,1, N N* L 1) (25d)
gir = —y\ B (5,1, ... N, N* i 1)
+ (dy, di, di 1, .. NN 0F, 1)
—(do,dg,d;,1,... N,N*, ...%, ..., 1)
——x Gi(y)[(d5,1,...,N,N*, ... 7%, ..., 1%)
—(do,d8, d},1,...,N,N*,...i* ..., 1%)], (25¢)
gi,xxx: /B’L(y)[(d?;ala7N7N*77£*771*)
+2(do, df, dy,1,...,N,N*, ... 0", ..., 1%)
+ (dy, db,d5, 1, N N* ik 1), (25f)

Substituting (9)—(11), (13) and (14) into Eq. (17) yields the sum of the determinant
identities

24y[(do, dy, dv, dy, ®)(e) — (do, dy, ®)(dy, d1, ®) + (do, di, ®)(di, dp, ®)]
—I-GQJZ@(Z/ dOa 1 a"'a’za"'aNaN*w"a’Z*a""l*)(.)

(L h e NONF L 1) (do, @)
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di, 1, N,N* ... " ..., 1%)(do,1,...,0,...,N,N* ..., 1%)
di,di, 1,0, NN 0% 1) (e)
Loty N, N* % 1) (dy, d, @)
—(dy,1,...,N,N* ... " ..., 1%)(d,1,...,4,...,N,N*, ... 1%)]

— (1.t NON* i 1) (do, d @)
+(dg,1,...,N,N*,...,7*,...,1)(do,1,...,i,...,N,N*,...,1%)] =0,
which indicates that Eq. (17) holds. In the same way, substitution of (9), (12)—(14) into
(18) leads to the Jacobi identity of determinants
Bi(y)(do, d, 1, ... iy .., N,N* ... 0%, ... 1%)(e)
— (1, ot N,N* 1) (do, @)
+(ds,1,... N, N* ...i*...,1")(do,1,...,i,...,N,N*,...,1%)] =0,

then Eq. (18) holds. Substituting (23) and (25) into Eq. (19), we get the following determi-
nant identity

Gi(y)[—(do, dy,df,1,..., N, N*, ... .7*, ..., 1%)(e)

+(df,1,...,N,N* ... .i*, ..., 1%)(do, d5, @)

—(d;;,l,...,N,N*,...,%*,...,1*)(d0, 10 =0,
so Eq. (19) holds. Similarly, substitution of (9), (13), (15) and (23)—(25) into (21) leads to
the determinant identity

Bi()[(do, d, d5,1,... . N,N*, ... 0%, ..., 1%)(e)
—(d3,1,...,N,N*,....i*, ..., 1%)(do, d},e)
(d,1,...,N,N* ....i* ..., 1%)(do,d5, e)
—(dy,dy,d5 1, N, N* i 1) (o)
( )
—( )

+

_l’_

di 1, NN 1) (dy, d e
ds 1, N, N* ... 0%, 1%)(dy, df, e
then Eq. (21) holds. In the same way, we can prove that new functions in (9), (12) and

(13)—(16) are determinant solutions of bilinear Eqgs. (17)—(22). And Egs. (17)-(22) just
constitute a new type of nonisospectral KPESCS in the bilinear forms.
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Using the dependent variable transformations

/u’:z(lnf)xxa ¢z:91/fa Sol:hl/fa 121,2,,M, (263)
Xl:kz/fa ¢1,i:P’i/f7 ¢2,i:Qi/f7 i:1727"'7M7 (26b)

the bilinear equations (17)—(22) are transformed into the following nonlinear nonisospectral
equations

