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We give a class of exact solutions of quartic scalar field theories. These solutions prove to be
interesting as are characterized by the production of mass contributions arising from the nonlinear
terms while maintaining a wave-like behavior. So, a quartic massless equation has a nonlinear
wave solution with a dispersion relation of a massive wave and a quartic scalar theory gets its
mass term renormalized in the dispersion relation through a term depending on the coupling and
an integration constant. When spontaneous breaking of symmetry is considered, such wave-like
solutions show how a mass term with the wrong sign and the nonlinearity give rise to a proper
dispersion relation. These latter solutions do not change the sign maintaining the property of the
selected value of the equilibrium state. Then, we use these solutions to obtain a quantum field theory
for the case of a quartic massless field. We get the propagator from a first-order correction showing
that is consistent in the limit of a very large coupling. The spectrum of a massless quartic scalar
field theory is then provided. From this we can conclude that, for an infinite countable number of
exact classical solutions, there exist an infinite number of equivalent quantum field theories that
are trivial in the limit of the coupling going to infinity.

Keywords: Exact solutions; quartic scalar field theory; mass gap.

1. Introduction

Nonlinear partial differential equations enter into the description of so many physical effects
to represent a vast subject for study. Indeed, not much exact solutions are known of such
equations and most of the analysis are carried out using small perturbation theory both for
classical and quantum solutions. But knowing exact solutions may help to understand the
behavior of physical phenomena in a range of parameters where small perturbation theory
just fails to produce significant results. This is a point generally emphasized when we work
on question like QCD or just, on a more general side, how massive contribution could be
produced beyond Higgs phenomenon.

So, our aims in this paper will be to show how an answer can be given to the question
of mass simply for the effect of the nonlinearities and how such solutions can give rise to
a significant quantum field theory in the limit of a strong coupling. This will not imply
that the solutions we will present here should be the ones chosen by Nature but their very
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existence can be used as a track for further understanding and providing a serious means
for other deep analysis.

A quartic field theory has a lot of applications ranging from condensed matter to quan-
tum field theory [1]. It has got a first relevant application in the area of phase transi-
tions [2, 3] and finally entered into particle physics through the pioneer works of Yoichiro
Nambu and Jeffrey Goldstone [4, 5]. So, they have such a relevance that knowing some
exact solutions may pave the way to a deeper understanding of the physical phenomena
they enter.

Our current ideas about mass terms in quantum field theory take the move from a phase
transition. A breaking of a symmetry selects the proper vacuum of a self-interacting quartic
field and being this vacuum value not zero, an interaction with this field can give a mass
term. But this could not be the only way a field can get a mass. Self-interaction could be
another one as we will show. Besides, this property could be maintained at a quantum level
provided a strong coupling in the self-interaction is considered. This will also produce a
discrete spectrum of excitations. Indeed, we will get the Green function from a first-order
correction and the corresponding spectrum, at least for a quartic massless scalar field. In
this way we will be able to reconnect such exact solutions to our recent proposal for a strong
coupling analysis of a quantum field theory [6].

The main results of the paper is that, in the limit of the coupling going to infinity, there
are an infinite number of equivalent quantum field theories, built from the correspond-
ing subset of infinite exact classical solutions, that are trivial. Indeed, we get a Gaussian
functional with the spectrum of a harmonic oscillator.

The paper is so structured. In Sec. 2 we give the relevant exact solutions having the
property to contributing to the mass in the dispersion relations, due to the self-interaction
term. In Sec. 3 we give the corresponding quantum field theory showing how this can be
built starting from an infinite countable subset of the full set of classical solutions producing
a trivial theory. Finally, our conclusions are given in Sec. 4.

2. Classical Scalar Field Theories

In the following we present wave-like exact solutions with peculiar dispersion relations. Mass
terms or contributions to mass depend on the coupling in the nonlinear terms and so we can
understand how self-interaction is truly effective in turning massless excitations into massive
ones. We note that these solutions hold in any dimensionality provided that the integration
constant has the proper dimension and the coupling has been made dimensionless.

2.1. Massive and massless scalar field theories

Let us consider the equation

−�φ + µ2
0φ + λφ3 = 0 (2.1)

being � = −∂2
t + ∆ the wave operator, µ0 the mass of the field and λ the coupling. By

direct substitution one can verify that a solution is given by

φ(x) = ±
√

2µ4

µ2
0 +

√
µ4

0 + 2λµ4
sn

(
p · x + θ,

√
−µ2

0 +
√

µ4
0 + 2λµ4

−µ2
0 −

√
µ4

0 + 2λµ4

)
(2.2)
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provided that

p2 = µ2
0 +

λµ4

µ2
0 +

√
µ4

0 + 2λµ4
(2.3)

being θ and µ two integration constants and sn a Jacobi elliptical function that is periodic
representing a nonlinear wave-like solution. From the dispersion relation we can see that
the mass of the field gets a contribution from the coupling λ and the integration constant
µ, so it arises from the self-interacting term as it becomes zero when λ is taken to be zero
(no interaction case).

