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We obtain in terms of the Weierstrass elliptic ℘-function, sigma function, and zeta function an
explicit parametrized solution of a particular nonlinear, ordinary differential equation. This equa-
tion includes, in special cases, equations that occur in the study of both homogeneous and inho-
mogeneous cosmological models, and also in the dynamic Bose–Einstein condensates–cosmology
correspondence, for example.
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1. Introduction

In this paper we solve the nonlinear differential equation

Ẏ (t)2 =
f(Y (t))
Y (t)2n

, (1.1)

where f(x) = a0x
4 + 4a1x

3 + 6a2x
2 + 4a3x + a4 is a quartic polynomial with no repeated

factors and n ≥ 0 is a fixed whole number. The solution is expressed parametrically in
terms of the Weierstrass ℘-function ℘(w), and his sigma and zeta functions σ(w), ζ(w);
see formulas (2.4)–(2.7), and definitions (A.1), (A.5) of the appendix. One can also
solve Eq. (1.1) in case f(x) does have a repeated factor — a situation which is easier
to deal with and which, in particular, generally does not involve elliptic functions; see
Example 6.
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Of some special interest is the equation

Ẏ (t)2 = BY (t)2 + EY (t) − K +
A

Y (t)
+

D

Y (t)2
, (1.2)

with n = 1 in (1.1). Note that the solution of the differential equation

Ẏ1(t)2 = Y1(t)2[B1 + E1Y1(t)m − K1Y1(t)2m + A1Y1(t)3m + D1Y1(t)4m], (1.3)

where m �= 0 is a fixed whole number, can be obtained from that of (1.2). Namely, if we
set Y (t) = Y1(t)−m then Eq. (1.3) is transformed to (1.2) for B = m2B1, E = m2E1,K =
m2K1, A = m2A1, and D = m2D1.

If both E and D are zero, for example, then the general solution YE,D=0 of (1.2), in
terms of the Weierstrass elliptic function ℘(w), was obtained in 1933 by Lemâıtre [18], in his
study of spherically symmetric distributions of matter. Compare also the paper [20] of Omer
with references therein to special case solutions by Tolman, Datta, and Bondi. The solution
YE,D=0 provides for an exact, inhomogeneous cosmological solution ds2 of the Einstein field
equations with cosmological constant Λ = 3B. Namely, for the family of Szekeres–Szafron
solutions

ds2 = dt2 − e2B(x,y,z,t)(dx2 + dy2) − e2A(x,y,z,t)dz2, (1.4)

the functions B(x, y, z, t), A(x, y, z, t) are explicated by the solution YE,D=0. Reference [15],
for example, contains a detailed discussion of this matter, and the text [16] can be consulted
for a comprehensive analysis of inhomogeneous cosmology. Also see [17], where one can
consider D = −Q2 �= 0 (with yet E = 0), Q being a constant electric charge.

The Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric can be obtained from ds2

in (1.4) (as a “limit”), and a known formula (see formula (42) of [15], for example) for the
scale factor (the “radius” of the FLRW universe) also follows from the general formulas
presented here. Further remarks on this, as well as the computation of scale factors in
anisotropic models (in the Bianchi V and IX models, for example) are taken up in Sec. 3.

Another case of interest, among others to be mentioned later, is that when both A

and B are zero in (1.2). Here the solution YA,B=0 is of relevance regarding the dynamic
correspondence between Bose–Einstein condensates (BECs) and FLRW/Bianchi I cosmol-
ogy [11, 19]. In particular we deduce an alternate formula (in Sec. 3) for the second moment
I2(t) = YA,B=0(t) of the wavefunction of the Gross–Pitaevskii equation, for BECs governed
by a time-dependent, harmonic trapping potential — especially when a cosmological con-
stant is present — i.e. when E �= 0. The second moment in fact determines the harmonic
trapping frequency.