T T

dup +y <u333333 + 6uug + 3 / uyydac> + 2zuy + 4 / uydx

M M M
= 6y Z(Xi,y + @iai — Pithig)s — 4z Z(%l/}i)x +4 Z Xizs (27a)
i=1 i=1 i=1
Xie + @it =0, (27b)
M
Yiy = Yigx +uthi + @15 — P Z X (27¢)
j=1
M
Piy = —Pige — UPi + P2, — i Z Xj (27d)
j=1

xT

41/11',15 + Yy <1/]l,xxx + 3u¢z,x + 31/]i,xy + 3¢z /

—0Q0

uyd:c> + 2z

M M
=3y |bria — O (WiaXs — ViXja) | +22 [ dri— i > x5 | (27e)
j=1 j=1
€T
4901',15 + Yy <90i,a:a:x + 3U(pi,x - 3()0i,a:y - 3901 / uydx> - 237901',;1
—0o0
M M
=3y |—02ie — D _(PiaXj — @iXja) | — 22 [ d2i—wi > x5 |- (270)
j=1 j=1

Equations (27) can be further simplified into the following nonlinear nonisospectral
equations:

x x

dup +y <ua:m:s + 6uu, + 3/ uyydx> + 2zu, + 4/ uydx

—00 —00

M

M M
= 6y > _[Piwathi — Pitiae — (@ithi)y] — 42> (pithi)e —4 Y pithi,  (28a)
i—1 i=1

i=1
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xT

—00

Uy dx) + 2z

M
= 6y | 0y | + 20y — Yige — wihy), (28D)
j=1

4901',15 +y <4<Pz,zmm + 6“901',:5 + 3uz i — 3p; / uydx> - 2Jjgpi,y

— 00

M
= 6y | Y @ity | = 22(0iy + Piaw + upi), (28¢)
j=1

which is new type of the nonisospectral KPESCS.
Utilizing expressions (9), (12)-(16) and relation (26), we can give the N-soliton (N > M)
solution of the new type of nonisospectral KPESCS (28).
For example, when N =1, M = 1, we take
e20(y)

ﬂl(y):m_i_na maneRa

fi=¢et = ep(t)xv“pz(t)y—l(t)’ fi=el= ea(t)x—qz(t)yﬂ(t),

1 1, 2 2

pie(t) = —§p2(t)> u(t) = 54 (), bp(t)= 2o+t q(t) = y—

I(t)=c3+In(2c; +t), ~(t) =cs+1n(2c2 —1t), c1,c2,c3,¢4 €R,

where «a(y) is an arbitrary function of the variable y, p(t), q(t), I(t) and ~(t) are four
arbitrary functions of the variable ¢. Then, the 1-soliton solution can be expressed in the
following forms.

2(m + n)a(y)et oW

) ¢ = )
1+ Mefﬁ-n—Qa(g)

p(t) +q(t)

0? m-+n
-9~ In[1+ —2T " c&tn—2a(y)
4T 0 < WGET0)

2(m + n)d(y)e”‘a(y)

0= :
14 _ME ein-2a(y)

p(t) +aq(t)

when N =2, M = 2, we take

e2ai (y)

Bily) = , o my,n; €R, B =1 =0, i1=1,2,
m; +n;

f; = e — epi(t)fﬂ‘irp?(t)y—li(t), ﬁ — i — eQi(t)x_q?(t)y+’yi(t), i=1,2,

| | ,
mﬂﬂz—yﬂm %Aﬂ=§ﬁ®>z=L%
2 2
(t) = ——— () = ——— . c R )
pl() 201i+t’ Q’L() 2C2i—t7 C1i, C2; € I, ? ) 4y

l;i(t) = c3; + In(2c1; + 1),  vi(t) = cgi + In(2¢9; — t), ¢34, 45 € R.
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Then the 2-soliton solution of the system (28) has the following form:

2
u= 28_2 In 1+ Ajefrtm=2ea(y) | g, cb2tm—202(y) 4 A3e§1+n1+§2+n2—2&1(y)—2a2(y)]

I

V2(my +ny)dn (y)eft— 1 W (1 + g efetmr—202())
1+ Ajefitm—201(y) 4 Agebetnz—202(y) 4 Agebrtmtbetne—2a1(y)—202(y)’