These formulas are simplified setting the mass of the field to zero. As they will be used
in the following, we give them here. The solution becomes

φ(x) = ±µ

(
2
λ

)1
4

sn(p · x + θ, i) (2.4)

provided

p2 = µ2

(
λ

2

)1
2

. (2.5)

This solution shows how a massless field can become massive just from the self-interacting
term. Already at the classical level, we get an arbitrary integration constant having the
dimension of a mass.

2.2. Spontaneous breaking of symmetry

We get spontaneous breaking of symmetry when the mass term is taken with a wrong sign
to have

− �φ − µ2
0φ + λφ3 = 0. (2.6)

This equation has the following exact wave-like solution

φ(x) = ±v · dn(p · x + θ, i) (2.7)

provided that

p2 =
λv2

2
(2.8)

being v =
√

2µ2
0

3λ . We see that the dispersion relation has the mass term with the right sign

and we are describing oscillations around one of the selected solutions φ = ±
√

3
2v as the

Jacobi function dn is never zero.

2.3. Fourier expansion of solutions

These solutions have a Fourier expansion being periodic functions. These expansions are
widely known, being those of Jacobi elliptical functions. In this way one can present them
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as a superposition of plane waves. So, one has [8]

φ(x) =
2π

kK(k)

∞∑
n=0

qn+ 1
2

1 − q2n+1
sin
[
(2n + 1)

π

2K(k)
p · x

]
(2.9)

being q = e
−π

K′(k)
K(k) , k =

√
−µ2

0+
√

µ4
0+2λµ4

−µ2
0−
√

µ4
0+2λµ4

, K ′(k) = K(
√

1 − k2) and finally K(k) =∫ π/2
0 dx/

√
1 − k2 sin x. The reason why such a Fourier series is interesting is that, in the

rest reference frame, taking p = 0, one has

φ(t, 0) =
2π

kK(k)

∞∑
n=0

qn+ 1
2

1 − q2n+1
sin
[
(2n + 1)

π

2K(k)
mt

]
(2.10)

having set

m = m(µ0, µ, λ) =

√
µ2

0 +
λµ4

µ2
0 +

√
µ4

0 + 2λµ4
(2.11)

that is the “renormalized mass” for these classical field excitations. From this expansion
one can read out a kind of mass spectrum

εn = (2n + 1)
π

2K(k)
m. (2.12)

In order to interpret this as a true mass spectrum we need a quantum field theory. In
the next section we will show that this is indeed the case and these solutions represent
essentially free massive particles. These equations simplify significantly taking µ0 = 0. As
we will use these formulas in the following, we will give them here. One has

φ(x) = ±µ

(
2
λ

)1
4

∞∑
n=0

(−1)n
2π

K(i)
e(n+ 1

2
)π

1 + e−(2n+1)π
sin
(

(2n + 1)
π

2K(i)
p · x

)
(2.13)

so that

φ(t, 0) = ±µ

(
2
λ

)1
4

∞∑
n=0

(−1)n
2π

K(i)
e(n+ 1

2
)π

1 + e−(2n+1)π
sin

(
(2n + 1)

π

2K(i)

(
λ

2

)1
4

µt

)
(2.14)

and a “mass spectrum”

εn = (2n + 1)
π

2K(i)

(
λ

2

)1
4

µ. (2.15)

Finally, we consider the case for spontaneous breaking of symmetry having

φ(x) =
π

2K(i)
+

2π
K(i)

∞∑
n=1

(−1)2e−nπ

1 + e−2nπ
cos
(

2n
π

2K(i)
p · x

)
(2.16)

and so

φ(t, 0) =
π

2K(i)
+

2π
K(i)

∞∑
n=1

(−1)2e−nπ

1 + e−2nπ
cos
(

2n
π

2K(i)
µ0√

3
t

)
(2.17)
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giving rise to a “mass spectrum” [7]

εn = n
π

K(i)
µ0√

3
(2.18)

with n = 0, 1, 2, . . . .

3. Quantum Field Theory of a Massless Scalar Field Theory

In this section we analyze the simplest case of a massless quartic scalar field and we exploit
the corresponding quantum field theory. The idea is to do a series development around the
exact solution given above and evaluate the corresponding first-order correction to see how
this term will go to depend on the coupling λ. This will permit us to obtain a physical
understanding of such an expansion. We note that the coupling λ is dimensionless only for
D = 4. So, in the following we take the product λ

1
4 µ having always the dimension of a mass.

