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1. Introduction

Let us consider a natural integrable by Liouville system on a Riemannian manifold Q for
which the Hamilton function

H = T + V =
n∑

i,j=1

gijpipj + V (q1, . . . , qn) (1.1)

is the sum of the geodesic Hamiltonian T and potential energy V . Integrability means that
there are functionally independent integrals of motion H1 = H,H2, . . . ,Hn in involution

{Hi,Hj} = 〈dHi, PdHj〉 = 0,

with respect to the canonical Poisson brackets defined by the following Poisson bivector

P =
(

0 I
−I 0

)
. (1.2)

Among integrable systems we want to pick out a family of bi-integrable systems for which:

• There is a second Poisson bivector P ′ compatible with P , i.e.

[P,P ′] = 0, [P ′, P ′] = 0, (1.3)

where [·, ·] is the Schouten bracket.
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• Integrals of motion H1, . . . ,Hn are in bi-involution with respect to both Poisson brackets

{Hi,Hj} = {Hi,Hj}′ = 0. (1.4)

First example of bi-integrable systems are bi-hamiltonian systems. The concept of bi-
hamiltonian vector fields was introduced firstly by Magri studying the Korteweg-de-Vries
equation in order to explain integrability of soliton equations from the standpoint of clas-
sical analytical mechanics [28]. However, for the overwhelming majority of known natural
integrable systems on Riemannian manifolds the Hamiltonians H (1.1) give rise to nonbi-
hamiltonian vector fields X = PdH. The natural obstacle for existence of the bi-hamiltonian
vector fields in finite-dimensional case is discussed in [10].

The second special but more fundamental example of bi-integrable systems are separable
systems, for which there exist n separation relations of the form

φi(ui, vi,H1, . . . ,Hn) = 0, i = 1, . . . , n, with det
[

∂φi
∂Hj

]
�= 0. (1.5)

Here u = (u1, . . . , un) and v = (v1, . . . , vn) are canonical variables of separation, {ui, vj} =
δij . The proof of the fact that any separable system is a bi-integrable system with respect
to second Poisson bivector

P ′ =
(

0 F
−F 0

)
, F = diag(f1(u1, v1), . . . , fn(un, vn))

labeled by n arbitrary functions fk on variables of separation may be found in [39]. The
main problem is how to describe these bivectors in terms of initial physical variables or,
equivalently, how to determine variables of separation for a given natural Hamilton function
on Q.

This problem is solved for the quadratic in momenta integrals of motion H1, . . . ,Hn

separable in orthogonal coordinate systems on Q, see [2–4, 6, 8, 11, 19, 21, 22, 35] and
references within. In this case initial physical coordinates are related with coordinates of
separation by the point transformation

qi = gi(u1, . . . , un), pi =
n∑
j=1

hij(u1, . . . , un)vj . (1.6)

The first algebraic condition for separability systems with quadratic in momenta integrals
of motion has been found by Stäckel [35]. Then in [26] Levi-Civita proved that a Hamilton–
Jacobi equation H(q, p) = E admits a separated solution if and only if the separability
conditions or separability equations of Levi-Civita are identically satisfied

∂iH∂jH∂i∂jH + ∂i∂jH∂i∂jH − ∂iH∂jH∂i∂jH − ∂iH∂jH∂i∂
jH = 0, i, j = 1, . . . , n,

here ∂k = ∂/∂uk and ∂k = ∂/∂vk. Using transformations (1.6) it is easy to rewrite Levi-
Civita equations as polynomial equations of fourth degree in the momenta p1, . . . , pn and
to note that fourth-degree homogeneous part of the Levi-Civita equations depends only on
the geodesic Hamiltonian T . Such as Levi-Civita equations must be identically satisfied for
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all admissible values of p1, . . . , pn it means that:

• the separation of the geodesic equation is a necessary condition for the separation at
V �= 0;

• the study of the geodesic separation plays a prominent role.

As was shown by Eisenhart (for an orthogonal case at gij = 0 for i �= j) and by Kalnins
and Miller for generic case, the geodesic separation is related to the existence of Killing
vectors and Killing tensors of order two [15, 23, 24]. These ideas are nicely embraced by the
geometric notion of Killing webs discussed in [2–4].

In framework of the geometric Benenti theory it is possible to construct a basis of Killing
tensors by coordinate independent algebraic procedure starting with special tensor L with
the following properties:

(1) L is a conformal Killing tensor of gradient type,
(2) the Nijenhuis torsion of L vanishes,
(3) L has pointwise simple eigenvalues.

According to [6, 19, 22, 47], these conditions entail that we can define the second Poisson
bivector

P ′ =

 0 Lij

−Lij
∑n

k=1

(
∂Lki
∂qj

− ∂Lkj

∂qi

)
pk

 , (1.7)

and that eigenvalues of the recursion operator N = P ′P−1 are the desired variables of
separation. Some algorithms and software for calculation of the Benenti tensor L starting
with a given natural Hamilton function on the Riemannian manifold Q of constant curvature
may be found in [18, 21, 49].

In this note we consider natural Hamiltonians (1.1) on R
2n with unit metric tensor

H =
n∑
i=1

p2
i + V (q1, . . . , qn), gij = δij , (1.8)

and the corresponding natural Poisson bivectors

P ′ =

(∑n
k=1

(
∂Πjk

∂pi
− ∂Πik

∂pj

)
qk Πij

−Πji 0

)
+

 0 Λij

−Λji
∑n

k=1

(
∂Λki
∂qj

− ∂Λkj

∂qi

)
pk

 , (1.9)

which are separable on geodesic and potential parts. Here geodesic Hamiltonian T and
geodesic matrix Π depend only on momenta p1, . . . , pn and Π has zero Nijenhuis torsion as
a tensor field on R

n with these coordinates. Potential V and potential matrix Λ depend only
on coordinates q1, . . . , qn and the Nijenhuis torsion of Λ on configurational space Q = R

n

is equal to zero.
This paper belongs mostly to so-called “experimental” mathematical physics. Our main

aim is to present some of the most striking examples of matrices Π, Λ and to discuss the
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yet unsolved problems:

• invariant definition and construction of Π and Λ without an unpretentious solution of
Eqs. (1.3) in the special coordinate system fixed by unit metric tensor (1.8);

• finding the integrals of motion in bi-involution from P ′;
• calculation of separation variables;
• definition of similar bivectors on another Riemannian manifolds.

Note that at Π = 0 we have exactly the same problems, which have been partially solved
in framework of the Benenti theory. In fact the Benenti recursion procedure concerns with
a special subclass of the Stäckel systems, which contains for instance the classical Jacobi
separation of the geodesic flow on an asymmetric ellipsoid [5, 8]. Another solutions of
these problems are related with lifting of the Stäckel systems to bi-Hamiltonian systems of
Gelfand–Zakharevich type using extension of the initial phase space [6, 19, 22]. However, all
these solutions are relatively simple because momenta pj are linear functions on vj (1.6) and,
therefore, our Hamilton function H has natural form simultaneously in physical variables
(p, q) and in variables of separation (u, v).