Our formulas therefore provide for a general, unifying context where some known for-
mulas in the literature are immediately derived or extended, and some new ones are devel-
oped — as seen in the concrete examples of Sec. 3.

2. The Solution of Eq. (1.1)

For Z
def.=

√
a0Y 4 + 4a1Y 3 + 6a2Y 2 + 4a3Y + a4 Eq. (1.1) is expressed as

t =
∫

Y n

Z
dY + δ (2.1)
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for an integration constant δ. By a choice of any root x0 of f(x0) = 0 and a (finite) Taylor
expansion f(x) = 4α3(x−x0)+6α2(x−x0)2 +4α1(x−x0)3 +α0(x−x0)4 of f(x) about x0,
where α3 = f ′(x0)/4, α2 = f ′′(x0)/12, α1 = f ′′′(x0)/24, α0 = f ′′′′(x0)/24 one can reduce
the elliptic integral I in (2.1) to a Weierstrass canonical form, where the quartic in Z is
reduced to a cubic. Namely, by the substitution Y = x0 + α3/(x − α2/2) one gets

I =
∫ (

x0 + α3
x−α2/2

)n

√
4x3 − g2x − g3

dx, (2.2)

where

g2 = 3α2
2 − 4α1α3 = a0a4 − 4a1a3 + 3a2

2,

g3 = 2α1α2α3 − α3
2 − α0α

2
3 = a0a2a4 + 2a1a2a3 − a3

2 − a0a
2
3 − a2

1a4

(2.3)

are the Weierstrass invariants of f(x). Here α3 �= 0 since f ′(x) �= 0, as f(x) has no
repeated factors, by hypothesis. Moreover if ℘(w) = ℘(w; g2, g3) is the Weierstrass ℘-
function attached to g2, g3 (as in the appendix) then, by Eq. (A.2) there, the substitution
x = ℘(w + c), for any fixed constant c, leads to the re-statement

t =
∫ (

x0 +
f ′(x0)

4 [℘(w + c) − f ′′(x0)/24]

)n

dw + δ (2.4)

of Eq. (2.1), where we also have (by the above substitution Y → x)

Y = x0 +
f ′(x0)

4 [℘(w + c) − f ′′(x0)/24]
. (2.5)

Equations (2.4) and (2.5), which constitute the main result, provide for a parametric
solution of Eq. (1.1). For the applications we have in mind, in Examples 3.1–3.6 below,
we need only the cases n = 0, 1, 2. For n = 0 and the choice δ = 0, t = w in (2.4) and
formula (2.5) also follows from a general formula of Biermann–Weierstrass [6]; more on this
point later. Let σ(w), ζ(w) denote the Weierstrass sigma and zeta functions, respectively; see
Definition (A.5). For a choice w0 with ℘(w0) = f ′′(x0)/24 we have for n = 1, 2, respectively
in (2.4)

t = x0w +
f ′(x0)

4℘′(w0)

[
log

σ(w + c − w0)
σ(w + c + w0)

+ 2(w + c)ζ(w0)
]

+ δ, (2.6)

t = x2
0w +

[
−x0f

′(x0)
2℘′(w0)

+
f ′(x0)2℘′′(w0)

16℘′(w0)3

]
log

σ(w + c + w0)
σ(w + c − w0)

− f ′(x0)2

16℘′(w0)2
[ζ(w + c + w0) + ζ(w + c − w0)]

+(w + c)
(

x0f
′(x0)

℘′(w0)
ζ(w0) − f ′(x0)2

16

[
2℘(w0)
℘′(w0)2

+
2℘′′(w0)ζ(w0)

℘′(w0)3

])
+ δ, (2.7)

by formulas 1037.06, 1037.11, respectively, in [7] — assuming also that ℘(w0) �= the roots
e1, e2, e3 of 4x3 − g2x − g3 = 0. In fact, in principle, one can compute the integral in (2.4)
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for arbitrary n ≥ 0, using formulas in [7], which we shall not pursue as the result is not
needed here.

