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166, Bairro Bangu, Santo André, São Paulo 09210-170, Brazil
igor.freire@ufabc.edu.br

igor.leite.freire@gmail.com

Received 24 October 2010
Accepted 26 November 2010

We consider the problem on group classification and conservation laws for first-order evolution
equations. Subclasses of these general equations which are quasi-self-adjoint and self-adjoint are
obtained. By using the recent new conservation theorem due to Ibragimov, conservation laws for
equations admiting self-adjoint equations are established. The results are illustrated applying them
to the inviscid Burgers equation. In particular an infinite number of new symmetries of this equation
are found.
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1. Introduction

The Lie point symmetries of evolution equations with one spatial variable

ut = F

(
t, x, u,

∂u

∂x
, . . . ,

∂nu

∂xn

)
, (1.1)

with n ≥ 2, has been studied by many authors, see [5, 6, 11–14, 16, 18, 25, 26, 31, 32] and
references therein.

For example, if n = 2, Eq. (1.1) includes the nonlinear heat equation, the Burgers
equation, the Fokker–Planck equation, the Black–Scholes equation and, more generally,
reaction-diffusion-convection equations, see [6, 12, 16, 25, 31, 32].

The Korteweg-de Vries (KdV) equation, the cylindrical KdV and the modified KdV are
examples of third-order evolution equations, see [2, 16].

When n = 4, Eq. (1.1) includes the modified Kuramoto–Sivashinsky equation, the
Cahn–Hilliard equation, the thin film equation and others, see [5, 13, 26].
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However, the first-order equation

ut + f(t, x, u, ux) = 0 (1.2)

seems to have received few attention.
To the best of our knowledge, the earliest work involving first-order evolution equations

and Lie point symmetries was [24], where the authors studied Eq. (1.2) with f = a(u)ux.
After it, Nadjafikhah [19] obtained projectable symmetries of equation

ut + a(u)ux = 0 (1.3)

and in [20] the same author classifies the similarity solutions of the symmetries obtained
in [19]. Equation (1.3) is known as inviscid Burgers equation.

The purpose of this work is to deal with the problem on group classification of the
general first-order evolution equation and how to obtain conservation laws from the Lie
point symmetries. We intend to

• find the first-order evolution equations that admit (quasi) self-adjoint equations;
• obtain close formulae to express conservation laws for equations of the type (1.2) using

recent results due to Ibragimov [16];
• generalize the previous results on group classification of Eq. (1.3);
• establish conservation laws for Eq. (1.3).

The paper is organized as the follows. In the next section we obtain the general deter-
mining equations for the components of symmetry generators, the (quasi) self-adjointness
condition and establish the corresponding conservation laws for the self-adjoint equations
of the type (1.2). We also obtain new Lie point symmetry generators of (1.3) and some
conservation laws for it are established.

2. Main Results

In this section we shall consider the group classification problem and how to find conserva-
tion laws for Eq. (1.2) with fux �= 0. Hereafter all functions will be assumed to be smooth,
the summation over the repeated indices is understood, ux = ∂u

∂x and ut = ∂u
∂t .

Following the standard Lie approach [1, 15, 23], let

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(2.1)

be a Lie point symmetry generator of Eq. (1.2). Then the coeficients τ, ξ and η satisfy the
following equation

ηt − ξtux + (τt − ηu + ξuux)f + ξfx + τft + ηfu − τuf2

+(ηx + ηuux − ξxux − ξuu2
x)fux + (τx + τuux)ffux = 0. (2.2)

We observe that (2.2) is one equation to be solved for 4 unknown functions ξ, τ, η and f .
To obtain the full symmetry group of Eq. (1.2) it is necessary to find all possible func-

tions ξ, τ, η, f satisfying the relation (2.2). Thus, a complete group classification of (1.2) is
impossible.
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Let us now consider the problem of finding conservation laws for equations of the
type (1.2).

If an equation possesses variational structure, the Noether theorem can be employed in
order to establish conservation laws for it, e.g. see [3, 4, 10, 22].

However, it is well-known that evolution equations do not possess variational struc-
ture. Then, they cannot be obtained from the Euler–Lagrange equations and the Noether’s
theorem cannot be applied to them in order to obtain conservation laws.

Fortunately there are some alternative methods to obtain conservation laws for equa-
tions without Lagrangians: the direct method, the characteristic method, the variational
approach, the symmetry conditions, the direct construction formula and the partial Noether
approach. For a more detailed discussion, see [2, 16, 22]. Although some of these methods
could be employed in order to establish conservation laws for Eq. (1.3), in this paper we
shall use recent results due to Ibragimov [16] in order to construct conservation laws for
equations of the type (1.2). We shall refer to the new conservation theorem established
in [16] (see Theorem 3.5 in the reference) as Ibragimov’s theorem.