In generic case at Π �= 0 for the present we do not have any satisfactory solutions
of these problems. Some efforts of applying the Killing theory to integrable systems with
higher-order integrals of motion have been made in [30]. Particular solutions of the other
problems by brute force method may be found in [27, 38, 41, 42, 45, 46, 48].

The paper is organized as follows. In Sec. 2 the concept of natural Poisson bivectors
on the Riemannian manifolds is briefly reviewed. The Toda lattices and rational Calogero-
Moser systems illustrate possible applications of this concept. In Sec. 3 the problem of
classification bi-integrable systems on low-dimensional Euclidean spaces is treated. The
Henon–Heiles system, the system with quartic potential, the Holt-like system and some new
bi-integrable systems are discussed as well. In Sec. 4 we introduce natural Poisson bivectors
on the sphere S

n. At n = 2 we show natural bivectors associated with the Kowalevski top,
Chaplygin system and Goryachev–Chaplygin top. The possible generalizations of natural
Poisson bivectors are discussed in the final section.

2. Natural Poisson Bivectors on the Riemannian Manifolds

Let Q be an n-dimensional Riemannian manifold. Its cotangent bundle T ∗Q is naturally
endowed with canonical invertible Poisson bivector P , which has the standard form (1.2)
in fibered coordinates (p, q) on T ∗Q.

Definition 1. A Poisson bivector P ′ on T ∗Q has a natural form if it is a sum of the geodesic
Poisson bivector P ′

T and the potential Poisson bivector defining by torsionless (1.1) tensor
field Λ(q1, . . . , qn) on Q

P ′ = P ′
T +

 0 Λij

−Λji
∑n

k=1

(
∂Λki
∂qj

− ∂Λkj

∂qi

)
pk

 , (2.1)

In fact, here we assume that bi-integrability of the geodesic motion is a necessary condi-
tion for bi-integrability in generic case at V �= 0 and, therefore, natural bivector P ′ has to
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remain the Poisson bivector at Λ = 0. It allows us to classify all possible geodesic solutions
P ′
T of the equations (1.3) and then to add to them various consistent potential parts.

The main result of the our experiments is that all the known geodesic Poisson bivectors
P ′
T have the following form

P ′
T =

(
∂pΠ Π

−Π� ∂qΠ

)
. (2.2)

Here entries of geodesic matrix Π are the homogeneous second-order polynomials in
momenta

Πij =
n∑

k,m=1

ckmij (q)pkpm, (2.3)

similar to the geodesic Hamiltonian T (1.1), whereas antisymmetric tensors ∂pΠ and ∂qΠ
are given by (1.9) or by more complicated expressions considered in Secs. 2.2, 4 and 5.1.

Proposition 1. Natural Poisson bivectors P ′ (2.1), (2.2) are unambiguously determined
by a pair of geodesic and potential n × n matrices (Π, Λ) on 2n-dimensional space T ∗Q.

Our definition of the natural Poisson bivectors P ′ drastically depends on a choice of
coordinate system. We hope that further inquiry of invariant geometric relations between
metric tensor G and matrices Π, Λ allows us to get more invariant and rigorous mathematical
description of these objects.

There is a family of integrable potentials V , which may be added to a given geodesic
Hamiltonian T in order to get integrable Hamiltonian H = T + V . By analogy, we define a
family of compatible potential matrices Λ, which may be added to a given geodesic matrix
Π in order to get natural Poisson bivector P ′ compatible with P .

Definition 2. Potential matrix Λ is compatible with geodesic matrix Π if the natural
Poisson bivector P ′ (2.1), (2.2) satisfies Eqs. (1.3), so that P − λP ′ is a Poisson bivector
for each λ.

Remark 1. In some sense we have to waive previous the principle that geodesic motion
is completely independent from potential. In fact for the same geodesic Hamiltonian T we
have many different geodesic matrices Π compatible with various potential matrices Λ, i.e.
our choice of Π depends on potential V .

2.1. Integrals of motion versus variables of separation

Below we suppose that natural Poisson bivector P ′ (2.1) is always compatible with canonical
bivector P , so that the phase space T ∗Q becomes bi-hamiltonian manifold endowed with
the hereditary recursion operator

N = P ′P−1.

In general, there are three different occasions:

(1) recursion operator produces the necessary number of integrals of motion;
(2) recursion operator generates variables of separation instead of integrals of motion;
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(3) recursion operator produces only some part of the integrals of motion or variables of
separation.

In the first case, the traces of powers of the recursion operator N are functionally
independent constants of motion

H1 = T + V =
1
2

trace N, Hk =
1
2k

trace Nk, k = 2, . . . , n, (2.4)

and our natural Hamiltonian H (1.1) is directly determined by Π and Λ:

H = H1, T =
n∑
i=1

Πii, and V =
n∑
i=1

Λii.

This Hamiltonian defines natural bi-Hamiltonian system on T ∗Q.
In the second case, the traces of powers of the recursion operator N remain functionally

independent constants of motion for an auxiliary bi-Hamiltonian system on T ∗Q, which
differs for our target system with Hamiltonian H (1.1)

H �= 1
2

trace N, T �=
n∑
i=1

Πii, and V �=
n∑
i=1

Λii.

In this situation we will treat eigenvalues uj of N

B(λ) = (det(N − λI))1/2 = (λ − u1)(λ − u2) · · · (λ − un), (2.5)

as separation variables for a huge family of separable bi-integrable systems on T ∗Q asso-
ciated with various separated relations (1.5). Of course, this construction will be justified
only if we are capable to obtain desired Hamilton functions H (1.1) from (1.5).

In third case recursion operators N is degenerate and produces only a part of integrals of
motion or variables of separation. We can leave this difficulty and get the necessary number
of functionally independent integrals of motion using some additional assumptions about
the so-called control matrices F defined by

P ′dHi = P
n∑
j=1

Fij dHj, i = 1, . . . , n. (2.6)

According to [38], we can fix some special forms of F and try to get the corresponding
natural Hamiltonians H1 and natural Poisson bivectors P ′ simultaneously.

Now we are going to illustrate the first and the third opportunities by examples of the
n-body Toda lattice and of the rational Calogero–Moser system, respectively. Construction
of separation variables are considered in Secs. 3.3 and 5.