\/2(7712 —+ n2)a2 (y)eEQ_QQ(y) (1 + a2651+771_2a1(y))
1+ Ajefrtm=2a1(y) 4 Agefetm—202(y) 4 AgefitmtEatnz—2a1(y)—2a2(y)’

by =~

_ V2(my + np)dn (y)em —1W) (1 4 by eb2tm—202))
Y1 = 1+ Ale§1+771—2a1(y) + A2652+'r]2—2a2(y) + A3€§1+"71+§2+"72—2a1(y)—2a2(y)7

\/Q(m2 + ng)dig (y)eﬂz—cm(y)(l 4 b2651+n1—2a1(y))

Y2 = 1+ Ajefrtm=2a1(y) 4 Agefetm—202(y) 4 AgefitmtEatnz—2a1(y)—2a2(y)’
where
_m +n1 _ mo + N2 _ (ml + nl)(mg -+ 77,2)
M0 a0 2T RO e® T o0+ e®)e:0 + a®)
0 = (ma2 +n2)(p1(t) — p2(t)) 0y — (m1 +n1)(p2(t) —p1(t))
(p1(t) + ga(t)) (pa(t )+q2( )’ (p1(t) + @1 (1)) (p2(t) + 1(1))’
p = (M2t m)alt) — 6) ,— (mtm)(el) —al)
(p2(t) + qa(t)) (p2(t) + q1(t)) (p1(t) + @1 (1)) (p1(t) + ga(1))

From the expressions of the above solutions, we can find these solutions of new non-
isospectral KPESCS (28) include arbitrary function of the spatial variable y, which are
different from the solutions of previous nonisospectral KPESCS (1)—(3) which are related
to arbitrary functions of the temporal variable t.

3. The Bilinear Backlund Transformation

In this section, we will present a bilinear Bécklund transformation for the new type of
nonisospectral KPESCS (17)-(22).

Proposition 1. The bilinear nonisospectral KPESCS (17)—(22) has the following bilinear
Bdcklund transformation

M M
(4D; +yD3 — 3yDy Dy + 25Dy —AD,)f - f' = =3y Y Dygi- hj — 2z y _ gihi,

(4D; +yD? — 3yD, D, — 2xD2)g; - g = —3yD.(P; - g — gi - P}), (30)
(4D + yD3 — 3yD, Dy, — 20D?)h; - b, = —3yDy(Qi - gl — gi - QL) (31)
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M
(Dy+D)f-f == gihi, (32)
=1

(Dy + D2)gi - g, = Pig} — g: P}, (33)
(Dy + D3)h; - b = Qigh — g:Q;, (34)

(4Dy +yD3)g - f' — 3yDif - g; =0, (35)
(4D; +yD3)f - b — 3yDZh; - f' =0, (36)
Dygi - Wy — Dyk; - f' + Dy f - K, = 0. (37)
fK, — kif' = gihi, (38)

Dygi - '+ fg; =0, (39)

Dyf - hi+ f'hi = 0. (40)

39
40

Proof. Let (f,g;, hi, ki, P;, Q;) be a solution of Eqgs. (17)—(22) and (f’, g., h}, ki, P!, Q") sat-
isfies relations (29)—(40). What we need to prove is that (f', g}, hl, ki, P/, Q%) is also a solution
of Egs. (17)-(22). In fact, through relations (29)-(40) and the bilinear operator identities
in Appendix A, we have

Py = |ADyDyf - f +y(Dyf - f+3D5f - f) + 22D, Dy f - f +4f, f
M M M
—6y > (Dyki - f — Dagi - hi) + 42> gihi — 4 (Z k) f] (f')?
=1 =1 =1

—f? [4D1th’ f A y(Dyf - f + 3D f - f) + 20D Dy f' - f + Afy f!

