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1. Introduction

The matrix

C =
(

1
qi − rj

)N

i,j=1

, q, r ∈ C
N , (1.1)

has determinant

|C| =

∏
1≤i<j≤N(qi − qj)(rj − ri)∏

1≤i,j≤N(qi − rj)
. (1.2)
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This identity was first obtained by Cauchy. Now well-known as Cauchy’s identity, it has
found applications in harmonic analysis, soliton theory, and relativistic Calogero–Moser
systems.

Its elliptic generalization involving Weierstrass’ sigma function σ(z) is less widely known.
It is given by

det
(

σ(qi − rj + λ)
σ(λ)σ(qi − rj)

)N

i,j=1

=
σ(λ +

∑N
k=1(qk − rk))
σ(λ)

∏
1≤i<j≤N σ(qi − qj)σ(rj − ri)∏

1≤i,j≤N σ(qi − rj)
.

(1.3)
This elliptic Cauchy identity dates back to a paper by Frobenius [3]. Like (1.2), it has shown
up in various contexts, giving rise to different proofs, cf. Refs. [1, 4–6].

Clearly, the identity applies to any minor as well. Moreover, after multiplication from
the left and right by diagonal matrices (leading to so-called Cauchy-like matrices) one can
still evaluate minors explicitly.

Our perspective, which eventually led to this note, stems from the study of the Lax
matrices of Calogero–Moser type systems. In particular, we wished to find the Gauss decom-
position of the elliptic Cauchy-like matrix CN (λ) given by (2.4) below, i.e., to represent it as

CN (λ) = UDL, (1.4)

where U,D and L are upper-triangular, diagonal and lower-triangular matrices, respectively.
In principle, this decomposition can be obtained by invoking two previously known

results. Specifically, the Frobenius formula (1.3) can be combined with a theorem saying
that the elements of the relevant upper- and lower-triangular matrices can be expressed
in terms of appropriate minors of the matrix to be decomposed [8]. Indeed, as already
mentioned, the minors of an elliptic Cauchy-like matrix also follow from the Frobenius
formula.

In this note, we wish to report an alternative method to decompose CN (λ) which we
find interesting and insightful. First of all, it is very economic, inasmuch as an exposition of
the proof of the general Gauss decomposition formula and whichever of the known proofs
of the Frobenius formula would require far more space and time. Secondly, our direct Gauss
decomposition leads to a remarkably simple new proof of the Frobenius formula itself, and
also reproduces some other results of interest as easy consequences.

2. The Decomposition Formula

Our proof of the following decomposition formula is self-contained, except for its use of the
3-term identity of the σ-function,

σ(z + a)σ(z − a)σ(b + c)σ(b − c) + σ(z + b)σ(z − b)σ(c + a)σ(c − a)

+ σ(z + c)σ(z − c)σ(a + b)σ(a − b) = 0. (2.1)

We recall that this identity follows directly from the well-known relation between the Weier-
strass ℘-function and the σ-function,

℘(x) − ℘(y) =
σ(y + x)σ(y − x)

σ(x)2σ(y)2
, (2.2)

cf. [7]. (Indeed, one need only divide (2.1) by σ(z)2σ(a)2σ(b)2σ(c)2 and use (2.2).)
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Theorem. Let q1, . . . , qN , r1, . . . , rN , λ be complex variables and introduce

λN := λ, λk−1 := λk + qk − rk ≡ λ +
N∑

j=k

(qj − rj), k = 1, . . . , N. (2.3)

Define the elliptic Cauchy-like matrix CN (λ) by

Cij
N (λ) :=

(
N∏

k=i+1

σ(qi − rk)
σ(qi − qk)

)
σ(qi − rj + λ)
σ(λ)σ(qi − rj)


 N∏

l=j+1

σ(ql − rj)
σ(rl − rj)


, i, j = 1, . . . , N, (2.4)

where it is understood that
∏N

k=N+1 · · · ≡ 1. Then the decomposition (1.4) is given by

(Dii)−1 = U ii = Lii = Cii
i (λi); U ij = Cij

j (λj), i < j; Lij = Cij
i (λi), i > j. (2.5)

Proof. Substituting

2z = qi − rj + qN − rN , 2a = qi + rj − qN − rN ,

2b = qi − rj + qN − rN + 2λ, 2c = qi − rj − qN + rN

(2.6)

in (2.1), we obtain an identity from which the first step

CN (λN ) =

(
IN−1 cN (λN )

0 CNN
N (λN )

)CN−1(λN−1) 0

0
1

CNN
N (λN )



(

IN−1 0

γN (λN ) CNN
N (λN )

)
(2.7)

of an inductive decomposition follows by a straightforward computation. Here, IN−1 stands
for the unit (N − 1) × (N − 1) matrix, cN is a column vector whose (N − 1) components
are CiN

N , i = 1, . . . , N − 1, and γN is a row vector whose (N − 1) components are CNj
N ,

j = 1, . . . , N − 1.
Applying the decomposition (2.7) to the Cauchy matrix CN−1(λN−1) and then to the

Cauchy matrix CN−2(λN−2) etc., we arrive directly at the formula (1.4) with factors (2.5).

It remains to discuss some consequences. First of all, the following result follows
effortlessly.

Corollary (elliptic Cauchy identity). The formulas (1.4) and (2.5) imply

det(CN (λ)) =
N∏

k=1

Ckk
k (λk) =

N∏
k=1

σ(λk−1)
σ(λk)σ(qk − rk)

=
σ(λ +

∑N
k=1(qk − rk))

σ(λ)
∏N

k=1 σ(qk − rk)
, (2.8)

which is just the identity (1.3) on account of (2.4).

Secondly, it is worth noting that the decomposition formula provided by the theorem
remains valid if we replace the σ-function by any nonzero odd holomorphic function that
satisfies the 3-term identity (2.1). (Indeed, our proof only uses these properties of σ(z).) It
is known [7] that all such functions are of the form

σ̃(z) = eα+βz2
σ(z), (2.9)
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where α and β are arbitrary complex numbers, and where it is understood that the rational
and trigonometric/hyperbolic degenerations of the σ-function are included. If we replace
σ(z) by the rational degeneration furnished by σ̃(z) = z and take λ to infinity, then we obtain
the Gauss decomposition of the original Cauchy matrix (1.1) as well as the determinant
formula (1.2) from our result.

Thirdly, from the trigonometric specialisation we can recover the Gauss decomposition
of the Lax matrix of the relativistic trigonometric Calogero–Moser system that recently
cropped up in the paper [2] written by two of us. In fact, it was our discussion of the
decomposition of the latter matrix that eventually led to the general decomposition encoded
in the above theorem.

Finally, we point out that a similarity transformation with the reversal permutation
matrix can be applied to (1.4) to obtain a “lower-diagonal-upper” version of the decompo-
sition formula. After a relabeling

p1, . . . , pN → pN , . . . , p1, p = q, r, (2.10)

this decomposition has a well-defined limit for N → ∞, by contrast to the one in the
theorem.

Acknowledgments

This work was supported in part by the Hungarian Scientific Research Fund (OTKA) under
the grant K 77400.

References

[1] J. D. Fay, Theta Functions on Riemann Surfaces, Lect. Notes in Math., Vol. 352 (Springer,
New York, 1973).
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