We consider the generating functional

Z[j] = N

∫
[dφ]ei

R
dDx[ 1

2
(∂φ)2−λ

4
φ4+jφ] (3.1)

being N a normalization constant, and we take the substitution φ = φc +δφ+O(δφ2) being
φc the classical solution given in Eq. (2.4). We will recover the results given in [6] and the
first higher correction as it should be. After the substitution has done one has

Z[j] = ei[Sc+
R

dDxjφc]

∫
[dδφ]ei

R
dDx[ 1

2
(∂δφ)2− 3

2
φ2

c(δφ)2+jδφ] + O((δφ)3). (3.2)

So, we can see that we can accomplish a fully integration setting

δφ = δφ0 +
∫

dDy∆1(x − y)j(y), (3.3)

in the path integral, being

− �∆1(x − y) + 3λφ2
c(x)∆1(x − y) = δD(x − y). (3.4)

This equation can be solved exactly writing down

Gn(x) = −δD−1(x)θ(t)
1

µ(23λ)
1
4

cn

[(
λ

2

)1
4

µt + (4n + 1)K(i), i

]

× dn

[(
λ

2

)1
4

µt + (4n + 1)K(i), i

]
(3.5)

when the phase of the exact solution is taken to be θn = (4n + 1)K(i). This identifies
an infinite class of quantum field theories for which we are able to compute starting from
a subset of infinite countable exact solutions of the classical theory. All such theories are
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equivalent. So, in the end we have

Zn[j] = Zn[0]ei[
R

dDxj(x)φ
(n)
c (x)+

R
dDxdDyj(x)Gn(x−y)j(y)] + O((δφ)3) (3.6)

that has the Gaussian form of a free theory. In order to compute the spectrum of the theory,
we note that one can write

Gn(x) = −δD−1(x)θ(t)
1

2µ2

d

du
φ(n)

c (u, 0)
∣∣∣∣
u=(λ

2
)
1
4 µt

. (3.7)

Using Eq. (2.14) one has finally

Gn(x) = −δD−1(x)θ(t)
1
2µ

(
2
λ

)1
4 π2

K(i)2

∞∑
n=0

(−1)n(2n + 1)
e(n+ 1

2
)π

1 + e−(2n+1)π

× cos

(
(2n + 1)

π

2K(i)

(
λ

2

)1
4

µt + θn

)
(3.8)

that has the required form

Gn(x) = −δD−1(x)θ(t)
∞∑

n=0

Bne−iεnt + c.c. (3.9)

with

εn = (2n + 1)
π

2K(i)

(
λ

2

)1
4

µ (3.10)

that can now be identified with a mass spectrum. We have a quantum theory of free massive
particles. We note that we have recovered the same result obtained with a strong coupling
expansion applied to quantum field theory [6]. So, this theory is consistent in the limit of a
very large coupling λ. We can state this conclusion in a different way: An infinite class of
quantum field theories can be built, from an infinite subset of exact solutions of a classical
massless quartic field theory, that are trivial in the limit of the coupling going to infinity.

Finally, we can prove that quantum fluctuations have a Goldstone mode. We work on
the lines of Ref. 9. From the generating functional (3.2) we can take for the fluctuations a
series in eigenmodes

δφ(x) =
∑

n

cnχn(x) (3.11)

so that, for each eigenmode, one has to solve the eigenvalue equation

−�χn(x) + 3λφ2
c(x)χn(x) = εnχn(x). (3.12)

Already for the Green function above we have shown the existence of the solution for
n = 0. So, we conclude that a zero mode exists due to translational invariance. It would be
interesting to know the fate of this mode when such a scalar field interacts with a gauge
field [10].

One of the interesting consequences of this result is that a quantum field theory built
with Jacobi functions is a free theory exactly as for the case of sine and cosine functions.
But this result should be expected as the latter are a particular case of the former.
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4. Conclusion

In this paper we have proved an interesting result, consistent with the behavior of scalar
theories in the large coupling regime, that there exist an infinite class of equivalent quantum
field theories, arising from exact solutions of the corresponding classical equation of motion,
that are trivial. They have a Gaussian generating functional and the spectrum of a harmonic
oscillator. But the result to be emphasized is that such free particles are massive when the
theory we started with has no mass term. When a mass term is present, the theory show a
correcting term to the mass itself that depends on the coupling and an integration constant
and that goes to zero when such a coupling goes to zero. This means that mass terms arise
from the self-interaction of the field and, as this becomes more and more important, with
the failure of small perturbation theory, field excitations acquire mass. This in turn should
imply that, if we want to go to higher orders, these excitations are the quantum states to
start with.
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