M M o
_6yZ(Dyk‘§ . f’ - ng; . h;) +4ng§h; 4 (Z k;) f’]
=1

=1 =1

=8D,(Dof - f') - [ '+ 2yDu(D3f - ') - ff = 6yDu(DLf - ') - (Daf - ')

M
+6yDy(Dyf - f') - ' —6yDy > (kif' — fKi) - ff'

i=1

M
+6y > Dulgif - hif' — foi- fhy)

i=1

M
+4zDo(Dyf - f)) - £ + 42 Dy(gihi) - ff

i=1

M
HAfF(Dyf - ) +AFFD (ki f — £'ks)

=1
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= 2D,[(ADy +yD3)f - f']- ff' — 6yDy(D2f - f') - (Daf - )

M
—6yDy(D3f - ') ff' +6y> _ Dulgif' - hif' — fgi - fhi)

i=1

M
+42Do(Dyf - f) - £ + 42 Dy(gihl) - ff'

i=1

M
+ALF(Dyf - f)+AFFD (ki f — f'ks)

i=1

M
=—6y > Da[(Dof - 1) - gif + (Dagi- f) - fhi]
=1

M
+6y Y Dulgif - hif = fg;- fhj) = 0.
=1
Py = (Dgki - f + gihi)(f')* — f2(Daki - f' + gih)
= Dy(kif — fK}) - ff + gihi(f))* — f2gih;
= —D,(g;h}) - ff + gihi(f')* — f2gih}
= gif'(Dyf - W+ hif) — (Dygi - f' + fg;) fh; = 0.

M
Py = [(Dy —D})gi- f—Pif+gi (Z kj) g f'

7=1
M
—gif [(Dy ~ DY)y f' = Pif + 4 (Z ’f§> ]
j=1

[P

= [(Dy + D2)g; - gl ' — 9:9i[(Dy + D2)f - '] + gi9. (

kj> ;
1

kj

1

M
= [(Dy + D2)gi - g — Pigi + Plgil £ f' = gigl|(Dy + D2)f - f'+ ) (fkj = k;jf")] = 0.

J

[P

2Dy (Dygi - f') - fg; — Pigif '+ Plaif ' — g f g (
J

j=1
The above results indicate that (f, g}, hl, kl, P/, Q,) satisfies Egs. (17)-(19). Similarly,
we can show that (f', g}, b}, k., P/, QL)) satisfies Eqs. (20)-(22). So, (f'. 4}, R} k., P!, Q%)

is a solution of new type of nonisospectral KPESCS (17)—(22). Thus, we complete the
proof. O
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4. Conclusions and Discussions

In this paper, we have obtained a new type of nonisospectral KPESCS and its Grammian
determinant solutions. Moreover, we gave 1-soliton solution and 2-soliton solution for the
novel nonisospectral KPESCS. Furthermore, a bilinear Backlund transformation for the
new type of nonisospectral KPESCS is presented. If we set each arbitrary function §;(y) a
constant, the new nonisospectral KPESCS is reduced to the nonisospectral KP equation,
and its determinant solutions (9) and (12)-(16) are transformed into the solution of the
nonisospectral KP equation.
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Appendix A. Hirota’s Bilinear Operator Identities

The following bilinear operator identities hold for arbitrary functions a, b, d’, v, ¢ and d.
(D.a-b)ed — ab(D,c-d) = (Dya - c)bd — ac(D,b - d); (A
(D%a - b)ed — ab(D2c - d) = D,[(D.a - d)cb — ad(D,c - b)]; (A
D,(D.Dya -b) - ab= Dy,(D2a-b)-ab— Dy(Dya-b) - (Dya - b); (A.
(DyDia - a)b® — a®>(DyDyb - b) = 2Dy(Dya - b) - ba = 2D, (Dya - b) - ba; (A
(Dia-a)b? —a*(Dib-b) = 2D,(D3a - b) - ba — 6D, (D2a - b) - (Dya - b); (A
(D3a-b)d't —ab(D3ad’ - b)) — 3(D2%a - b)(Dya' - V) + 3(Dya-b)(D2d - 1)

= (D3a-d )bb' —ad'(D3b- V') — 3(D%a - ') (Dyb-b) + 3(Dya-a')(D%b-V);  (A.6)

D, [(Dya-b) - cd+ (Dyc-d)-ab] = Dy[(Dza - d) - cb — ad(Dyc - b)]; (A.7)
D,[(Dya-b) - cd+ (Dyc-d)-ab] + (DyDya - b) - cd — (DyDyc - d) - ab
= (Dgza-b)(Dyc-d) — (Dya - b)(Dyc- d) + Dy[(Dya - d) - cb. (A.8)
References

[1] M. J. Ablowitz and M. J. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scat-
tering (Cambridge University Press, Cambridge, 1991).