The aforementioned Biermann–Weierstrass formula for the solution Y (t) of Eq. (1.1) in
case n = 0 is

Y (t) = Y (0) +

[
f(Y (0))1/2℘′(t) + f ′(Y (0))

2

(
℘(t) − f ′′(Y (0))

24

)
+ f(Y (0))f ′′′(Y (0))

24

]

2
[
℘(t) − f ′′(Y (0))

24

]2 − f(Y (0))f ′′′′(Y (0))
48

. (2.8)

Also see Refs. [21, 22].

3. Some Examples

The following examples are meant to provide application and further clarity of the preceding
formulas.

Example 3.1. We begin with Eq. (20)

Φ̇(t)2 = −K(z) +
2M(z)
Φ(t)

+
ΛΦ(t)2

3
(3.1)

of [15], which is associated with the metric (1.4) in the introduction. Since the functions
K(z),M(z) are independent of t, Eq. (3.1) is mathematically the same as Eq. (8.9) of [18],
and since its solution is presented and discussed in [15] we greatly limit our remarks here.
(3.1) is Eq. (1.2) with 3B = Λ (a cosmological constant), E = 0,K = K(z), A = 2M(z),D =
0. Thus f(x) = (Λ/3)x4 −K(z)x2 + 2M(z)x has x0 = 0 as a first-order root for M(z) �= 0,
since f ′(0) = 2M(z). By formulas (2.5) and (2.6) the solution of (3.1) is given parametri-
cally by

Φ =
M(z)/2

℘(w + c; g2, g3) + K(z)/12

t =
M(z)

2℘′(w0)

[
log

σ(w + c − w0)
σ(w + c + w0)

+ 2(w + c)ζ(w0)
]

+ δ

(3.2)

for ℘(w0) = −K(z)/12 �= e1, e2, e3, which are formulas (21) and (23) of [15], where g2 =
K(z)2/12, g3 = K(z)3/216−ΛM(z)2/12 (by (2.3)), and where now the integration constant
δ = δ(z) depends on the variable z.

Example 3.2. Consider the Friedmann equation

a′(η)2 = −κa(η)2 +
KAr

c4
+

KAm

c3
a(η) +

c2Λ
3

a(η)4 (3.3)

for the scale factor a(η) in a FLRW universe whose energy and matter are modeled by
a perfect fluid. Here η is conformal time, κ is the curvature parameter, K = 8πG/3 for
the Newton constant G, Ar and Am are radiation and matter constants, c is the speed of
light, and Λ is a cosmological constant. Given the “big bang” initial condition a(0) = 0 one
derives immediately from (2.8) the result

a(η) =
(KAr)

1/2

c2
℘′(η) + KAm

2c3
(℘(η) + κ/12)

2 (℘(η) + κ/12)2 − KΛAr/6c2
, (3.4)
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with known application in the study of cosmic microwave background fluctuation, for exam-
ple; see [2, 3]. The invariants g2, g3 in (2.3) are given by

g2 =
ΛKAr

3c2
+

κ2

12
,

g3 = −κΛKAr

18c2
+

κ3

216
− K2A2

mΛ
48c4

.

(3.5)

Elliptic function solutions of Friedmann equations are also discussed in [1, 9, 13], for
example.

Example 3.3. As another example we consider the Bianchi V cosmological model with
metric

ds2 = −dt2 + X(t)2dx2 + e2bxY (t)2dy2 + e2bxZ(t)2dz2 (3.6)

for b �= 0. As before, we take the energy momentum tensor to be that of a perfect fluid
and denote the radiation and matter constants by Ar, Am, respectively. For K = 8πG/3, a
zero cosmological constant Λ = 0, and the speed of light taken to be c = 1, the Einstein
equation is a special case of (1.1)