The Ibragimov’s Theorem on conservation laws can be summarized by the following
algorithm (see [16] for more details): given a PDE

F = F (x, u, ∂u, . . . , ∂nu) = 0,

where ∂ku denotes the set of all kth-order derivatives of u,

• We construct a Lagrangian L = vF .
• From the Euler–Lagrange equations, the following system is obtained:

F (x, u, ∂u, . . . , ∂nu) = 0, (2.3)

F ∗(x, u, v, ∂u, ∂v, . . . , ∂nu, ∂nv) = 0. (2.4)

The second equation of the system (2.3) and (2.4) is called adjoint equation to F = 0.
Equation (2.4) is said to be quasi-self-adjoint if the system (2.3) and (2.4) is equivalent

to the original Eq. (2.3) upon the substitution v = ϕ(u) such that ϕ′(u) �= 0, i.e.

F ∗(x, u, v, ∂u, ∂v, . . . , ∂nu, ∂nv)|v=ϕ(u) = φF (x, u, ∂u, . . . , ∂nu), (2.5)

for some function φ = φ(x, u, ∂u, . . . , ∂nu).
If Eq. (2.5) is true with ϕ(u) = u, then (2.3) is said to be self-adjoint. For more details,

see [5, 16, 17].
• The conserved vector is C = (Ci), where

Ci = ξiL + W

[
∂L
∂ui

− Dj

(
∂L
∂uij

)
+ DjDk

(
∂L

∂uijk

)
− · · ·

]

+Dj(W )
[

∂L
∂uij

− Dk

(
∂L

∂uijk

)
+ · · ·

]
+ · · · (2.6)

and W = η − ξjuj.
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Then, applying this algorithm to Eq. (1.2), we obtain:

• Lagrangian:

L = vut + vf(t, x, u, ux). (2.7)

• Adjoint equation: the adjoint equation to (1.2) is F ∗ = 0, where

F ∗ = −vt − vxfux + vfu − vfxux − vuxfuux − vfuxuxuxx. (2.8)

• Components of the conserved vector C = (C0, C1):

C0 = (η + τf − ξux)v,

C1 = (η + τf − ξux)vfux .
(2.9)

2.1. Quasi-self-adjointness condition of equation (1.2)

Supposing that

F ∗|v=ϕ(u) = φF,

where F = ut + f(t, x, u, ux) and F ∗ is given by (2.8), we obtain φ = −ϕ′(u) and{
fuxux = 0,

ϕ(u)fu − ϕ′(u)fuxux − ϕ(u)fuuxux − ϕ(u)fxux + ϕ′(u)f = 0.
(2.10)

From (2.10) we conclude that f = α(t, x, u)ux +β(t, x, u), with α �= 0. Hence, the functions
ϕ(u), α(t, x, u) and β(t, x, u) should satisfy

βuϕ(u) + ϕ′(u)β = ϕ(u)αx. (2.11)

It follows that if (1.2) is quasi-self-adjoint, we have two cases to consider:

Case 1. If β �= 0, in order for (2.11) to be true, then

αx − βu

β
=

ϕ′(u)
ϕ(u)

, (2.12)

and in this case

ϕ(u) = c exp
∫

αx − βu

β
du, (2.13)

where c ∈ R is an arbritrary constant.

Case 2. If β = 0, from (2.11), α = α(t, u) and ϕ is an arbitrary function.
Reciprocally, if f = α(t, u)ux in (1.2), it is easy to check that (1.2) is quasi-self-adjoint.

When f = α(t, x, u)ux + β(t, x, u), then f satisfies (2.10) if (2.12) is satisfied and then,
function ϕ is given by (2.13).

According to Eq. (2.9), taking v = ϕ(u) (quasi-self-adjointness condition), a conservation
law for equation

ut + α(t, x, u)ux + β(t, x, u) = 0, (2.14)
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is DtC
0 + DxC1 = 0, where α and β are as considered in cases 1 or 2, and

C0 = [η + τβ + (τα − ξ)ux]ϕ(u),

C1 = [ηα + ξβ − (τα − ξ)ut]ϕ(u).
(2.15)

2.2. Self-adjointness condition of equation (1.2)

Let us now find the class of the self-adjoint equations of the type (1.2). Whenever ϕ = u,
Eq. (2.11) becomes

βuu + β = uαx.

Again we have two cases to consider:

Case 1. If β �= 0, then

β =
1
u

∫
uαxdu +

λ(t, x)
u

, (2.16)

for some function λ = λ(t, x).