2.2. The Toda lattices

Let us start with a well-known second Poisson tensor for the open Toda lattice associated
with An root system [13]:

P̂ =
n−1∑
i=1

eqi−qi+1
∂

∂pi+1
∧ ∂

∂pi
+

n∑
i=1

pi
∂

∂qi
∧ ∂

∂pi
+

n∑
i<j

∂

∂qj
∧ ∂

∂qi
. (2.7)
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This bivector is different from the natural Poisson bivector defined by (2.1) and (2.2).
Nevertheless, using recursion operator N̂ = P̂P−1, it is easy to get a quadratic in momenta
Poisson bivector

P ′ = N̂ P̂ , (2.8)

which has the natural form of (2.1) and (2.2) if we put

Π = diag(p2
1, . . . , p

2
n), ∂qΠ = 0, (∂pΠ)ij =



1
2

(
∂Πii

∂pi
+

∂Πjj

∂pj

)
, i < j;

0, i = j;

−1
2

(
∂Πii

∂pi
+

∂Πjj

∂pj

)
, i > j;

(2.9)

and if n × n potential tensor Λ = −EA is a product of two antisymmetric matrices with
entries

Eij =


1, i < j;
0, i = j;

−1, i > j;
and Ai,i+1 = aeqi−qi+1. (2.10)

In this case the recursion operator N = P ′P−1 produces the necessary number of integrals
of motion Hk defined by (2.4) and the Hamilton function has the natural form

H1 =
1
2

trace N =
n∑
i=1

p2
i + 2a

n−1∑
i=1

eqi−qi+1.

In order to get variables of separation we have to introduce another linear in momenta
Poisson bivector [39], which may be rewritten in natural form as well.

Remark 2. In fact matrix A (2.10) is the well-known second matrix in the Lax equation
L̇ = [L,A] for the open Toda lattice. In framework of the group theoretical settings of
integrable systems the Lax matrices are viewed as a coadjoint orbits of a Lie algebras.
We believe that natural bivector P ′ (2.8) has transparent algebro-geometric justification,
similar to compatible bivectors from [7].

The Poisson bivectors for the Toda lattices associated with BCn and Dn root systems
have the natural form of (2.1) and (2.2) if

Π = diag(p2
1, . . . , p

2
n), ∂qΠ = 0, (∂pΠ)ij =



∂Πii

∂pi
, i < j;

0, i = j;

−∂Πii

∂pi
, i > j;

and if n × n potential parts are given by

BCn Λ = −(I + 2Ẽ)A + beqn B + ce2qn C,

Dn Λ = −(I + 2Ẽ)A + deqn−1+qn D, b, c, d,∈ R,
(2.11)
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where I is the unit matrix, A is given by (2.10) and Ẽ is a strictly upper triangular matrix

Ẽij =
{

1 i < j

0 i ≥ j
.

Matrices B,C and D have nonzero entries only in the last columns:

B =


0 · · · 0 1
...

. . .
...

...
0 · · · 0 1
0 · · · 0 1

 , C =


0 · · · 0 2
...

. . .
...

...
0 · · · 0 2
0 · · · 0 1

 , D =


0 · · · 0 2 2
...

. . .
...

...
...

0 · · · 0 2 2
0 · · · 0 2 1
0 · · · 0 −1 0

 .

As above, recursion operators N generate integrals of motion Hk (2.4) and Hamilton
functions have the natural form

BCn H1 =
n∑
i=1

p2
i + 2a

n−1∑
i=1

eqi−qi+1 + beqn + ce2qn

Dn H1 =
n∑
i=1

p2
i + 2a

n−1∑
i=1

eqi−qi+1 + 2deqn−1+qn .

These natural Poisson bivectors in (p, q)-variables have been obtained in [12], whereas bi-
hamiltonian structures for the periodic Toda lattices and construction of the separation
variables are discussed in [40, 43].

Remark 3. The “relativistic” modification of the natural Poisson bivector (2.1) associated
with relativistic n-body Toda model [31] is considered in Sec. 5.2.

2.3. The Calogero–Moser system

The bi-Hamiltonian formulation of the Calogero–Moser system can be found in [1, 16, 29].
We present new and very simple natural Poisson bivector (1.9), which is different form these
known Poisson brackets expressed directly in terms of integrals Hk.

The n-particle rational Calogero–Moser model associated with the root system An is
defined by the Hamilton function

H =
1
2

n∑
i=1

p2
i − a2

n∑
i�=j

1
(qi − qj)2

, (2.12)

where a is a coupling constant. The second natural Poisson bivector P ′ (1.9) for this system
is defined by symmetric geodesic matrix

Π = p ⊗ p, Πij = pipj (2.13)

and potential matrix Λ with entries

Λij = qi

n∑
k �=j

a2

(qj − qk)3
. (2.14)
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In this case recursion operator N = P ′P−1 generates only the Hamilton function

trace Nk = 2(2H)k and P dH = P ′d ln H (2.15)

and we have so-called irregular bi-Hamiltonian manifold. Nevertheless, integrals of motion
Hk = 1

k! traceLk obtained from the standard Lax matrix

L =



p1
a

q1−q2 · · · a
q1−qn

a
q2−q1 p2

. . .
...

...
. . . . . .

...
a

qn−q1
a

qn−q2 · · · pn

 .

are in bi-involution (1.4) with respect to the Poisson brackets defined by P (1.2) and P ′

(2.13) and (2.14). Besides these n integrals of motion the rational Calogero–Moser system
admits n − 1 additional functionally independent integrals of motion Km

Km = mg1Hm − gmH1, gm =
1
2

{
n∑
i=1

q 2
j ,Hm

}
, m = 2, . . . , n.

All these integrals of motion Hk and Km may be obtained from the Hamilton function
H = H2 (2.12) as polynomial solutions of the following equations

P dH =
1
k

P ′ d ln Hk =
1

m − 1
P ′ d ln Km. (2.16)

In Sec. 3.2 we discuss solutions of Eq. (2.16) associated with another natural Poisson bivec-
tors and other bi-integrable systems.

Remark 4. We suppose that trigonometric (elliptic) Calogero–Moser systems and their
generalizations associated with other root systems may be associated with natural Poisson
bivectors, see [38] at n = 2. In order to describe the Ruijsenaars–Schneider model we can
try to introduce another Poisson bivector P ′ similar to relativistic Toda case, see Sec. 5.2.

3. Natural Bivectors on Low-Dimensional Euclidean Spaces

Now let us come back to the Poisson manifold R2n endowed with the natural Poisson
bivector (1.9). In this case the corresponding Poisson bracket {·, ·}′ looks like

{qi, pj}′ = Πij + Λij, {qi, qj}′ =
n∑
k=1

(
∂Πjk

∂pi
− ∂Πik

∂pj

)
qk,

{pi, pj}′ =
n∑
k=1

(
∂Λki
∂qj

− ∂Λkj
∂qi

)
pk.