Ṙ(t)2 =
1

R(t)4
[b2R(t)4 + KAmR(t)3 + KArR(t)2 + KD] (3.7)

in terms of R(t) def.= (X(t)Y (t)Z(t))1/3 and the quantity D
def.= R(t)2

9K ( Ẋ2

X2 + Ẏ 2

Y 2 + Ż2

Z2 − ẊẎ
XY

− ẊŻ
XZ − Ẏ Ż

Y Z ) which can be shown to be a constant; see [10]. Then by (2.5) and (2.7) we
obtain

R = x0 +
f ′(x0)

4[℘(w + c) − f ′′(x0)/24]

t = x2
0w +

(
−x0f

′(x0)
2℘′(w0)

+
f ′(x0)2℘′′(w0)

16℘′(w0)3

)
log

σ(w + c + w0)
σ(w + c − w0)

− f ′(x0)2

16℘′(w0)2
[ζ(w + c + w0) + ζ(w + c − w0)]

+ (w + c)
(

x0f
′(x0)

℘′(w0)
ζ(w0) − f ′(x0)2

16

[
2℘(w0)
℘′(w0)2

+
2℘′′(w0)ζ(w0)

℘′(w0)3

])
+ δ

(3.8)

for ℘(w0)
def .= f ′′(x0)/24 and associated polynomial f(x) = b2x4 + KAmx3 + KArx

2 + KD.
The invariants are

g2 = K

(
b2D +

A2
rK

12

)

g3 =
K2

6

(
b2ArD − A3

rK

36
− 3DA2

mK

8

)
,

(3.9)

where as in the appendix we assume that g3
2 − 27g2

3 �= 0. To obtain the metric one writes
X = R, Y = Re

√
3DKτ , Z = Re−

√
3DKτ where τ(t) =

∫
dt/R(t)3. That is, τ is given
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parametrically in terms of w by

τ =
w

x0
− f ′(x0)

4x2
0℘

′(w1)

[
log

σ(w + c − w1)
σ(w + c + w1)

+ 2(w + c)ζ(w1)
]

+ δ′ (3.10)

for integration constant δ′, ℘(w1)
def.= f ′′(x0)/2 − f ′(x0)/4x0 and assuming x0 �= 0.

Example 3.4. For a cosmological model with Bianchi IX metric

ds2 = −dt2 + a(t)2dx2 + b(t)2dy2 +
[
b(t)2 sin2 y + a(t)2 cos2 y

]
dz2 − 2a(t)2 cos y dxdz,

(3.11)
and massless scalar field Φ and flat (constant) potential V (r) = 2λ, the modified Ein-
stein equations based on Lyra geometry are studied in [4], for example. Also compare the
paper [5]. The field equations yield the relation Φ̇ = Φ0/ab2 for an integration constant Φ0,
and the assumption a = bn leads to the Einstein equation

b̈

b
+ (n + 1)

ḃ2

b2
=

1
(n − 1)b2

− b2n−4

n − 1
(3.12)

for n �= 1, which moreover is shown to have the first integral

ḃ2 =
1

n2 − 1
− b2n−2

2n2 − 2n
+ D1b

−2n−2 (3.13)

for n �= 0,±1, where D1 is an integration constant. The authors found solutions of (3.13)
only for D1 = 0 — for n = 2, 1/2, 3/2, 3/4. Therefore we consider the case D1 �= 0, and we
take n = 2 for example: ḃ2 = 1/3 − b2/4 + D1/b

6, or a = b2 ⇒

ȧ(t)2 =
4
3
a(t) − a(t)2 +

D

a(t)2
, (3.14)

which is another example of Eq. (1.2) for D = 4D1, A = 0,K = 0, E = 4
3 , B = −1. Here

f(x) = −x4 +
4
3
x3 + 4D1,

g2 = −4D1, g3 = −4D1

9
=

g2

9
.