[2] G. L. Lamb Jr., Elements of Soliton Theory (Wiley, New York, 1980).

[3] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive
media, Sov. Phys. Dokl. 15 (1970) 539-541.

[4] S. F. Deng, D. J. Zhang and D. Y. Chen, Exact solutions for the nonisospectral KP equation,
J. Phys. Soc. Japan 74 (2005) 2383-2385.

[5] G.F.Yuand H. W. Tam, On the nonisospectral KP equation, J. Phys. A 39 (2006) 3367-3373.

[6] Y. Chen and X. R. Hu, Lie symmetry group of the nonisospectral Kadomtsev—Petviashvili
equation, Z. Naturforsch. 64 (2009) 8-14.

[7] H. H. Hao, D. J. Zhang and S. F. Deng, The Kadomtsev—Petviashvili equation with self-
consistent sources in nonuniform media, Theor. Math. Phys. 158 (2009) 151-166.



336
8]
[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

Y.-P. Sun & H.-W. Tam

V. K. Mel'nikov, Interaction of solitary waves in the system described by the KP equation with
a self-consistent source, Comm. Math. Phys. 126 (1989) 210-215.

V. K. Mel'nikov, Interaction of the Korteweg-de Vries equation with a source, Inverse Problems
6 (1990) 233-246.

Y. B. Zeng, W. X. Ma and R. L. Lin, Integration of the soliton hierarchy with self-consistent
sources, J. Math. Phys. 41 (2000) 5453-5489.

Y. B. Zeng, W. X. Ma and Y. J. Shao, Two binary Darboux transformations for the KdV
equation with self-consistent sources, J. Math. Phys. 42 (2001) 2113-2128.

Y. B. Zeng, Y. J. Shao and W. X. Ma, Integral-type Darboux transformation for the mKdV
hierarchy with self-consistent sources, Commun. Theor. Phys. 38 (2002) 641-648.

X. B. Hu, Nonlinear superposition formula of the KdV equation with a source, J. Phys. A 24
(1991) 5489-5497.

X. B. Hu, The higher-order KdV equation with a source and nonlinear superposition formula,
Chaos Soliton Fractals 7 (1996) 211-215.

D. J. Zhang and D. Y. Chen, The N-soliton solutions of the sine-Gordon equation with self-
consistent sources, Phys. A 321 (2003) 467-481.

W. X. Ma, Soliton, positon and negaton solutions to a Schrodinger with self-consistent sources
equation, J. Phys. Soc. Japan 72 (2003) 3017-3019.

X.B. Hu and H. Y. Wang, Construction of dKP and BKP equations with self-consistent sources,
Inverse Problems 22 (2006) 1903-1920.

X. B. Hu and H. Y. Wang, New type of Kadomtsev-Petviashvili equation with self-consistent
soureces and its blinear Bécklund transformation, Inverse Problems 23 (2007) 1433-1444.

H. Y. Wang, X. B. Hu and H. W. Tam, On the pfaffianized-KP equation with self-consistent
sources, J. Math. Anal. Appl. 338 (2008) 82-90.

Y. P. Sun and G. F. Yu, Backlund transformation of a nonisospectral KPESCS and its nonlinear
coupled system, Modern Phys. Lett. B 23 (2009) 3581-3595.

D. Y. Chen, H. W. Xin and D. J. Zhang, Lie algebraic structures of some (142)-dimensional
Lax integrable systems, Chaos Solitons Fractals 15 (2003) 761-770.

R. Hirota, Direct Methods in Soliton Theory (Cambridge University Press, Cambridge, 2004).



	1 Introduction
	2 New Type of Nonisospectral KP Equation with Self-Consistent Sources
	3 The Bilinear Bäcklund Transformation
	4 Conclusions and Discussions