(3.1)

The geodesic Hamiltonian T is second-order homogeneous polynomial in momenta, so we are
going to suppose that entries of Π are second-order homogeneous polynomials in momenta as
well. This assumption allows as to get a lot of natural Poisson bivectors P ′ (1.9) compatible
with canonical bivector P and describe the corresponding bi-integrable systems. For brevity
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we will not consider the complete classification and restrict ourselves by discussing only more
interesting examples for n = 2, 3. Some other examples may be found in [27, 38].

3.1. Integrals of motion via recursion operator

In this section we suppose that geodesic Hamiltonian T and potential V are directly deter-
mined by Π and Λ (2.4).

Case 1. Let us start with the nondegenerate geodesic matrix

Π(1) =
1
2

(
p2
1 + 1

2p2
2 0

1
2p1p2

1
2p2

2

)
, so that T =

p2
1 + p2

2

2
. (3.2)

There are some potential matrices Λ compatible with it, for instance:

Λ(1) =

( 3c1q2
8 + c2

8

)
q2
1 + c1q

3
2 + c2q

2
2 + c3q2

c1q31
16 +

(
3c1q22

2 + c2q2 + c3
2

)
q1

− c1q31
32 c1q

3
2 + c2q

2
2 + c3q2

 ,

V (1) =
c1

8
q2(3q2

1 + 16q2
2) + c2

(
2q2

2 +
q2
1

8

)
+ 2c3q2, (3.3)

and

Λ(1′) =

 c1q41
4 +

(
3c1q

2
2 + c2

) q21
2 + c1q

4
2 + c2q

2
2 + c3

q22

c1q31q2
2 +

(
2c1q

3
2 + c2q2 − c3

q32

)
q1

− c1q31q2
4 c1q

4
2 + c2q

2
2 + c3

q22

 ,

V (1′) =
c1

4
(q4

1 + 6q2
1q

2
2 + 8q4

2) +
c2

2
(q2

1 + 4q2
2) +

2c3

q2
2

. (3.4)

The second integrals of motion H2 = trace N2 are fourth-order polynomials in momenta:

H
(1)
2 = p4

1 +
q2
1(3c1q2 + c2)

2
p2
1−

c1q
3
1

2
p1p2− q4

1

32
(c2

1(6q2
2 +q2

1)+c1(8c3 +4c2q2)−2c2
2) (3.5)

and

H
(1′)
2 = (p2

1 + c2q
2
1)2 + c1q

2
1((q2

1 + 6q2
2)p2

1 + q2
1p

2
2 − 4q1q2p1p2) +

4c1c3q
4
1

q2
2

+
1
4
c1q

4
1(q2

1 + 2q2
2)(c1q

2
1 + 2c1q

2
2 + 4c2). (3.6)

These integrable systems were found by using the weak-Painlevé property of equation of
motion and the direct search of fourth-order polynomial integrals of motion, see [17, 20].

Remark 5. The Henon–Heiles system with potential V (1) and the system with fourth-
order potential V (1′) admit various integrable generalizations [17, 20], which are considered
in Sec. 5.3.
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Case 1. At n = 3 the immediate generalization of Π(1) (3.2) looks like

Π(1g) =
1
2


p21
3 + p22

2 0
√

2p1p2
3 + 2p1p3

3

p1p2
2

p22
2

√
2p21
6

√
2p1p2
2 −

√
2p21
3

2p21
3 + p2

3

 , T =
p2
1 + p2

2 + p2
3

2
. (3.7)

One of the potential matrices Λ compatible with Π(1g) is equal to

Λ(1g) = c1


q2(9q21+8q22)

2
q1(q21+8q22)

4

√
2q1(3q21+16q22−4q23+8

√
2q2q3)

8

−9q31
8 4q3

2 −3
√

2q22(q2+
√

2q3)
4

3
√

2q1(3q21+4q22+2q23+2
√

2q2q3)
4

3
√

2q21(4q2+
√

2q3)
4 3q2

1q2 + 3
√

2q2
1q3 +

√
2q3

3



+ c2


3q2

1 + 8q2
2 8q1q2 4

√
2q1q2

0 8q2
2 −3

√
2

2 q2
1

6(
√

2q2 + q3)q1 3
√

2q2
1 4q2

3 + 6q2
1

+ c3


q2

q1
2

√
2q1
4

0 q2 0

3
√

2q1
4 0

√
2q3
2

 ,

so that

V (1g) = c1

(
8q3

2 +
15
2

q2
1q2 + 3

√
2q3q

2
1 +

√
2q3

3

)
+ c2(16q2

2 + 9q2
1 + 4q2

3) + c3

(
2q2 +

√
2

2
q3

)
.

In this case the integrals of motion H2 = trace N2 and H3 = det N are the fourth- and
sixth-order polynomials in momenta, such that few pages are necessary to write them down.

Remark 6. At c2,3 = 0 this potential is equivalent to potential V10 in [32]. Similar Pois-
son bivectors may be constructed for another potentials from [32] and for n-dimensional
generalizations of the Henon–Heiles systems and systems with quartic potentials [14].

3.2. Integrals of motion via control matrices

In [38] we have obtained some natural Poisson bivectors using the Lenard and Fröbenius con-
trol matrices. Now we present some new examples of two-dimensional bi-integrable systems
associated with degenerate control matrix

F =

(
H1 0

κ
−1H2 0

)
, κ ∈ R. (3.8)

It means that Hamiltonian H1 is the solution of the equation

X = P1dH1 = P ′d ln H1,

whereas H2 is the solution of the equation depending on rational parameter κ

X = P1dH1 = κP ′d ln H2, (3.9)

similar to the equations for the Calogero–Moser system (2.16).
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An algebraic construction of such two-dimensional Hamilton functions H1, additional
integrals of motion H2 and natural Poisson bivectors P ′ (1.9) has been proposed in [27].

Case 2. Let us consider the degenerate symmetric matrix associated with the Calogero–
Moser systems (2.13)

Π(2) =
1
2

(
p2
1 p1p2

p1p2 p2
2

)
, such that T =

p2
1 + p2

2

2
. (3.10)

There are some other potential matrices Λ compatible with it, for instance,

Λ(2) = c1
(q21+q22)2

(
q2
1 q1q2

q1q2 q2
2

)
, V (2) = c1

q21+q22
= c1

r2

H
(2)
1 = T + V (2), H

(2)
2 = 2(p1q2 − p2q1)2H(2)

1 ,

(3.11)

and

Λ(2′) =

 c1
q21

+ (d+2)c2qd
2

2qd+2
1

−dc2q
d−1
2

2qd−3
1

c1q2
q31

+ (d+2)c2q
d+1
2

qd+3
1

−dc2qd
2

qd+2
1

 , V (2′) = c1
q21

+ c2 qd
2

qd+2
1

,

H
(2′)
1 = T + V (2), H

(2′)
2 =

(
(p1q2 − p2q1)2 + 2c1q22

q21
+ (−1)d+1 2c2 qd

2(q21+q22)

qd+2
1

)
H

(2′)
1 .