(3.15)

In particular g3
2−27g2

3 = −16D2
1(4D1 + 1

3) �= 0 for D1 �= 0,− 1
12 , which we assume. Certainly

if D1 = − 1
12 , then f(x) = −x4 + 4

3x3− 1
3 = −(x−1)2(x2 + 2

3x+ 1
3 ) has x0 = 1 as a repeated

root, for example.
On the other hand, consider x0 = −1 which is a nonrepeated root for D1 = 7

12 : f ′(x0) =
8 �= 0. By (2.5) and (2.6) we have the parametric solution

a = −1 +
2

℘(w + c) + 5/6
,

t = −w +
2

℘′(w0)

[
log

σ(w + c − w0)
σ(w + c + w0)

+ 2(w + c)ζ(w0)
]

+ δ

(3.16)
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of Eq. (3.14) for ℘(w0) = −5/6. One can find solutions to Eq. (3.14) for many other nonzero
values of D1 similarly. This amounts to specifying D1 �= − 1

12 and solving for a corresponding
root x0 of f(x) in (3.15).

Example 3.5. The differential equation

Ẏ (t)2 = EY (t) − K +
D

Y (t)2
, (3.17)

which is another example of Eq. (1.1) (for n = 1), arises in the study of time-dependent,
harmonically trapped Bose–Einstein condensates, as indicated in the introduction. The
constant E here is a positive multiple of a d-dimensional cosmological constant, for d ≥ 3
arbitrary. Also D is positive and E �= 0. See Eq. (35) in [11], where some elliptic function
solutions are discussed. Equations (2.5) and (2.6) provide for a parametric solution of (3.17).
However, as f(x) = Ex3 − Kx2 + D is cubic in this case, one has an alternate, simpler
parametrization which in particular does not involve a logarithm, as in (2.6).

Namely consider the simple substitution Y = ax + b, a �= 0, a suggestion for which we
thank one of the referees. Equation (2.1) then reads

t =
∫

(a2x + ab)dx√
Ea3x3 + (3Ea2b − Ka2)x2 + (3Eab2 − 2Kab)x + Eb3 − Kb2 + D

+ δ

=
1
a2

∫
(u + ab)du√

4u3 − g2u − g3

+ δ, (3.18)

for u = a2x, a = (E/4)1/3, b = K/3E, g′2 = (−3Eb2 + 2Kb)/a, and g′3 = −Eb3 + Kb2 − D.
Note that g′2, g′3 are not the invariants g2 = K2/12, g3 = K3

216−E2D
16 of f(x) given in definition

(2.3). Similar to the derivation of Eq. (2.4), we now let u = ℘(w) = ℘(w; g′2, g′3) to get the
parametric solution

t = − 1
a2

ζ(w) +
b

a
w + δ

Y =
1
a
℘(w) + b

(3.19)

of Eq. (3.17), where again ζ(w) is the Weierstrass zeta function of (A.5).

Example 3.6. In the main result, Eqs. (2.4) and (2.5), f(x) is assumed to have no repeated
factors. However, if repeated factors occur then Eq. (1.1) can be solved, in fact, in terms of
elementary, nonelliptic functions, which we illustrate in the following example.

The equation

U ′(x)2 + 4U(x)4 − 2U(x)2 − U(x)/
√

2 =
1
16

, (3.20)

an example of Eq. (1.1) with n = 0, is satisfied by the potential U(x) of a particular
Zakharov–Shabat system. U(x), moreover, satisfies a type of static, modified Novikov–Veselov
(mNV) equation [14], a point which we return to later. Here f(x) = −4x4 +2x2 +x/

√
2+ 1

16

has (x−x0) as a repeated factor for x0
def .= −√

2/4, f(x) = (x−x0)2[B1+B2(x−x0)+B3(x−
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x0)2] being its finite Taylor expansion about x0 for 2B1 = f ′′(x0), 6B2 = f ′′′(x0), 24B3 =
f ′′′′(x0). By the substitution x = x0 + 1

u ,

I
def .=

∫
dx√
f(x)

= ±
∫

du√
B1u2 + B2u + B3

(3.21)

is an elementary integral (compare the integral in (2.1)) whose evaluation depends on the
signs of B1 and the discriminant ∆ def.= B2