Case 2. If β = 0 then α = α(t, u).
From Eq. (2.16), we observe that the case β = 0 occurs if and only if αx = λ = 0. Then,

the most general form of a self-adjoint equation of the type (1.2) is (2.14), where β is given
by (2.16).

It is easy to check that all equations of the type (2.14), with β satisfying (2.16), are
self-adjoints.

Equation (2.14) includes

• inviscid Burgers equation, taking α = a(u) and β = 0, see [7, 19, 20, 24];
• linear transport equation, taking α = q(x) and β = 0, see [8, 9].

From Eq. (2.15), taking ϕ = u (self-adjointness condition), a conservation law for
Eq. (2.14) is DtC

0 + DxC1 = 0, where

C0 = [η + τβ + (τα − ξ)ux]u,

C1 = [ηα + ξβ − (τα − ξ)ut]u.
(2.17)

2.3. Theorems on self-adjoint equations and conservation laws

Our main results on the self-adjointness conditions and conservation laws can be summa-
rized by the following theorems.

Theorem 2.1. Let (2.1) be a Lie point symmetry generator of Eq. (1.2). Then the sym-
metry coefficients satisfy (2.2).

Corollary 2.1. The determining equations of (2.14) are given by

ηt + β(τt − ηu) + βxξ + βtτ + βuη − β2τu + αηx + αβτx = 0,

−ξt + ατt + βξu + αxξ + αtτ + αuη − αβτu − αξx + α2τx = 0.
(2.18)

Proof. Substituting f = α(t, x, u)ux + β(t, x, u) into (2.2), we obtain (2.18).
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Theorem 2.2. The following statements about Eq. (2.14) are true:

(1) If β = 0, (2.14) is quasi-self-adjoint if and only if α = α(t, u).
(2) If β �= 0, (2.14) is quasi-self-adjoint if and only if the functions α and β satisfy the

relation (2.12), for some function h = h(u), and ϕ is given by (2.13).

Theorem 2.3. Equation (1.2) is self-adjoint if and only if f = α(t, u)ux or f = αux + β,

where β is given by (2.16).

Theorem 2.4. A conservation law for the system{
ut + f(t, x, u, ux) = 0,

−vt − vxfux + vfu − vfxux − vuxfuux − vfuxuxuxx = 0.

is Div(C) = DtC
0 + DxC1 = 0, where C0 and C1 are given by (2.9) and τ, ξ and η are the

coefficients of the generator (2.1).

Theorem 2.5. A conservation law for Eq. (2.14), with α and β as in Theorem 2.3, is
Div(C) = DtC

0 + DxC1 = 0, where C0 and C1 are given by (2.17) and τ, ξ and η are the
coefficients of the generator (2.1).

2.4. Inviscid Burgers equation

We recall that to obtain the group classification of (1.2) we need to construct all possi-
ble functions ξ, τ, η and f obeying (2.2). As mentioned above, this is an underdetermined
problem and a general group classification is impossible.

Regarding Eq. (2.14), from Corollary 2.1, we conclude that it possesses an infinity dimen-
sional symmetry Lie algebra.

Equation (2.14) covers the so-called inviscid Burgers equation and it describes turbulence
phenomena, for instance, compressible gas dynamics, shallow water flow, weather prediction,
plasma modeling, rarefied gas dynamics and many others, see [7–9, 19–21, 27–30].

In [7] the random Riemann problem for Burgers equation is solved. In [8] a numerical
scheme to approximate the mth moment of the solution of the one-dimensional random
linear transport equation is studied. In [9] a numerical scheme for the random linear trans-
port equation is presented. In [30] numerical methods are employed for solving hyperbolic
conservation laws.

Distributional products and solutions of the inviscid Burgers equation

ut + uux = 0 (2.19)

are studied in [27, 28]. In [27] the concept of global α-solution for Eq. (2.19) is introduced, as
well as the existence of “delta-soliton” travelling waves. In [28] new solutions are presented.
System of transport equations are considered in [21, 29]. Further details can be found in
the references cited above. In what follows, the Lie point symmetries and conservation laws
for (1.3) shall be discussed.

2.4.1. Projectable symmetries of inviscid Burgers equation

Let us now consider the symmetries of Eq. (1.3).
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From Eq. (2.2), the symmetry coefficients τ, ξ and η satisfy the following determining
equations

ηt + a(u)ηx = 0, (2.20)

ηa′(u) + τxa(u)2 − ξt + τta(u) − ξxa(u) = 0. (2.21)

Since the system (2.20) and (2.21) is underdetermined, we use the symmetries obtained
by Nadjafikhah in [19]. The ansatz employed by Nadjafikhah in [19] was to consider the
projectable symmetries of (1.3). For more details, see [19].