(3.12)

In both cases second integrals of motion H2 were found as the solutions of Eq. (3.9) at
κ = 1. Let us note that the matrix Λ(2′) (3.12) is a particular case of matrices fixed by

Λ12 =
1
q2
1

Φ
(

q2

q1

)
,

where Φ is an arbitrary function [38].

Case 2g. System (3.10) and (3.11) has an obvious n-dimensional counterpart

Π(2g)
ij =

pipj
2

, Λ(2g)
ij =

c1qiqj
(
∑

q2
i )2

, H1 =
1
2

n∑
i=1

p2
i +

c1∑
q2
i

. (3.13)

Remark 7. According to [44], at n = 2 there are a lot of integrable deformations of the
centrally symmetric potential V = c1

r2 , for which the fourth- and the sixth-order polyno-
mial integrals H2 do not the products of the Hamilton function H and the second-order
polynomials as in (3.11). It will be interesting to study similar deformations at n > 2.

Case 3. Now let us consider another metric and degenerate nonsymmetric matrix

Π(3) =
1
2

(
ap1p2 bp2

2

ap2
1 bp1p2

)
, such that T = (a + b)p1p2. (3.14)
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It is easy to prove that matrix Λ may be added to Π(3) if and only if

Λ12 = q
− 2b

a
1 Φ(q2q

− b
a

1 ).

For instance, if Φ(z) = zd and γ = (2b + a + bd) then

Λ(3) =

 c1γ
a+bq

d+1
2 q

− γ
a

1 + c2q
− a+b

a
1 −ac1(d+1)

a+b qd2q
− b(d+2)

a
1

c1γb
a(a+b)q

d+2
2 q

− γ
a
−1

1 + c2b
a q2q

− a+b
a

−1

1 − bc1(d+1)
a+b qd+1

2 q
− γ

a
1

 ,

V (3) = c1q
−γ/a
1 qd+1

2 + c2q
−(a+b)/a
1 .

(3.15)

In order to get an additional integral of motion H2 we have to use Eq. (3.9) because the
recursion operator N is degenerate. Depending on values of a, b and d second integral of
motion H2 may be second-, fourth- or sixth-order polynomial in momenta. For instance, we
present some examples with fourth-order polynomial integrals of motion

V = q3
1q

− 9
5

2 , H2 = 4p4
1 − 10(3p2

1q
2
1 − 30p1p2q1q2 + 25p2

2q
2
2)q−4/5

2 + 225q4
1q

−8/5
2 ,

V = q2
1q

5
2 , H2 = 16p3

1(p1q1 − p2q2) + 4p1q1q
6
2(p1q1 − 2p2q2) + q8

2(p2
2 − q3

1q
4
2),

V = q2
1q

− 7
4

2 , H2 = 2p3
1(p1q1 − p2q2) − q

− 3
4

2 (13p2
1q

2
1 − 80p1p2q1q2 + 64p2

2q
2
2) + 64q3

1q
−3
2

2 ,

and sixth-order polynomial integrals of motion

V = q
− 2

3
1 q

− 5
6

2 , H2 = 2q
− 2

3
1 (p1q1 − p2q2)2(q

1
6
2 − 2p1q

2
3
1 (p1q1 − p2q2)) + q

− 1
3

1 q
− 1

3
2 ,

V = q
3
2
1 q

− 7
2

2 , H2 = q1p
6
1 − p2q2p

5
1 −

5q
3/2
1 p4

1

2q
5/2
2

+
3q2

1p
2
1

2q5
2

+
3q1p1p2

4q4
2

+
p2
2

4q3
2

− q
5/2
1

8q
15/2
2

.

Other examples may be found in [27]. It will be interesting to find a generic expression for
all second integrals of motion H2 associated with the potential matrix (3.15).

Case 4. Let us consider a nondegenerate geodesic matrix

Π(4) =
1
2

(
ap1p2 −a−b

2 p2
2

a−b
2 p2

1 bp1p2

)
, such that T = (a + b)p1p2. (3.16)

This matrix Π(4) is compatible with two different potential matrices Λ. The first matrix is
defined by the entry

Λ12 = q
−a/b+1
1 Φ(q2q

−a/b
1 ).

For instance, if Φ(z) = zd then

Λ(4) =

− c1(a+2ad−b)
2(a+b) qd+1

2 q
− a(d+1)

b
1

c1b(d+1)
a+b qd2 q

1− a(d+1)
b

1

− c1a2(d+1)
b(a+b) qd+2

2 q
−1− a(d+1)

b
1

c1(b+2ad+3a)
2(a+b) qd+1

2 q
− a(d+1)

b
1

 ,

V (4) = c1 qd+1
2 q

−a(d+1)/b
1 .

(3.17)
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It is easy to see that trace N2 = H2
1 and that recursion operator produces the Hamiltonian

only.
In order to get the desired functionally independent integral of motion H2 we have

to solve Eq. (3.9). As above, there exist integrals H2 of second-, fourth- or sixth-order in
momenta. Moreover, we sometimes have two independent solutions of Eq. (3.9) associated
with different κ’s. For instance, integrable system with potentials

V = q
−2/3
1 q

−7/3
2 ,

has fourth-order polynomial solution of (3.9) at κ = 1

H
(4)
2 =

p1(p1q1 − p2q2)3

2
− 13p2

1q
2
1 − 44p1p2q1q2 + 4p2

2q
2
2

16q
2/3
1 q

4/3
2

+ q
−1/3
1 q

−8/3
2

and sixth-order polynomial solution at κ = 2

H
(4)
3 = 4p2

1(p1q1 − p2q2)4 + q
−4/3
1 q

−8/3
2 (10p2

1q
2
1 − 16p1p2q1q2 + p2

2q
2
2)

− 4q
−2/3
1 q

−4/3
2 p1(p1q1 − p2q2)(2p2

1q
2
1 − 6p1p2q1q2 + p2

2q
2
2) − 3

q1q4
2

.

It can be a first example of a two-dimensional superintegrable system with second-, fourth-
and sixth-order polynomial integrals of motion, which form nontrivial Poisson algebra [27].

The second potential matrix Λ, which is compatible with geodesic matrix Π(4), looks
like

Λ(4′) =

 c1(a2−4ab−b2)
2b2

q
2b

a−b

2 q
− 2a

a−b

1 − 2bc2q1q2
a−b c1q

− a+b
a−b

1 q
3b−a
a−b

2 + c2q
2
1

−a2c1
b2 q

a+b
a−b

2 q
−2− a+b

a−b

1 − c2q
2
2

c1(a2+4ab−b2)
4b2 q

2b
a−b

2 q
− 2a

a−b

1 − 2ac2q1q2
a−b

 ,

V (4′) = c1(a2−b2)
2b2 q

2b
a−b

2 q
− 2a

a−b

1 − 2c1(a+b)
a−b q1q2.