2 −4B1B3. Actually, as x0 = −√
2/4, B1 = −1 < 0

and ∆ = 16 > 0.
In the end, for

I = − 1√−B1
arcsin

(
B2 + 2B1u√

∆

)
(3.22)

and an integration constant δ we obtain the solution

U(x) = U∓(x; δ) =
∓ sin(x − δ)

2
√

2[
√

2 ± sin(x − δ)]
(3.23)

of Eq. (3.20). In particular, one has the solution U+(x; 0) obtained in [14] (by a quite
different method) where among other results the authors there demonstrate invariance of
the Willmore functional W (the Polyakov extrinsic string action) under NV deformations.

We note that the “deformation”

U(x, t) def.= U+(x + 2t; 0) def .=
sin(x + 2t)

2
√

2[
√

2 − sin(x + 2t)]
(3.24)

of U+(x; 0) is a solution of the mNV equation

Ut = Uxxx + 24U2Ux. (3.25)

The functional W of course is a basic quantity in the study of two-dimensional gravity.

Appendix A

Given the central importance of the Weierstrass ℘-function ℘(w) for the present work we
recall briefly, for the reader’s convenience, its construction/definition. As we have indicated
in section 2 a more detailed account is available in [8, 12, 22].

Let ω1, ω2 be nonzero complex numbers. Since the imaginary parts of a nonzero complex
number z and its reciprocal are related by Im z−1 = −(Im z)|z|−2, one has that Imω2/ω1 �= 0
if and only if Im ω1/ω2 �= 0. In particular we assume that Imω2/ω1 > 0, which is equivalent
to the assumption Im ω1/ω2 < 0. The corresponding lattice L = L (ω1, ω2) generated by
ω1 and ω2 is defined to be the set of points ω = mω1 + nω2 where m and n vary over the
set of whole numbers. The lattice L gives rise to the ℘-function

℘(w) def.=
1

w2
+

∑
ω∈L−{0}

[
1

(w − ω)2
− 1

ω2

]
(A.1)

which is also denoted by ℘(w;L ), or by ℘(w;ω1, ω2). ℘(w) is a meromorphic function, which
is doubly periodic with periods ω1, ω2. Thus, by definition, ℘(w) is an elliptic function. ℘(w)
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has double poles at w = ω ∈ L , and it satisfies the differential equation

℘′(w)2 = 4℘(w)3 − g2(ω1, ω2)℘(w) − g3(ω1, ω2) (A.2)

for invariants

g2(ω1, ω2)
def .= 60

∑
ω∈L −{0}

1
ω4

, g3(ω1, ω2)
def.= 140

∑
ω∈L −{0}

1
ω6

(A.3)

where, moreover,

g2(ω1, ω2)3 − 27g3(ω1, ω2)2 �= 0. (A.4)

Conversely, it is an amazing fact that if two complex numbers g2 and g3 are given that
satisfy the condition g3

2 − 27g2
3 �= 0, then there exists a pair of nonzero complex numbers

ω1, ω2 with Im ω2/ω1 > 0 such that g2(ω1, ω2) = g2 and g3(ω1, ω2) = g3, for g2(ω1, ω2) and
g3(ω1, ω2) defined in (A.3) with respect to the lattice L = L (ω1, ω2) generated by ω1 and
ω2. Thus from g2 and g3 one can also construct the corresponding ℘-function ℘(w;ω1, ω2)
(according to definition (A.1)), which in this case we also denote by ℘(w; g2, g3) — as we
have so done in the previous sections.

Associated with ℘(w) are the Weierstrass sigma and zeta functions σ(w) and ζ(w),
respectively:

ζ ′(w) def.= −℘(w), lim
w→0

(
ζ(w) − 1

w

)
def.= 0,

σ′(w)
σ(w)

def.= ζ(w), lim
w→0

σ(w)
w

def .= 1.
(A.5)
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