Supposing that τ = τ(t, x) and ξ = ξ(t, x), Nadjafikhah obtained the following basis to
the symmetry Lie algebra (see [19, 20]):

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = x

∂

∂x
+ t

∂

∂t
, X4 = t

∂

∂t
− a(u)

a′(u)
∂

∂u
,

X5 = t
∂

∂x
+

1
a′(u)

∂

∂u
, X6 = x

∂

∂t
− a(u)2

a′(u)
∂

∂u
,

X7 = t2
∂

∂t
+ tx

∂

∂x
+

x − ta(u)
a′(u)

∂

∂u
,

X8 = tx
∂

∂t
+ x2 ∂

∂x
+

a(u)(x − ta(u))
a′(u)

∂

∂u
.

(2.22)

Two questions naturally arise:

Q1: Are there symmetries such that (ξu, τu) �= (0, 0)?
Q2: Could it possible to find symmetries more general than that obtained in [19]?

An (simple) answer to Q1 is the following: suppose τ = τ(u) and ξ = ξ(u). From (2.20)
and (2.21) we conclude that η = 0 and

X = τ(u)
∂

∂t
+ ξ(u)

∂

∂x

is a Lie point symmetry generator of (1.3).
In the next subsection Q2 shall be answered.

2.4.2. New Lie point symmetry generators for equation (1.3)

With regard to Q2, according to Corollary 2.1, if β = 0 in (2.14) and

X = τ(t, x)
∂

∂t
+ ξ(t, x)

∂

∂x
+ η(t, x, u)

∂

∂u
(2.23)

is a projectable symmetry generator of (2.14), then the determining Eqs. (2.18) do not have
terms involving derivatives of the Lie point symmetry generators with respect to u. Thus
it is easy to check that the components of the vector field

Xλ = λ(u)τ(t, x)
∂

∂t
+ λ(u)ξ(t, x)

∂

∂x
+ λ(u)η(t, x, u)

∂

∂u
,



June 16, 2011 9:26 WSPC/1402-9251 259-JNMP S1402925111001453

286 I. L. Freire

where λ = λ(u) is a smooth function, satisfy the determining Eqs. (2.18). So, the field Xλ

is a nonprojectable Lie point symmetry generator and the following results are immediate
consequences of the Corollary 2.1, Theorems 2.3 and 2.5.

Theorem 2.6. Let X be a projectable Lie point symmetry generator of equation

ut + α(t, u)ux = 0, (2.24)

and λ(u) a smooth function. Then the vector field Xλ = λ(u)X is a Lie point symmetry of
the Eq. (2.24).

Corollary 2.2. Let (2.23) be a projectable Lie point symmetry generator of Eq. (2.24),
λ(u) a smooth function and

C0 = λ(u)[η + (τα − ξ)ux]u,

C1 = λ(u)[ηα − (τα − ξ)ut]u.
(2.25)

Then the vector field C = (C0, C1) is a conserved field for Eq. (2.24).

Remarks. (1) According to Theorem 2.6, given a projectable symmetry generator X of
Eq. (2.24), from it we can construct an infinite number of nonprojectable symmetry
generators, given by Xλ = λ(u)X, where λ = λ(u) is a smooth function.

(2) From Corollary 2.2 it is easy to conclude that given a projectable symmetry generator
X of Eq. (2.24), it is possible to obtain an infinite number of conservation laws, given
by formulae (2.25).

2.5. Conservation laws for inviscid Burgers equation

Here we shall use the Ibragimov’s theorem on conservation laws [16] to establish the con-
servation laws for Eq. (1.3).

From Theorem 2.3, Eq. (1.3) is self-adjoint and Theorem 2.5 can be employed in order
to establish conservation laws for it.

From (2.25) and (1.3) a conserved vector is C = (C0, C1), where

C0 = [η + (τa(u) − ξ)ux]u,

C1 = [ηa(u) − (τa(u) − ξ)ut]u.
(2.26)

With regard to the time and spatial translational invariance, it is easy to check that the
conservation laws are trivial. Let A(u) be a function such that

A′(u) = ua(u). (2.27)

For the symmetry X3, the conservation law is DtC
0 + DxC1 = 0, where:

C0 = [ta(u) − x]uux,

C1 = [x − ta(u)]uut.
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Equation (1.3) is a first-order equation. Consequently, zero-order conservation laws are
more important than first-order one. So we intend to simplify the components C0 and C1

in order to establish zero-order conservation laws for (1.3).
Since C0 = Dx(tA) − xDx(u2/2) and C1 = Dt(xu2/2) − tDt(A), the conserved vector

C = (C0, C1) can be simplified using the fact

DtC
0 + DxC1 = Dx(A) + tDtDx(A) − xDtDx

(
u2

2

)

+Dt

(
u2

2

)
+ xDxDt

(
u2

2

)
− tDxDt(A)

= Dt

(
u2

2

)
+ Dx(A).