(3.18)

In this case the second integral of motion may be obtained from the recursion operator

H
(4′)
2 = trace N2 − H2

1 =
2(a + b)2

a − b
(q1p1 − q2p2)2 − 4c1(a + b)2

b2
q
− a+b

a−b

1 q
a+b
a−b

2 .

3.3. Integrals of motion via variables of separation

Substituting known separation coordinates u = (u1, . . . , vn) (2.5) and momenta v =
(v1, . . . , vn) into separated relations (1.5) and solving the resulting equations with respect
to H1, . . . ,Hn one gets a lot of separable Hamiltonians. The main problem is to propose
an effective procedure of selection natural Hamiltonians similar to the Benenti recursion
procedure.

The interim problem is to find the momenta v = (v1, . . . , vn) canonically conjugated
to coordinates u = (u1, . . . , vn) (2.5). Different algorithms for explicit computation of the
Darboux–Nijenhuis variables (u, v) are discussed in [19, 42, 45, 46].
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Case 5. Let us consider geodesic matrix

Π(5) =

(
p2
2 0

ap1p2 p2
2

)
, (3.19)

which may be endowed with two compatible potential matrices

Λ(5) =

c1q
− 4

a−2

1 0

f(q1) c1q
− 4

a−2

1

 and Λ(5′) =

 c1q
− 2

a−2

1 + c2q
− 4

a−2

1 0

c2
a−2 q

− a+2
a−2

1 q2 + f(q1) 0

 .

In first case, separation coordinates u1,2 are the roots of polynomial

B(5)(λ) = (λ − u1)(λ − u2) = λ2 − 2(p2
2 + c1q

− 4
a−2

1 )λ + (p2
2 − c1q

− 4
a−2

1 )2,

whereas momenta v1,2 = A(λ = u1,2) are defined by the polynomial

A =
1

8(p2
2 − c1q

− 4
a−2

1 )

λ

 q2

p2
− (a − 2)q

a+2
a−2

1 p1

2c1

− q2(τ + 8p2
2)

4p2

+ (a − 2) p1

τq
a+2
a−2

1

8c1
+ q1

 ,

where τ = trace N . This first-order polynomial A(λ) is the solution of the auxiliary
equations

{A(λ), B(µ)} =
B(λ) − B(µ)

λ − µ
, {A(λ), A(µ)} = 0, (3.20)

which ensure that values of A(λ) in uj (2.5) are the desired momenta

vj = A(uj), {ui, vj} = δij , {vi, vj} = 0.

Associated with matrix Λ(5′) separation coordinates u1,2 are defined by another second-order
polynomial

B(5′)(λ) = (λ − u1)(λ − u2) = λ2 − (2p2
2 + c1q

− 2
a−2

1 + c2q
− 4

a−2

1 )λ + p2
2(p2

2 + c1q
− 2

a−2

1 ),

for which solution of Eqs. (3.20) looks like

A(λ) =
1

2c1c2q
− 2

a−2

1 + 4c1p2
2 + c2

2

λ

q2(2c2 + c1q
2

a−2

1 )
2p2

− (a − 2)q
a+2
a−2

1 p1


+

1
2

q2(4c2 + c1q
2

a−2

1 )τ + 2c1(c2q
− 2

a−2

1 + c1)
8p2

− a − 2
4

(τq
a+2
a−2

1 + 2q1c2)p1

 .

In both cases after substituting p1,2(u, v) into common geodesic Hamiltonian T one gets
separable Hamiltonians, which have the so-called Stäckel form in (u, v)-variables [6, 19,
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22, 35]. It allows us to easily find all the separable potentials V (u1, u2) and to construct
additional Stäckel integrals of motion. For instance, in first case, if a = −1, we have

H
(5)
1 =

32c
3/2
1

9
u1v

2
1 + u2v

2
2√

u1 −√
u2

+
1
6

(u1 +
√

u1u2 + u2) =
p2
1 + p2

2

2
+

c1

18
q
−2/3
1 (3q2

1 + 4q2
2).

In second case, if a = −1 and c1 = 0, we have

H
(5′)
1 =

8c
3/2
2

9
v2
1u

3/2
1 + v2

2u
3/2
2

u1 − u2
+

1
4

(u1 + u2) =
p2
1 + p2

2

2
+

c2

36
q
−2/3
1 (2q2

2 + 9q2
1).

If a is arbitrary, then we can obtain the same Hamiltonians after some additional canonical
transformation of (p, q) variables.

These bi-integrable systems are the so-called first and second Holt-like systems [17]. The
third known Holt-like system may be obtained from the Henon–Heiles system (3.3).

In generic case the separable geodesic Hamiltonian T has more complicated non-Stäckel
form and, therefore, usually we do not know how to get separable potentials and additional
integrals of motion. Examples of such generic Hamiltonians may be found in next section.

4. Bi-Integrable Systems on Sphere

In this section we consider geodesic matrices on a cotangent bundle T ∗
S
n of the sphere S

n:

P ′
T =

∑n
k=1 xjk(q)∂Πjk

∂pi
− yik(q)∂Πik

∂pj
Πij

−Πji
∑n

k=1

(
∂Πki
∂qj

− ∂Πkj

∂qi

)
zk(p )

 . (4.1)

By definition P ′
T is the Poisson bivector compatible with canonical ones, so that

[P,P ′
T ] = [P ′

T , P ′
T ] = 0. (4.2)

It means that the geodesic matrix Π and the functions xjk(q), yik(q), zk(p) are the solutions
of these equations. As above, we restrict ourselves by particular solutions only.

We present some examples of bi-integrable natural systems on two-dimensional sphere
S

2, which are related to the rigid body dynamics. In order to submit the Hamilton function
into the standard form, we will use the vector of angular momentum J = (J1, J2, J3) and
the unit Poisson vector x = (x1, x2, x3), see [9].

If the square integral of motion pψ = (x, J) = 0 is equal to zero, the rigid body dynamics
may be restricted on the sphere S

2. There exists a standard spherical coordinate system
on the cotangent bundle T ∗

S
2, which consists of Euler angles φ, θ and the corresponding

momenta pφ, pθ

q = (q1, q2) = (φ, θ) and p = (p1, p2) = (pφ, pθ).

defined by

x1 = sin φ sin θ, x2 = cos φ sin θ, x3 = cos θ

J1 =
sin φ cos θ

sin θ
pφ − cos φpθ, J2 =

cos φ cos θ

sin θ
pφ + sin φpθ, J3 = −pφ.

We use these variables in definitions of geodesic Poisson bivectors (4.1) and potential parts
Λ compatible with them.
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4.1. The Kowalevski top and Chaplygin system

Firstly we consider a geodesic bivector P ′
T (4.1) determined by the degenerate matrix Π

Π(6) =
1

sinα θ cos2 θ

(
0 2pφpθ

α

0 cos2 θp2
φ + sin2 θp2

θ

)
, α ∈ R, (4.3)

and by functions

y12 = cos θ(sin θ + αx22(θ) cos θ), z1,2(pφ, pθ) = 0.

Other functions xjk and yik are arbitrary. This matrix Π(6) is consistent with the following
potential matrix

Λ(6) =

(
a cos αφ − b sin αφ (a sin αφ − b cos αφ) cot θ

(a sin αφ − b cos αφ) tan θ −a cos αφ + b sin αφ

)
, a, b ∈ R.

The eigenvalues of the corresponding recursion operator N are the variables of separation,
which have been studied in [45, 46]. At α = 1, 2 the separable natural Hamiltonians

H1 =
(

1 +
1

sin2 θ

)
p2
φ + p2

θ + 2(a cos αφ − b sin αφ) sinα θ, (4.4)

have thoroughly familiar forms in physical variables

H
(6)
1 = J2

1 + J2
2 + 2J2

3 + 2ax2 − 2bx1,

H
(6′)
1 = J2

1 + J2
2 + 2J2

3 + 2a(x2
2 − x2

1) − 4bx1x2.
(4.5)

It is easy to see that they coincide with the Hamilton functions for the Kowalevski top and
the Chaplygin system, respectively, see [9] and references within.

The additional integrals of motion are fourth-order polynomials in momenta:

H
(6)
2 = − p4

φ

sin2 θ
− p2

φp
2
θ − 2(a sin φ + b cos φ) cos θpθpφ + sin2 θ(a sin φ + b cos φ)2

− (a cos φ − b sin φ)
2p2
φ

sin θ
,

and

H
(6′)
2 = − p4

φ

sin2 θ
− p2

φp
2
θ +

2(a sin 2φ + b cos 2φ) cos3 θ

sin θ
pφpθ + sin4 θ(a sin 2φ + b cos 2φ)2

− (a cos 2φ − b sin 2φ)
(

2 − 3 cos2 θ

sin2 θ
p2
φ + p2

θ

)
+ (a2 + b2) cos 2θ.

The corresponding separation relations are nonaffine (non-Stäckel) relations in polynomial
Hamiltonians H1,2 [45, 46]. Note that these variables of separation are different from the
famous Kowalevski variables.

Remark 8. Substituting the same variables of separation into other separation relations we
can obtain different generalizations of bi-integrable Hamiltonians H

(α)
1 (4.5), see [37, 45, 46].
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4.2. The Goryachev–Chaplygin top

The Goryachev–Chaplygin top is defined by the Hamilton function

H
(7)
1 = J2

1 + J2
2 + 4J2

3 + ax1 +
b

x2
3

=
4 − 3 cos2 θ

sin2 θ
p2
φ + p2

θ + c1 sin φ sin θ +
c2

cos2 θ
, (4.6)

which is in involution with the second integral of motion

H
(7)
2 = 2J3

(
J2

1 + J2
2 +

b

x2
3

)
− c1x3J1.

This system is a bi-integrable system with respect to natural bivector P ′ (4.1) defined by

Π(7) =

p2
θ +

4 − cos2 θ

sin2 θ
p2
φ 2pφpθ

2pφpθ p2
θ −

cos2 θ

sin2 θ
p2
φ

 , Λ(7) =

 c2

cos2 θ
0

0
c2

cos2 θ

 , (4.7)

and by the functions

x22 = y12 = −cos αθ sin αθ

α
, zk =

pk
3

.

The corresponding separation variables and some another bi-integrable systems separable
in these variables are discussed in [25, 41].

Remark 9. In [48] we found some linear in momenta Poisson bivectors P̃ for five inte-
grable systems on the sphere S

2 with cubic additional integrals of motion. In all these cases
quadratic in momenta bivectors P ′ = P̃P−1P̃ can be rewritten in natural form (4.1) as
well.

Bivectors Π(6) (4.3) and Π(7) (4.7) have various n-dimensional counterparts on T ∗
S
n

and variant analogs on the cotangent bundles of other Riemannian manifolds. However, in
order to get interesting integrable systems with higher-order integrals of motion we have to
learn to construct separable natural Hamiltonians directly from the variables of separation
in Stäckel and non-Stäckel cases.

5. Generalized Natural Poisson Bivectors on R
2n

In this section we consider some generalizations of natural Poisson bivector (1.9) on R
2n,

which are related to various modifications of the geodesic bivector and with “potential”
parts depending on momenta.

5.1. Geodesic matrix Π depending on coordinates

We suppose that Π depends on coordinates q and momenta p and geodesic bivector P ′
T on

R
2n is given by formulae (4.1). For instance, let us consider degenerate matrix

Π(8) =
1

2q2
1

(
2p2

1 0
p1p2 0

)
, (5.1)
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which is the similar to matrix Π(6) (4.3) associated with the Kowalevski top and Chaplygin
system. Solving Eqs. (4.2) with respect to functions xj,k(q), yi,k(q) and zk(p) one gets

xj1 = yi1 = −q1, z1,2 = 0.

In generic case potential matrix Λ is compatible with Π(6) if and only if

Λ22 = d1q
2
2 + d2q2 + d3, dk ∈ R. (5.2)

If d1 = d3 = 0 and d2 = −c1/4, then

Λ(8) = −1
4

(−2c1q2 − c2 −1
2c1q1 − 4q−1

1 (3c1q
2
2 + 2c2q2 + c3)

−1
4c1q1 −c1q2

)
(5.3)

and the integrals of motion for the Henon–Heiles system H
(1)
1 = T + V (1) (3.3) and H

(1)
2

(3.5) are in involution with respect to the corresponding Poisson bracket.
If d1 = −c1 and d2 = d3 = 0, then

Λ(8′) = −
−c2 − c1

(q21
2 + 2q2

2

) −c1q1q2 − 2(2c1q62−c3q42+c2)

q1q32
c1q1q2

2 c1q
2
2

 (5.4)

and the integrals of motion for the system with quartic potential H
(1)
1 = T + V (1′) (3.4)

and H
(1′)
2 (3.6) are in involution with respect to the corresponding Poisson bracket.

In both cases eigenvalues u1,2 of recursion operators N are the variables of separa-
tion for the Henon–Heiles system and the system with quartic potential, respectively. The
corresponding separated relations are the standard affine Stäckel relations, see [33, 34].

Remark 10. These variables of separation u1,2 have been introduced in [33] with the help
of the singular Painleve’ expansions of the solutions of the equations of motion. Different
properties of these variables of separation and the corresponding rational Poisson bivectors
have been studied in [34, 38].