It follows that

C0 =
u2

2
, C1 = A, (2.28)

where A is given in (2.27), provides a conserved vector for Eq. (1.3).
Below we present, in a schematic form, the conservation laws associated to the Lie

point symmetry generators X4, . . . ,X8. First we present the conservation laws given by
Theorem 2.5. In the following, we give the simplified vector employing the same procedure
used in order to obtain the components (2.28).

(1) For the symmetry X4, the components of the vector field given by Theorem 2.5 are

C0 = − a(u)
a′(u)

u + ta(u)uux, C1 = −a(u)2

a′(u)
u − ta(u)uut.

The simplified components are

C0 =
au

a′
, C1 =

a2u

a′
− A. (2.29)

(2) For the symmetry X5, the components of the vector field given by Theorem 2.5 are

C0 =
u

a′(u)
− tuux, C1 =

a(u)
a′(u)

u + tuut.

The simplified components are

C0 =
u

a′
, C1 =

au

a′
− u2

2
. (2.30)

(3) For the symmetry X6, the components of the vector field given by Theorem 2.5 are

C0 = −a(u)2

a′(u)
u + xa(u)uux, C1 = −a(u)3

a′(u)
u − xa(u)uut.

The simplified components are

C0 =
a(u)2

a′(u)
u + A, C1 =

a(u)3

a′(u)
u. (2.31)
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(4) For the symmetry X7, the components of the vector field given by Theorem 2.5 are

C0 =
x − ta(u)

a′(u)
u + (t2a(u) − tx)uux, C1 =

x − ta(u)
a′(u)

a(u)u − (t2a(u) − tx)uut.

The simplified components are

C0 =
x − ta(u)

a′(u)
u +

tu2

2
, C1 =

x − ta(u)
a′(u)

a(u)u + 2tA − xu2

2
. (2.32)

(5) For the symmetry X8, the components of the vector field given by Theorem 2.5 are

C0 =
x − ta(u)

a′(u)
a(u)u + (txa(u) − x2)uux, C1 =

x − ta(u)
a′(u)

a(u)2u − (txa(u) − x2)uut.

The simplified components are

C0 =
x − ta

a′
au + xu2 − tA, C1 =

x − ta

a′
a2u + xA. (2.33)

3. Conclusion

In this paper we considered the general problem on group classification of the general first-
order evolution equation (1.2). We found the general classes of the quasi-self and self-adjoint
equations of the type (1.2). By using the recent Ibragimov’s theorem on conservation laws,
we derive the general formulae to the conserved fields. Our main results are summarized
in Theorems 2.1–2.6, Corollaries 2.1, 2.2 and in the conservation laws for inviscid Burgers
equation established in Sec. 3 (Eqs. (2.28)–(2.33)).

We believe that the research on group analysis of equations type (2.14) can be promising.
From Theorem 3, this equation is the most general first-order evolution equation that admits
self-adjoint equations. Following the Ibragimov’s theorem on conservation laws [16], we have
a closed form to express its conservation laws given by Eq. (2.26).

From (2.14) and the determining Eq. (2.18) it is noted that we can obtain an underde-
termined system of equations to be solved for 5 unknown functions α, β, τ, ξ and η. Thus,
the set of symmetries is infinity.

With regard to the inviscid Burgers equation (1.3), the set of the determining equations
is also underdetermined, as we can observe in (2.20) and (2.21). See also [19, 24]. From
Theorem 2.6 an infinite number of new symmetries of Eq. (1.3) are presented supposing
that Xλ = λ(u)X, where λ(u) is a smooth function, and

X = τ(t, x)
∂

∂t
+ ξ(t, x)

∂

∂x
+ η(t, x, u)

∂

∂u

is a projectable symmetry generator of (1.3). This just is one more possible ansatz to
determine Lie point symmetries of (1.3). From Corollary 2.2, the corresponding conservation
laws associated to the symmetries given by Theorem 2.6 are established.

A natural question that arises is: which more ansatz can someone use in order to obtain
more general symmetries of the inviscid Burgers equation? This is a question that, hopefully,
can inspirit some more progress in this area.
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