5.2. Potential matrix Λ depending on momenta

Open relativistic Toda lattice associated with An root system is an integrable system on
R

2n with following first two Hamiltonians:

H1 =
n∑
i=1

ci + di, H2 =
n∑
i=1

(
1
2

(ci + di)2 + ci−1(ci + di)
)

,

where

ci = exp(qi − qi+1 + pi), di = exp(pi), q0 = −∞, qn+1 = +∞.

This system is also known to be bi-Hamiltonian with respect to second Poisson bracket on
R

2n−1

{ck, dk}′ = ck, {ck, dk+1}′ = −ck, {dk, dk+1}′ = ck, (5.5)

which was found in [31]. Of course, it is nonnatural system in R
2n, but the corresponding

Poisson bivector may be rewritten in the generalized natural form, if we introduce constant
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matrix

Ê = α


1 1 · · · 1

1
...

...
. . . 1

1 · · · 1 1

−


0 0 · · · 0

1 0
...

...
. . . . . . 0

1 · · · 1 0

 , α ∈ R,

and antisymmetric matrix Â with entries Âi,i+1 = eqi−qi+1−pi+1, so

Λ = −ÊÂ,

similar to the nonrelativistic Toda lattice (2.10). However, let us emphasize, that in this
case potential matrix Λ depends on coordinates and momenta. If we put

Π = diag
(
exp(−p1), . . . , exp(−pn)

)
, (∂pΠ)ij = (α − 1)

n∑
k=1

∂Πik

∂pk
− α

∂Πjj

∂pj
,

(∂pΛ)ij = (α − 1)
n∑
k=1

∂Λik
∂pk

+
∂Λij
∂pj

, (∂qΛ)ij =
n∑
k=1

(
∂Λkj
∂qi

− ∂Λki
∂qj

)
,

(5.6)

then P ′ is a sum of the geodesic Poisson bivector and potential Poisson bivector

P ′ =

(
∂pΠ Π

−Π� 0

)
+

(
∂pΛ Λ

−Λ� ∂qΛ

)
. (5.7)

As above, it is the Poisson bivector at Λ = 0 and Λ �= 0. At any α bivector (5.7) reduces to
the known Poisson bivector (5.5) on R

2n−1 and all the integrals of motion are the traces of
powers of the recursion operator N = P (P ′)−1 [31, 36].

Remark 11. In the similar manner as for nonrelativistic Toda lattice we can get natural
Poisson bivectors P ′ for relativistic Toda lattice associated with other root systems.

5.3. Additive deformations

Using canonical transformations and deformations of separated relations we can study more
complicated integrable systems. For instance, let us consider a generalized Henon–Heiles
system [17, 20] with the potential

V =
c1

8
q2(3q2

1 + 16q2
2) + c2

(
2q2

2 +
q2
1

8

)
+

c4

q2
1

+
c5

q6
1

.

and the second integral of motion

H2 = H
(1)
2 +

4c2
5

q1
12

+
c5(4p2

1q
2
1 + 3c1q2q

4
1 + c2q

4
1 + 8c4)

q8
1

+
c4(4p2

1q
2
1 + c1q2q

4
1 + 4c4)

q4
1

.

Here H
(1)
2 is given by (3.5) at c3 = 0.

Note, that we do not have any additional information for this system, as the Lax matri-
ces, r-matrices or relations with soliton equations. Nevertheless, it is easy to directly prove
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that these integrals of motion are in bi-involution with respect to the Poisson bracket asso-
ciated with additive deformation of the natural Poisson bivector P ′ (3.3)

P̂ = P ′ +
√−2c5

q3
1


0 0 p1 −

√−c5
2q61

0

∗ 0 p2 0

∗ ∗ 0 3c1
8 q2

1 + 6c1q
2
2 + 4c2q2

∗ ∗ ∗ 0

 .

This additive deformation may be obtained from the natural Poisson bivector P ′ (3.3) using
trivial canonical transformation

p1 → p1 + f(q1), where f(q1) = −
√−2c5

q3
1

. (5.8)

For generalized system with quartic potential [17, 20]

V =
c1

4
(q4

1 + 6q2
1q

2
2 + 8q4

2) +
c2

2
(q2

1 + 4q2
2) +

2c3

q2
2

+
c4

q2
1

+
c5

q6
1

,

we have to shift known natural bivector P ′ (3.4) on the similar additional term

P̃ = P ′ +
√−2c5

q3
1


0 0 p1 −

√−c5
2q61

0

∗ 0 p2 0

∗ ∗ 0 8c1q
3
2 + (3c1q

2
1 + 4c2)q2 − 4c3

q32

∗ ∗ ∗ 0


associated with the same trivial canonical transformation (5.8).

We can apply this transformations to the Poisson bivectors P ′ defined by geodesic matrix
Π(8) (5.1) and potential matrices Λ(8) (5.3) and Λ(8′) (5.4) too. In both cases the “shifted”
variables of separation

ũ1,2 = u1,2(p1 → p1 + f(q1)), (5.9)

are defined by the initial variables u1,2 obtained in [33] at c5 = 0. It is easy to prove that
the corresponding separated relations are nonaffine in polynomial Hamiltonians H1,2, i.e.
they are non-Stäckel relations, similar to the Kowalevski top and the generalized Chaplygin
system [45, 46]. These separation relations will be discussed in [50].

Remark 12. Another example of such additive deformations of the natural Poisson bivec-
tors on the plane and the corresponding separation variables may be found in [27].

6. Conclusion

We address the problem of construction of natural integrable systems on Riemannian man-
ifolds Q within the theoretical scheme of bi-Hamiltonian geometry and introduce the con-
cept of natural Poisson bivectors, which generalizes the Benenti construction of the Poisson
bivectors via conformal Killing tensors of gradient type on Q. We suppose that the proposed
construction allows us to describe a majority of known integrable systems with higher-order
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integrals of motion and to find the corresponding variables of separation in common frame-
work.

A lot of known and new integrable systems on plane and on sphere is discussed in detail.
These examples may be useful for creating a geometrically invariant theory, which takes
the constructive answers to the main open questions:

• how to get and classify all the natural Poisson bivectors P ′ on T ∗Q;
• how to describe all the natural Hamilton functions associated with a given P ′.

Now we have some particular answers obtained by direct tedious computations only.
We hope that the theory of natural Poisson bivectors allows us to investigate known

n-body systems and low-dimensional exotic systems, systems with known Lax represen-
tation and systems without it, systems associated with the Killing tensors at Π = 0 and
systems with higher-order integrals of motion at Π �= 0 and so on. But, of course, this theory
can not become a universal panacea and we briefly discuss some possible generalizations
and modifications of the natural Poisson bivectors in last section.

The author thanks referees for very useful suggestions.
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